TSP分支定界法
动态规划法,回溯法,分支限界法求解TSP问题实验报告

TSP问题算法实验报告指导教师:****名:***学号:**********提交日期:2015年11月目录总述 (2)动态规划法 (3)算法问题分析 (3)算法设计 (3)实现代码 (3)输入输出截图 (6)OJ提交截图 (6)算法优化分析 (6)回溯法 (6)算法问题分析 (6)算法设计 (7)实现代码 (7)输入输出截图 (9)OJ提交截图 (9)算法优化分析 (10)分支限界法 (10)算法问题分析 (10)算法设计 (10)实现代码 (10)输入输出截图 (15)OJ提交截图 (15)算法优化分析 (15)总结 (16)总述TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。
动态规划法算法问题分析假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。
首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。
设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。
算法设计输入:图的代价矩阵mp[n][n]输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度1.初始化第0列(动态规划的边界问题)for(i=1;i<n;i++)dp[i][0]=mp[i][0]2.依次处理每个子集数组x[2^n-1]for(i=1;i<n;i++)if(子集x[j]中不包含i)对x[j]中的每个元素k,计算d[i][j]=min{mp[i][k]+dp[k][j-1]};3.输出最短路径长度。
TSP问题的解决方案课案

《算法设计与分析》实验报告一学号:姓名:日期: 20161230 得分:一、实验内容:TSP问题二、所用算法的基本思想及复杂度分析:1、蛮力法1)基本思想借助矩阵把问题转换为矩阵中点的求解。
首先构造距离矩阵,任意节点到自身节点的距离为无穷大。
在第一行找到最小项a[1][j],从而跳转到第j行,再找到最小值a[j][k],再到第k行进行查找。
然后构造各行允许数组row[n]={1,1…1},各列允许数组colable[n]={0,1,1….1},其中1表示允许访问,即该节点未被访问;0表示不允许访问,即该节点已经被访问。
如果改行或该列不允许访问,跳过该点访问下一节点。
程序再发问最后一个节点前,所访问的行中至少有1个允许访问的节点,依次访问这些节点找到最小的即可;在访问最后一个节点后,再次访问,会返回k=0,即实现访问源节点,得出一条简单回路。
2)复杂度分析基本语句是访问下一个行列中最小的点,主要操作是求平方,假设有n 个点,则计算的次数为n^2-n。
T(n)=n*(n-1)=O(n^2)。
2、动态规划法1)基本思想假设从顶点s出发,令d(i, V’)表示从顶点i出发经过V’(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。
推导:(分情况来讨论)①当V’为空集,那么d(i, V’),表示从i不经过任何点就回到s了,如上图的城市3->城市0(0为起点城市)。
此时d(i, V’)=Cis(就是城市i 到城市s 的距离)、②如果V’不为空,那么就是对子问题的最优求解。
你必须在V’这个城市集合中,尝试每一个,并求出最优解。
d(i, V’)=min{Cik +d(k, V’-{k})}注:Cik表示你选择的城市和城市i的距离,d(k, V’-{k})是一个子问题。
综上所述,TSP问题的动态规划方程就出来了:2)复杂度分析和蛮力法相比,动态规划求解tsp问题,把原来时间复杂性O(n!)的排列转化为组合问题,从而降低了时间复杂度,但仍需要指数时间。
TSP问题分析动态规划,分支界限法,蛮力法

算法综合实验报告学号: 1004111115 姓名:李宏强一、实验内容:分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。
二、程序设计的基本思想、原理和算法描述:(包括程序的数据结构、函数组成、输入/输出设计、符号名说明等)1、动态规划法(1)数据结构:利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所由一个十进制数x相对应,此x所对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。
例如:集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中,右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在集合S中;同理,集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中,则说明0,2在集合中,1不在集合中。
利用邻接矩阵表示任意两点之间的距离例如:mp[i][j]表示点i,j两点之间的距离。
(2)函数组成输入函数in()利用动态规划法算法实现的求解函数solve()主函数main()(3)输入/输出设计本程序可以通过键盘进行输入、屏幕进行输出。
(根据实际程序情况,还可以选择随机产生输入数据、将输出数据输出到文件等其它方式)这里采用随机产生输入数据,将数据输出在屏幕上的方式。
(4)符号名说明n 表示顶点个数。
mp[i][j] 表示顶点i和顶点j之间的距离。
dp[i][j] 表示顶点i经过集合S(用二进制表示的数为j)后回到起始点的最短路径和。
(5)算法描述某一个点i不经过任意点回到起始点的最短路径和为mp[i][0](默认初始点为0)dp[i][0] = mp[i][0]; (1<=i<n)点i经过集合S(二进制表示的数为j)的最短路径和为从点i经过集合S中的某一点k后再从该点出发,经过集合S-{k}的最小值。
分支限界法——TSP问题讲诉

