超外差接收机

合集下载

超外差接收机

超外差接收机

超外差接收机超外差接收机的拓扑如下图1:图1 超外差接收机结构由上图可以看到超外差接收机进⾏了两次下变频,第⼀次下变频是将射频信号降到固定的中频段,这样做的原因是在射频段频率较⾼,要实现对信道的选择(将⽆⽤频段信号滤除)对滤波器的Q值要求太⾼,滤波器的Q值做⼀个补充:由此可见,对于同样的滤波器带宽,信号的频率越⾼,Q值越⼤,对滤波器的要求越⾼。

⽽将射频信号降到中频则对Q的要求会降低很多。

以上结构中第⼀个射频滤波器⽤于限制输⼊带宽衰减带外信号,减⼩互调失真,抑制杂散信号。

低噪声放⼤器LNA⽤于在不造成接收机线性恶化的前提下提供⼀定的增益,提⾼信噪⽐。

镜像抑制⼲扰滤波器IR filter⽤于抑制镜像⼲扰,将镜像频率衰减到可接受的⽔平(可以通过查看前⼀篇博客对镜像频率有⼀个简单的理解)。

第⼀次下变频后的中频滤波器就是⽤来进⾏信道选择的,最后通过可变增益放⼤器后进⾏第⼆次下变频,使⽤的是复混频(可以通过查看前⼀篇博客对复混频有⼀个简单的理解)进⾏正交解调产⽣同相和正交两路基带信号。

超外差结构可以通过选择合适的中频频率和镜像抑制滤波器来获得很好的信道选择效果,同时也可以获得很好的灵敏度和动态范围。

多个变频级也减⼩了本振泄漏和直流偏差的影响。

但是由于滤波器的Q值仍然很⾼,只能在⽚外实现,增加了成本和尺⼨。

接收机系统增益分配天线接收的射频信号⼀般只有-120~-100dBm,需要放⼤100~200dB,如此⼤的增益必须分配到各个放⼤级才能保证放⼤器的稳定⼯作,⼀般⽽⾔⼀个频带内的放⼤器增益⼀般不超过50-60dB,超外差接收机结构由于频段的级数很多,可以将增益分配到射频级、中频级和基带级上。

由于在较低的频带上实现窄带的⾼增益较容易实现,⼀次在中频和基带级可以分配较⼤的增益。

对于在射频频带上的LNA,增益不宜太⼤,只需具有⼀定增益减弱噪声对系统的影响,提⾼接收机对信号的灵敏度即可,此外过⼤的信号进⼊混频器会产⽣⾮线性失真(混频器为⾮线性器件),因此⼀般LNA增益不⼤于25dB。

