交流伺服电机及其调速分类和特点

合集下载

伺服电机的驱动方式及特点

伺服电机的驱动方式及特点

伺服电机的驱动方式及特点伺服电机是一种采用反馈控制系统的电动机,具有高精度、高速度、高可靠性等优点,广泛应用于数控机床、机器人、印刷设备、医疗设备等领域。

伺服电机的驱动方式及特点对其性能起着至关重要的作用,下面将就伺服电机的驱动方式和特点进行详细介绍。

1. 伺服电机的驱动方式(1)开环控制开环控制是指在伺服系统中没有反馈控制的情况下,只通过输入控制信号来驱动伺服电机。

开环控制简单、成本低,但无法对电机运行状况进行实时监测和调整,容易受到外部干扰影响,精度和稳定性较差。

(2)闭环控制闭环控制是指在伺服系统中通过反馈控制来实现电机的精准驱动。

通过传感器不断监测电机的位置、速度和转矩等参数,并将反馈信息送回控制系统,实现对电机运行状态的实时调整和控制。

闭环控制能够有效提高伺服电机的精度、快速响应和稳定性,是目前应用较为广泛的控制方式。

2. 伺服电机的特点(1)高精度伺服电机采用闭环控制,能够实时监测电机的位置、速度和转矩等参数,具有极高的定位精度和重复定位精度,适用于对精度要求较高的工业领域。

(2)高速度伺服电机响应速度快,启动、停止和调速均非常迅速,能够在短时间内完成加速、减速等动作,适用于对速度要求较高的应用场合。

(3)高可靠性伺服电机具有很高的稳定性和可靠性,能够长时间稳定运行且寿命较长,减少了设备的维护成本和故障率,同时提高了设备的稳定性和运行效率。

综上所述,伺服电机的驱动方式及特点对其在工业自动化领域的应用起着重要的作用。

选择合适的驱动方式和充分发挥其特点,能够有效提高生产效率、产品质量和设备稳定性,满足不同行业对电机精确控制的需求。

希望本文对您了解伺服电机有所帮助。

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流/交流伺服电机)伺服电机servomotor“伺服”一词源于希腊语“奴隶”的意思。

“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。

伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。

伺服电机分为交流伺服和直流伺服两大类交流伺服电机的基本构造与交流感应电动机(异步电机)相似。

在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。

交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。

直流伺服电机基本构造与一般直流电动机相似。

电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E 为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。

直流伺服电动机具有良好的线性调节特性及快速的时间响应。

直流伺服电机的优点和缺点优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。

缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)交流伺服电机的优点和缺点优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可。

交流伺服电机的作用

交流伺服电机的作用

交流伺服电机的作用1. 什么是交流伺服电机?交流伺服电机是一种带有反馈控制系统的电机,可以实现高性能位置控制和速度控制。

通过控制电机的电流和电压,可以精确地控制电机的转速和位置。

交流伺服电机广泛应用于工业自动化领域,如机器人、数控机床、自动化生产线等。

2. 交流伺服电机的作用交流伺服电机在工业自动化中发挥着重要作用,其主要作用包括:•高精度位置控制:交流伺服电机通过反馈控制系统可以实现高精度的位置控制,可以精确控制电机的转角和位置,适用于对位置精度要求较高的应用场景。