算法中while循环的终止条件是排列树的一个叶结点成为 当前扩展结点。当s=n-1时,已找到的回路前缀是x[0:n1],它已包含图G的所有n个顶点。因此,当s=n-1时,相 应的扩展结点表示一个叶结点。此时该叶结点所相应的回 路的费用等于cc和lcost的值。剩余的活结点的lcost值不 小于已找到的回路的费用。它们都不可能导致费用更小的 回路。因此已找到叶结点所相应的回路是一个最小费用旅 行售货员回路,算法可结束。 算法结束时返回找到的最小费用,相应的最优解由数组v 给出。
0
当前最优解,故没必要扩展
结点C
结点I本身的费用已高于当前 最优解,故没必要扩展结点I
此时,优先队列为空,算法 终止。
算法的while循环体完成对排列树内部结点的扩展。
对于当前扩展结点,算法分2种情况进行处理:
①首先考虑s=n-2的情形,此时当前扩展结点是排列树中某个叶结点的父结 点。如果该叶结点相应一条可行回路且费用小于当前最小费用,则将该叶结 点插入到优先队列中,否则舍去该叶结点。 ②当s<n-2时,算法依次产生当前扩展结点的所有儿子结点。由于当前扩展 结点所相应的路径是x[0:s],其可行儿子结点是从剩余顶点x[s+1:n-1]中选 取的顶点x[i],且(x[s],x[i])是所给有向图G中的一条边。对于当前扩展结点 的每一个可行儿子结点,计算出其前缀(x[0:s],x[i])的费用cc和相应的下界 lcost。当lcost<bestc时,将这个可行儿子结点插入到活结点优先队列中。
算法: 1.找出中间的蚂蚁离两端的距离中较小的。
a[2]=11
a[2]''=27-11=14, 因为a[2]<a[2]'',所以最小距离是11,时间11/1=11 2.找出两端的蚂蚁距两端的距离中较大的。
组合优化问题简介

组合优化问题简介在我们的日常生活和工作中,经常会遇到各种各样需要做出最优选择的情况。
比如,在旅行时规划最佳路线,以使花费的时间和费用最少;在生产线上安排工序,以提高生产效率和降低成本;在物流运输中选择最优的配送方案,以减少运输时间和成本等等。
这些问题都属于组合优化问题。
组合优化问题是一类在离散的、有限的可行解集合中,寻找最优解的问题。
这里的“组合”意味着解决方案是由多个元素的组合而成,而“优化”则表示我们要找到其中最好的那个组合。
让我们以一个简单的例子来理解组合优化问题。
假设你要从城市 A 前往城市 C,中间需要经过城市 B。
从 A 到 B 有三条路线可选择,分别需要花费 2 小时、3 小时和 4 小时;从 B 到 C 也有三条路线可选择,分别需要花费 1 小时、2 小时和 3 小时。
那么,要找到从 A 到 C 的最短时间路线,就需要考虑所有可能的组合,即 3×3=9 种组合,然后从中挑选出总时间最短的那一种。
组合优化问题具有一些显著的特点。
首先,可行解的数量通常是有限的,但可能非常庞大。
就像上面的例子,仅仅是两个阶段的选择就有 9 种可能,如果涉及更多的阶段和更多的选择,可行解的数量会呈指数级增长,这使得直接枚举所有可能的解变得非常困难,甚至在计算上是不可行的。
其次,组合优化问题的目标函数通常是明确的。
在上述例子中,目标就是找到从 A 到 C 的总时间最短的路线,这个目标是清晰可度量的。
再者,很多组合优化问题具有实际的应用背景和重要的经济价值。
例如,在资源分配问题中,如何将有限的资源分配给不同的项目或任务,以实现最大的效益;在网络设计中,如何规划网络拓扑结构,以最小化建设成本和提高网络性能;在排班问题中,如何安排员工的工作时间表,以满足业务需求并减少人力成本等。
常见的组合优化问题包括旅行商问题(TSP)、背包问题、装箱问题、指派问题等。
旅行商问题是一个经典的组合优化问题。
假设有一个旅行商要访问n 个城市,每个城市只能访问一次,最后回到出发城市。
Tsp问题的几种算法的讲解