简述超外差式接收机的工作原理

简述超外差式接收机的工作原理

简述超外差式接收机的工作原理超外差式接收机是广播和通信中最主要的一种调频接收机。

它是通过将接收信号与一个高稳定的、本地的振荡器频率混合,产生出一个中频信号,再进行放大、解调等信号处理的过程,最终实现对信号的接收和解码。

下面我们将从信号混频、中频处理和解调等几个方面简述超外差式接收机的工作原理。

1. 信号混频
超外差式接收机接收到的高频信号,首先要与本地低频信号混频。

混频的目的是把高频信号转换为中频信号。

超外差式接收机通常使用的振荡器频率是固定的,并且是高度稳定的,因此产生的混频信号频率也是稳定的。

混频后,通过带通滤波器将频率范围内的信号通过,其它信号将被阻止。

2. 中频处理
混频后得到的中频信号通常是一个比较低的频率信号。

为了放大和解调,需要对中频信号进行放大和对中频信号进行滤波,以去除不需要的信号。

中频放大器通常使用的是高品质的放大器,以保证信号的质量。

中频滤波器通常用来防止旁路信号对解调过程的干扰。

3. 解调
在中频处理之后,接下来就是解调信号的过程了。

解调信号通常是根
据不同类型的信号,使用不同的解调方式。

例如,调幅信号一般使用
检波器进行解调,调频信号则使用反馈式调制解调出原始信号。

最后,信号经过解调处理之后,就可以被输出。

总的来说,超外差式接收机在接收信号的过程中,通过混频、中频处
理和解调等多个环节的处理,最终实现了对信号的解码和输出。

它具
有灵敏度高、动态范围宽、稳定性好等特点,因此在广播和通讯领域
被广泛应用。

超外差接收机工作原理

超外差接收机工作原理

超外差接收机工作原理
超外差接收机工作原理主要涉及到两个部分:混频和解调。

首先,我们来介绍混频部分。

超外差接收机是利用非线性元件将接收到的信号与本地振荡器产生的信号进行混频,得到中频信号。

这样做的目的是将高频信号转换为中频信号,方便后续的处理。

混频过程中,非线性元件会产生多个频率的信号,其中包含了原始信号的和频分量、差频分量和本地振荡器信号。

接下来是解调部分。

混频之后,得到的中频信号需要进行解调,以提取出原始信号。

解调的过程利用了非线性元件的特性,比如二极管的整流特性。

通过将中频信号输入到非线性元件中,只保留了中频信号所对应的频率分量,而滤除了其他分量。

然后再进行滤波处理,去除其他杂散信号,最终得到原始信号。

整个超外差接收机的工作原理基于混频和解调的过程,通过将收到的高频信号转换为中频信号,再经过解调处理,最终提取出原始信号。

这种工作原理在广播和通信领域得到广泛应用,提高了信号的接收效果和质量。

超外差、低中频、零中频比较

超外差、低中频、零中频比较

超外差、低中频、零中频比较超外差接收机(heterodyne receiver)、零中频接收机(homodyne receiver)和近零中频接收机,这三种接收机可以说各有优缺点,那么在设计射频接收机时到底应该应用哪一种呢?超外差式接收机(heterodyne receiver):优点(benefits):1.超外差式接收机可以有很大的接收动态范围2.超外差式接收机具有很高的邻道选择性(selectivity)和接收灵敏度(sensitivity)。

一般超外差式接收机在混频器前面会有一个预选射频滤波器,在混频器后面还会有一个中频滤波器。

这就使得它具有良好的选择性,可以抑制很强的干扰。

3.超外差式接收机受I/Q信号不平衡度影响小,不需要复杂的直流消除电路。

缺点(drawback):1.由于超外差式接收机一般会用到一级或几级中频混频所以电路会相对于零中频接收机复杂且成本高集成度不高。

2.超外差式接收机会用到很多离散的滤波器,这些滤波器可以是SAW或陶瓷的,但一般比较昂贵,而且体积较大,是的集成度不高,成本也较高。

3.超外差式接收机一般需要较高的功率消耗。

应用:相干检测的方案中(QPSK、QAM)。

零中频接收机(homodyne receiver):优点(benefits):1.零中频接收机可以说是目前集成度最高的一种接受机,体积小,成本也很低,但是如果到了VHF频段设计零中频接收机将变得非常复杂、困难。

因为频率越高,IQ解调器所用到的本振很难做到正交,频率也很难做到很准确,一个解决办法就是增加AFC电路,自动控制本振频率。

2.功率消耗较低。

3.不需要镜像频率抑制滤波器,同样减小了体积和成本。

缺点(dr awback):1.由于信道选择性完全是在基带有源低通滤波器实现的,所以诸如大的动态范围、低噪声和良好的线性度这些指标要求使得有源低通滤波器的设计和实现非常困难。

2.需要直流消除电路。

由本振自混频(self-mix)和强干扰信号自混频在基带产生的直流电压会恶化接收信号,需要用到直流消除技术。

超外差式接收机课件

超外差式接收机课件
无线通信系统中的信号处理
超外差式接收机在无线通信系统中主要用于信号的接收和处理,对于提高通信 质量和系统性能具有关键作用。
课程目标
掌握超外差式接收机的基本原理
01
通过本课程的学习,使学生掌握超外差式接收机的基本原理、
组成和工作流程。
理解超外差式接收机的关键技术
02
了解和掌握超外差式接收机的关键技术,如变频、滤波、放大
短波广播
短波广播使用超外差式接收机来接收短波信号,实现远距离通信和广播。
雷达系统
气象雷达
气象雷达使用超外差式接收机来接收气象目 标的回波信号,通过分析回波信号来探测气 象条件。
军事雷达
军事雷达使用超外差式接收机来接收目标的 回波信号,实现目标探测和定位。
卫星通信系统
卫星电视
卫星电视使用超外差式接收机来接收卫星信号,将其转换为视频和音频信号以便于播放。
超外差式接收机 课件
目录
• 引言 • 超外差式接收机概述 • 超外差式接收机组成 • 超外差式接收机性能指标 • 超外差式接收机应用 • 超外差式接收机调试与维护
01
引言
课程背景
无线通信技术的快速发展
无线通信技术在现代社会中发挥着越来越重要的作用,超外差式接收机作为无 线通信的关键技术之一,其研究和应用具有重要意义。
05
超外差式接收机应用
无线通信系统
无线电广播
超外差式接收机广泛应用于无线 电广播中,将信号从发射机传输 到接收机,实现音频信号的传输 。
移动通信
在移动通信领域,超外差式接收 机用于接收手机、无线麦克风等 设备的信号,实现语音和数据的 传输。
广播接收机
调频广播
调频广播使用超外差式接收机来接收高频信号,将其转换为较低频率的信号以便于播放。