•高动态响应:交流伺服电机具有快速的动态响应特性,能够迅速响应控制信号的变化,实现快速启动、停止和准确的速度控制,适用于需要频繁启停和高速运动的场合。

•载荷变化自适应能力:交流伺服电机可以根据负载的变化自动调节输出功率,使其适应不同工作负载的要求,从而保证系统稳定性和工作效率。

•节能环保:交流伺服电机采用先进的调速控制技术,可以根据实际负载情况智能调节输出功率,有效节能降耗,减少能源浪费,符合现代工业发展的节能环保要求。

•可靠性高:交流伺服电机结构简单,运行稳定,故障率低,工作寿命长,能够保证工业生产设备的连续稳定运行。

3. 交流伺服电机的应用领域交流伺服电机广泛应用于各种工业领域,包括但不限于:1.机床加工:用于数控机床、加工中心等设备的主轴驱动和运动控制。

2.机器人技术:用于各类工业机器人的多轴控制、精准定位和动作控制。

3.自动化生产线:用于传送带、装配线等自动化设备的驱动和位置调节。

4.制造业装备:包括包装机械、注塑机械、纺织机械等的动力控制和运动控制。

5.医疗设备:用于影像设备、手术机器人、床边监护设备等的定位控制和运动控制。

4. 结语交流伺服电机作为一种先进的电机控制技术,具有高精度、高响应、自适应能力强、节能环保等优势,在工业自动化领域发挥着重要作用。

随着工业自动化的不断发展,交流伺服电机的应用范围将进一步扩大,持续发挥其在提升生产效率和产品质量方面的价值。

交流伺服电机与普通电机区别

交流伺服电机与普通电机区别

交流伺服电机与普通电机区别交流伺服电机与普通电机有很多区别:1、根据电机的不同应用领域,电机的种类很多,交流伺服电机属于控制类电机。

伺服的基本概念是准确、精确、快速定位。

伺服电机的构造与普通电机是有区别的,带编码器反馈闭环控制,能满足快速响应和准确定位。

现在市面上流通的交流伺服电机多为永磁同步交流伺服,这种电机受工艺限制,很难做到很大的功率,十几Kw以上的同步伺服电机价格很贵,在这样的现场应用,多采用交流异步伺服电机,往往采用变频器驱动。

2、电机的材料、结构和加工工艺,交流伺服电机要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机)。

就是说当伺服驱动器输出电流、电压、频率变化很快时,伺服电机能产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机。

当然不是说变频器输出不了变化那么快的电源信号,而是电机本身就反应不了,所以在变频器的内部算法设定时为了保护电机做了相应的过载设定。

3、交流电机一般分为同步和异步电机:(1)、交流同步电机:就是转子是由永磁材料构成,所以转动后,随着电机的定子旋转磁场的变化,转子也做响应频率的速度变化,而且转子速度=定子速度,所以称“同步”。

(2)、交流异步电机:转子由感应线圈和材料构成。

转动后,定子产生旋转磁场,磁场切割定子的感应线圈,转子线圈产生感应电流,进而转子产生感应磁场,感应磁场追随定子旋转磁场的变化,但转子的磁场变化永远小于定子的变化,一旦等于就没有变化的磁场切割转子的感应线圈,转子线圈中也就没有了感应电流,转子磁场消失,转子失速又与定子产生速度差又重新获得感应电流。

所以在交流异步电机里有个关键的参数是转差率就是转子与定子的速度差的比率。

(3)、对应交流同步和异步电机,变频器就有相应的同步变频器和异步变频器,伺服电机也有交流同步伺服和交流异步伺服。

当然变频器里交流异步变频常见,伺服则交流同步伺服常见。

4、交流伺服电机与普通电机还有很多区别,可以参考一下《电机学》方面的书籍;普通电机通常功率很大,尤其是启动电流很大,伺服驱动器的电流容量不能满足要求。

伺服系统的分类及其工作原理和性能特点分析

伺服系统的分类及其工作原理和性能特点分析

伺服系统的分类及其工作原理和性能特点分析2011-12-19 17:16:32| 分类:默认分类|字号大中小订阅伺服系统是输入控制输出的一种自动控制系统,它可以严格的现实输出变量精确地跟随或复现输入变量,一般情况下,它的控制对象为机械位置或角度,现在的工业控制中,很多大的设备设施都需要现实自动控制和精确高精度的控制,这样就导致其得到了十分广泛应用。