摘要本文分析比较了tsp问题的动态规划算法,分支界限法,近似等算法。
分析了旅行商问题的时间度特点,针对启发式算法求解旅行商问题中存在的一些问题提出了改进算法。
此算法将群体分为若干小子集,并用启发式交叉算子,以较好利用父代个体的有效信息,达到快速收敛的效果,实验表明此算法能提高寻优速度,解得质量也有所提高。
关键词:旅行商问题TSPAbstractthis paper analyzed the time complexity of traveling salesman problem,then put forward some imprivement towards the genetic algorithm for solving this problen: divding the population into some small parent individual well.so it can quickly get into convergence, the experimental result indicates the impwoved algorithm can accelerate the apeed of finding solution and improve the precision.Keywords traveling salesman problem; genetic algorithm; subset; henristic crossover operator目录1、摘要--------------------------------------------------------------12、Abstract---------------------------------------------------------13、Tsp问题的提法------------------------------------------------24、回溯法求Tsp问题--------------------------------------------35、分支限界法求Tsp问题--------------------------------------76、近似算法求解Tsp问题-------------------------------------107、动态规划算法解Tsp问题----------------------------------12引言tsp问题刚提出时,不少人都认为很简单。
TSP问题的几种解法对比

城市旅行问题之路程短摘要城市旅行问题即旅行商(TSP)问题,要从图G的所有周游路线中求取最小成本的周游路线,而从初始点出发的周游路线一共有(n-1)!条,即等于除初始结点外的n-1个结点的排列数,因此旅行商问题是一个排列问题。
排列问题比子集合的选择问题通常要难于求解得多,这是因为n个物体有n!种排列,只有子集合(n!>O( n2))。
通过枚举(n-1)!条周游路线,从中找出一条具有最小成本的周游路线的算法,其计算时间显然为O(n!)。
这种枚举法运算量相当庞大,随着城市数量呈指数增长。
为此,我们对比应用随机探索的模拟退火算法,线性规划和蚁群算法三种方法:模拟退火算法,利用物理退火达到平衡态时的统计思想,建立数学模型,编写该算法的MATLAB程序,进行求解,得出最短旅行的最短距离为422.13;对TSP的约束条件和目标函数编写LINGO程序,经过多次迭代,得出最短旅行的最短距离也为422.13;蚁群算法:基于自然界蚂蚁觅食的最短路径原理,建立模型,通过MATLAB程序,得出最短旅行距离为427.8971。
关键词模拟退火算法线性规划蚁群算法一.问题重述一个人要到30个不同的城市游玩,每两个城市i和j之间的距离为d ij,如何选择一条路径使得此人走遍所有城市后又回到起点,要求所走路径最短。
二.符号说明三.问题分析与处理便于我们说明和解决问题,先将题中给出的城市编号:表一30座城市的坐标3.1模拟退火方法这是一个典型的TSP组合优化问题[1],并且是一个N-P难问题。
传统的解决此类问题的方法包括:分枝定界法、线性规划法和动态规划法等等。
随着人工智能的发展,一些智能优化的算法逐渐产生,这其中模拟退火算法因具有高效、稳定、通用、灵活的优点备受专家和学者的青睐。
将模拟退火算法引入STP问题求解,可以有效的避免在求解过程中陷入局部最优。
下面就是我们用模拟退火算法具体解决这个问题。
算法设计步骤:(1)问题的解空间和初始值城市旅行问题的解空间S 是遍访36个城市恰好一次的所有回路,是所有城市排列的集合。
TSP问题算法分析

算法第二次大作业TSP问题算法分析021251班王昱(02125029)一.问题描述“TSP问题”常被称为“旅行商问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。
TSP问题在本实验中的具体化:从A城市出发,到达每个城市并且一个城市只允许访问一次,最后又回到原来的城市,寻找一条最短距离的路径。
二.算法描述2.1分支界限法2.1.1 算法思想分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所需的解或活结点表为空时为止。
2.1.2 算法设计说明设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。
在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down, up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。
对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即:bound(x1)≥bound(x1,x2)≥…≥ bound(x1,…,xn)若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。
再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。
直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值bound(x1,…,xn)。
2.2 A*算法算法思想对于某一已到达的现行状态, 如已到达图中的n节点, 它是否可能成为最佳路径上的一点的估价, 应由估价函数f(n)值来决定。