超外差接收机工作原理

超外差接收机工作原理

超外差接收机工作原理
超外差接收机是一种基于调制解调原理的无线电接收器。

它主要由前置放大器、混频器、中频放大器和解调器等组成。

当无线电信号经过天线输入到前置放大器后,在经过调制后,得到一个低频信号,即中频。

然后中频信号经过混频器和中频放大器进行处理,最终得到一个具有较高信噪比的音频信号。

超外差接收机的工作原理可以简单归纳为以下几个步骤:
1. 接收天线接收无线电信号,将它输入到前置放大器中,放大无线电信号的弱化部分,使其达到后续处理的要求。

2. 经过调制,将高频无线电信号转换为中频信号,再进行一定的滤波处理,使其获得所需的频带宽度。

3. 经过混频器和中频放大器的处理,将中频信号放大到一定的电平,以便后续的处理和解调。

4. 解调器对待处理的中频信号进行解调,将中频信号恢复为对应的基带信号,即音频信号。

超外差接收机在无线电通信中有着广泛的应用,它能够接收到频率范围内的各种无线电信号,并将其转换为可以听到的音频信号,实现了信息的传递和交流。

超外差接收机

超外差接收机


中频的选择(二)

对于数字中频接收机, 中频的选择更受进行中频 采样ADC的性能的制约。 在工程实现中,还有一个制约中频选值的因素, 那就是 标准 。仅管设计可能会给出某段范围的中 频值,通常选用的一般是 10.7MHz 、 30MHz 、 60MHz 、 70MHz 、 120MHz 、 160MHz 、 1000MHz、1500MHz等比较规范的值。
下变频结构
特点:中频低于接收频率 下变频式是超外差接收机的基本形式,几乎所有 的家用娱乐电器和高性能的设备里都使用这种形 式。
上变频结构
特点:中频高于接收频率 使用上变换,是现代高性能 宽带系统 的一个发展 方向。由于元器件(主要是宽带可调预选器)的重 大进展,这种系统已可用于GHz频率范围。
上下变频对比



镜像与寄生信号(一)
在混频过程中,由于电路的非线性,可能产生无数它们 的组合频率分量,称为 寄生响应 。一般说来, N 和 M 的绝 对值越小,对应的频率分量的幅度就越大。
NFr MFlo
当M=N=1时,(如RF信号和本地振荡信号加到混频 器时在混频器的输出就产生了中频信号),这时方程为:
为什么选择超外差结构?(一)
超外差方式可以通过改变本振信号的频率很方便地实现无 线接收机的调谐,同时保持中频信号的频率的不变 ,这可 以说是超外差接收机众多优点的根本所在。

1.固定中频有利于信号的放大。 任何放大器都有其线性工作范围,很显然,线性工作范围 越大其电路越复杂、设计制作难度越大、增益越低、噪声 系数越大、成本越高,而且对于某些工作范围也许很难实 现。对于宽带多信道接收机而言,接收机要接收的所有无 线电信号的带宽很宽,而每个信道的带宽比较窄。如果直 接对接收信号进行放大,需要放大器的线性工作范围很大, 那么电路设计的难度很大而且成本上也很不合算。但是如 果对中频信号进行放大,则对中频放大器的线性工作范围 要求仅为一个信道的工作范围了,设计和实现起来就比较 简单。

超外差式接收机

超外差式接收机
天线与调谐回路之间既有 电容耦合,又有电感耦合,电 感耦合对低频信号传输有利, 电容耦合对高频信号有利,综 合的结果,可以在整个接收范 围内得到比较均匀的传输系 数。
4.2.2 外接天线与输入调谐电路的连接
三种耦合方式传输系数比较 电容耦合高频端传输系数大,低频端传输系数下降; 电感耦合低频信号传输系数较大,不过电感耦合时传输系 数随频率变化比较缓慢; 电感-电容耦合时传输系数变化最为平稳,因此,在一些高 性能的接收机中都采用这种耦合方式。
(1)自激式共射极变频电路
本振电压由变 频管自身产生 的,称为自激式 变频电路。
R1、R2是基极 静态偏置电阻, C3为高频信号旁 路电容,B1为磁 棒。
L1、C1a、C2组成输入谐振回路,天线与该回路间采用电感 耦合方式,调节电容C1a,可选择中波范围内的各个频率,接
收到的已调信号uAM(t)经L2耦合输入VT1的发射结回路。
从3脚输出的即为音
频基带信号,经VT1 组成的共射极放大电
电路的特点是低电压、低功耗, 可用电池供电。
路放大,驱动耳机发
声。
4.2 混频器原理及超外差式接收机
返回
传统直接式接收机的缺陷
• 收音机、电视接收机等无线电接收设备( 以下简称接收机),需要接收许多电台发 送来的高频调制信号,若接收机将接收到 的这些信号直接放大还原,将会出现灵敏 度低、选择性差、接收机结构复杂等问题 ,其主要原因有以下几个方面。
的包络形状相同,频谱结构相同,只是填充频谱不同,即,其中心
频率:其中 fI fL fc
fI
f
L
fL
fc fc
输出低中频 输出高中频
是获2由可混.得见混频两c输器频变个出是化器输中频成入的频谱信信基的号L号线本的u性工乘cI的搬积作包移项I原络电,形理路具状,:有没完这有成个变频乘化谱积,线项只性,是搬就填移可充功以频能实率的现关所休息键需1休息2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超外差接收机
利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预先确定的频率的方法。