一般有三种基本控制方式,即位置、速度、力矩控制方式。

通常位置和速度控制用得比较多。

在伺服系统中,控制电路十分关键,它直接影响到系统的性能品质。

由于上面的分析可以看出,它对于工业控制、自动化、自动控制、工控等领域,使用的频率还是很高的。

下面我们来深入的分析一下什么是伺服系统,伺服系统的分类,并分析各种伺服系统的工作原理和性能及特点比较,通过总结这些基础知识,希望能给大家的学习带来帮助和参考。

伺服系统的分类、原理和特点(1) 按调节理论分类A、开环--即无位置反馈的系统,其驱动元件主要是功率步进电机或液压脉冲马达。

它的结构简单、易于控制,但缺点是精度差,低速不平稳,扭矩小。

一般用于轻载负载变化不大或经济型数控机床上。

在这种系统中,如果是大功率驱动时,用步进电机作为执行元件。

驱动电路的主要任务是将指令脉冲转化为驱动执行元件所需的信号。

B、闭环---误差控制随动随动系统。

数控机床进给系统的误差,是CNC输出的位置指令和机床工作台实际位置的差值。

闭环系统运动执行元件不能反映运动的位置,因此需要有位置检测装置。

由于是反馈控制,反馈测量装置精度很高,所以系统传误差可得到补偿,提高了跟随精度和定位精度。

主要由执行元件、检测单元、比较环节、驱动电路和机床5部分组成。

比较环节的作用是将指令信号和反馈信号进行比较,两者的差值作为伺服系统的跟随误差,经驱动电路,控制执行元件带动工作台继续移动,直到跟随误差为零。

C、半闭环---半闭环和闭环系统的控制结构是一致的,不同点只是闭环系统环内包括较多的机械传动部件,传动误差均可被补偿。

第五章交流伺服电动机

第五章交流伺服电动机

圆形磁场
3.幅值相位控制(电容控制)
激磁回路串联电容后接到相位和幅值都不变的激磁电源, 当改变控制电压幅值时,由于激磁回路电流发生变化,使激 磁绕组及其串联电容上的电压分布发生变化,从而使控制电 压与激磁绕组上的电压间的相位角也发生变化。
普通高等教育“十一五”国家级规划教材
n0 n s 100% 1000 975 100% 2.5% 1000 n0
交流伺服电动机的机械特性如图所示。 n
o
T 不同控制电压下的机械特性曲线 n=f(T), U1=常数
在励磁电压不变的情况下,随着控制电压的 下降,特性曲线下移。在同一负载转矩作用时, 电动机转速随控制电压的下降而均匀减小。
2.伺服电动机和伺服系统
2.4 交流伺服电机(AC Servo Motor)
结构特点和工作原理
交流伺服电机通常都是两相异步电机,在定子上有两个 空间相距90度的绕组,即控制绕组和励磁绕组。
f1
c1
c2
f2
普通高等教育“十一五”国家级规划教材
2.伺服电动机和伺服系统
工作原理:
与普通两相异步电机的相似之处:在二相对称绕组中通入 两对称电流,就会在气隙中产生圆形旋转磁场,转子导体 切割磁场所感应的电流与气隙磁磁场相互作用就产生电磁 转矩。当改变其中一相电流的大小或相位时,气隙磁场就 发生变化,电磁转矩随之变化,电机转速必然跟着改变, 从而实现对转速的控制。 区别:由于伺服电动机在自动控制系统中作为执行元件。 对其要求是:(1)转子速度的快慢能反应控制信号的强弱, 转动方向能反应控制信号的相位,调速范围要宽;(2) 无控制信号时,转子不能转动;(3)当电机转动起来以 后,如控制信号消失,应立即停止转动;(4)为减小体 积和重量,一般采用400、500 或1000Hz。

交流伺服调速原理

交流伺服调速原理

交流伺服调速原理伺服调速是一种在工业控制领域中广泛应用的技术,通过对伺服电机的控制,实现对机械设备的精确调速。

在这个过程中,交流伺服调速原理起着至关重要的作用。

本文将以交流伺服调速原理为主题,介绍其基本概念、工作原理以及应用领域。

一、基本概念交流伺服调速是一种通过改变电机的输入电压频率来实现调速的方法。

它利用交流电机的特性,根据电机转速与电压频率的关系,通过调整输入电压的频率,来控制电机的转速。

这种调速方式具有调速范围广、动态性能好等优点,因此被广泛应用于各种需要精确控制的工业领域。

二、工作原理交流伺服调速原理基于矢量控制理论,通过控制电机的磁通和转矩,实现对电机的精确控制。

在交流伺服调速系统中,主要包括三个部分:传感器、控制器和执行机构。

1. 传感器:传感器用于感知电机的实际运行状态,通常包括位置传感器、速度传感器和转矩传感器。

传感器将所感知到的信号传输给控制器,以实现对电机的闭环控制。

2. 控制器:控制器是交流伺服调速系统的核心部分,它接收传感器传来的信号,并根据设定的控制策略,计算出控制信号。

控制信号经过放大和变换后,送入执行机构。

3. 执行机构:执行机构是通过控制信号来执行相应动作的部件,通常是电机。

执行机构接收控制信号后,通过改变输入电压的频率和幅值,实现对电机的精确控制。

三、应用领域交流伺服调速广泛应用于各种需要精确控制的场合,如机床加工、工业自动化生产线、印刷设备、纺织设备等。

它能够实现对设备的高速、高精度控制,提高生产效率和产品质量。

1. 机床加工:交流伺服调速在机床加工中起着重要作用。

它能够实现对工件的高速、高精度加工,提高加工效率和产品质量。

2. 工业自动化生产线:交流伺服调速在工业自动化生产线中广泛应用。

它能够实现对生产线的快速响应和高精度控制,提高生产效率和产品质量。

3. 印刷设备:交流伺服调速在印刷设备中的应用越来越广泛。

它能够实现对印刷速度和张力的精确控制,提高印刷质量和生产效率。

交流伺服电机分为哪几种?

交流伺服电机分为哪几种?