超外差原理最早是由E.H.阿姆斯特朗于1918年提出的。

这种方法是为了适应远程通信对高频率、弱信号接收的需要,在外差原理的基础上发展而来的。

外差方法是将输入信号频率变换为音频,而阿姆斯特朗提出的方法是将输入信号变换为超音频,所以称之为超外差。

1919年利用超外差原理制成超外差接收机。

这种接收方式的性能优于高频(直接)放大式接收,所以至今仍广泛应用于远程信号的接收,并且已推广应用到测量技术等方面。

超外差原理如图1。

本地振荡器产生频率为f1的等幅正弦信号,输入信号是一中心频率为f c的已调制频带有限信号,通常f1>f c。

这两个信号在混频器中变频,输出为差频分量,称为中频信号,f i=f1-f c为中频频率。

图2表示输入为调幅信号的频谱和波形图。

输出的中频信号除中心频率由f c变换到f i外,其频谱结构与输入信号相同。

因此,中频信号保留了输入信号的全部有用信息。

超外差原理的典型应用是超外差接收机(图3)。

从天线接收的信号经高频放大器放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。

接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频f i保持为固定的数值。

接收机的输入信号u c往往十分微弱(一般为几微伏至几百微伏),而检波器需要有足够大的输入信号才能正常工作。

因此需要有足够大的高频增益把u c放大。

早期的接收机采用多级高频放大器来放大接收信号,称为高频放大式接收机。

后来广泛采用的是超外差接收机,主要依靠频率固定的中频放大器放大信号。

和高频放大式接收机相比,超外差接收机具有一些突出的优点。

①容易得到足够大而且比较稳定的放大量。

②具有较高的选择性和较好的频率特性。

这是因为中频频率f i是固定的,所以中频放大器的负载可以采用比较复杂、但性能较好的有源或无源网络,也可以采用固体滤波器,如陶瓷滤波器(见电子陶瓷)、声表面波滤波器(见声表面波器件)等。

③容易调整。

除了混频器之前的天线回路和高频放大器的调谐回路需要与本地振荡器的谐振回路统一调谐之外,中频放大器的负载回路或滤波器是固定的,在接收不同频率的输入信号时不需再调整。

超外差接收机的主要缺点是电路比较复杂,同时也存在着一些特殊的干扰,如像频干扰、组合频率干扰和中频干扰等(见混频器)。

例如,当接收频率为f c的信号时,如果有一个频率为f婞=f1+f i的信号也加到混频器的输入端,经混频后也能产生|f1-f 婞|=f i的中频信号,形成对原来的接收信号f c的干扰,这就是像频干扰。

解决这个问题的办法是提高高频放大器的选择性,尽量把由天线接收到的像频干扰信号滤掉。

另一种办法是采用二次变频方式。

二次变频超外差接收机的框图如图4。

第一中频频率选得较高,使像频干扰信号的中心频率与有用输入信号u c的中心频率差别较大,使像频信号在高频放大器中受到显著的衰减。

第二中频频率选得较低,使第二中频放大器有较高的增益和较好的选择性。

随着集成电路技术的发展,超外差接收机已经可以单片集成。

例如,有一种单片式调幅-调频(AM/FM)接收机,它的AM/FM高频放大器、本地振荡器、混频器、AM/FM中频放大器、AM/FM检波器、音频功率放大器以及自动增益控制(AGC)、自动频率控制(AFC)、调谐指示电路等(共700个元件)均集成在一个面积为2.4×3.1毫米芯片上,它的工作电压范围为1.8~9伏,工作于调幅与调频方式的静态电流分别为3毫安和5毫安。

相关文档
最新文档