交流伺服电机分为哪⼏种? 20世纪80年代以来,随着集成电路、电⼒电⼦技术和交流可变速驱动技术的发展,交流伺服驱动技术有了突出的发展,各国著名电⽓⼚商相继推出各⾃的交流伺服电机和伺服驱动器系列产品并不断完善和更新。

交流伺服系统已成为当代⾼性能伺服系统的主要发展⽅向,使原来的直流伺服⾯临被淘汰的危机。

90年代以后,世界各国已经商品化了的交流伺服系统是采⽤全数字控制的正弦波电动机伺服驱动。

交流伺服驱动装置在传动领域的发展⽇新⽉异。

交流伺服电机分类: 交流伺服电机分类 1.异步型交流伺服电动机 异步型交流伺服电动机指的是交流感应电动机。

它有三相和单相之分,也有⿏笼式和线绕式,通常多⽤⿏笼式三相感应电动机。

其结构简单,与同容量的直流电动机相⽐,质量轻1/2,价格仅为直流电动机的1/3。

缺点是不能经济地实现范围很⼴的平滑调速,必须从电⽹吸收滞后的励磁电流。

因⽽令电⽹功率因数变坏。

这种⿏笼转⼦的异步型交流伺服电动机简称为异步型交流伺服电动机,⽤IM表⽰。

2.同步型交流伺服电动机 同步型交流伺服电动机虽较感应电动机复杂,但⽐直流电动机简单。

它的定⼦与感应电动机⼀样,都在定⼦上装有对称三相绕组。

⽽转⼦却不同,按不同的转⼦结构⼜分电磁式及⾮电磁式两⼤类。

⾮电磁式⼜分为磁滞式、永磁式和反应式多种。

其中磁滞式和反应式同步电动机存在效率低、功率因数较差、制造容量不⼤等缺点。

数控机床中多⽤永磁式同步电动机。

与电磁式相⽐,永磁式优点是结构简单、运⾏可靠、效率较⾼;缺点是体积⼤、启动特性⽋佳。

但永磁式同步电动机采⽤⾼剩磁感应,⾼矫顽⼒的稀⼟类磁铁后,可⽐直流电动外形尺⼨约⼩1/2,质量减轻60﹪,转⼦惯量减到直流电动机的1/5。

它与异步电动机相⽐,由于采⽤了永磁铁励磁,消除了励磁损耗及有关的杂散损耗,所以效率⾼。

⼜因为没有电磁式同步电动机所需的集电环和电刷等,其机械可靠性与感应(异步)电动机相同,⽽功率因数却⼤⼤⾼于异步电动机,从⽽使永磁同步电动机的体积⽐异步电动机⼩些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流伺服电机及其调速分类和特点
长期以来,在要求调速性能较高的场合,一直占据主导地位的是应用直流电动机的调速系统。

但直流电动机都存在一些固有的缺点,如电刷和换向器易磨损,需经常维护。

换向器换向时会产生火花,使电动机的最高速度受到限制,也使应用环境受到限制,而且直流电动机结构复杂,制造困难,所用钢铁材料消耗大,制造成本高。

而交流电动机,特别是鼠笼式感应电动机没有上述缺点,且转子惯量较直流电机小,使得动态响应更好。

在同样体积下,交流电动机输出功率可比直流电动机提高10﹪~70﹪,此外,交流电动机的容量可比直流电动机造得大,达到更高的电压和转速。

现代数控机床都倾向采用交流伺服驱动,交流伺服驱动已有取代直流伺服驱动之势。

分类和特点
1.异步型交流伺服电动机
异步型交流伺服电动机指的是交流感应电动机。

它有三相和单相之分,也有鼠笼式和线绕式,通常多用鼠笼式三相感应电动机。

其结构简单,与同容量的直流电动机相比,质量轻1/2,价格仅为直流电动机的1/3。

缺点是不能经济地实现范围很广的平滑调速,必须从电网吸收滞后的励磁电流。

因而令电网功率因数变坏。

这种鼠笼转子的异步型交流伺服电动机简称为异步型交流伺服电动机,用IM表示。

2.同步型交流伺服电动机
同步型交流伺服电动机虽较感应电动机复杂,但比直流电动机简单。

它的定子与感应电动机一样,都在定子上装有对称三相绕组。

而转子却不同,按不同的转子结构又分电磁式及非电磁式两大类。

非电磁式又分为磁滞式、永磁式和反应式多种。

其中磁滞式和反应式同步电动机存在效率低、功率因数较差、制造容量不大等缺点。

数控机床中多用永磁式同步电动机。

与电磁式相比,永磁式优点是结构简单、运行可靠、效率较高;缺点是体积大、启动特性欠佳。

但永磁式同步电动机采用高剩磁
感应,高矫顽力的稀土类磁铁后,可比直流电动外形尺寸约小1/2,质量减轻60﹪,转子惯量减到直流电动机的1/5。

它与异步电动机相比,由于采用了永磁铁励磁,消除了励磁损耗及有关的杂散损耗,所以效率高。

又因为没有电磁式同步电动机所需的集电环和电刷等,其机械可靠性与感应(异步)电动机相同,而功率因数却大大高于异步电动机,从而使永磁同步电动机的体积比异步电动机小些。

这是因为在低速时,感应(异步)电动机由于功率因数低,输出同样的有功功率时,它的视在功率却要大得多,而电动机主要尺寸是据视在功率而定的。

相关文档
最新文档