整数规划分支定界算法matlab通用源程序
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题Matlab是一种功能强大的数学软件,可以用于求解线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab来解决这些问题。
首先,让我们来了解一下线性规划和整数规划的概念。
线性规划是一种数学优化方法,用于在给定的一组线性约束条件下,寻觅使目标函数最优化的变量取值。
整数规划是线性规划的一种扩展,要求变量的取值必须为整数。
在Matlab中,我们可以使用优化工具箱来求解线性规划和整数规划问题。
优化工具箱提供了一系列函数和工具,可以匡助我们定义问题、设置约束条件和求解最优解。
首先,我们需要定义目标函数和约束条件。
目标函数是我们希翼最小化或者最大化的函数,约束条件是对变量的限制条件。
在Matlab中,我们可以使用符号变量来定义目标函数和约束条件。
例如,假设我们有一个线性规划问题,目标函数为最小化函数f(x) = 2x1 + 3x2,约束条件为2x1 + x2 >= 10,x1 + 3x2 >= 15,x1 >= 0,x2 >= 0,其中x1和x2是变量。
在Matlab中,我们可以使用sym函数来定义符号变量。
代码示例如下:```matlabsyms x1 x2f = 2*x1 + 3*x2;constraint1 = 2*x1 + x2 >= 10;constraint2 = x1 + 3*x2 >= 15;```接下来,我们需要将目标函数和约束条件转换为优化工具箱可以理解的形式。
我们可以使用matlabFunction函数将目标函数和约束条件转换为Matlab函数。
代码示例如下:```matlabf = matlabFunction(f);constraint1 = matlabFunction(constraint1);constraint2 = matlabFunction(constraint2);```现在,我们可以使用优化工具箱中的linprog函数来求解线性规划问题。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:线性规划和整数规划是数学中常见的优化问题,通过Matlab可以方便地求解这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,包括问题的建模、求解方法和实际操作步骤。
一、线性规划问题的建模和求解1.1 确定优化目标:线性规划问题的目标是最大化或者最小化一个线性函数,通常表示为目标函数。
1.2 约束条件建模:线性规划问题还需要满足一系列线性约束条件,这些约束条件可以通过不等式或者等式表示。
1.3 使用Matlab求解:在Matlab中,可以使用linprog函数来求解线性规划问题,将目标函数和约束条件输入函数即可得到最优解。
二、整数规划问题的建模和求解2.1 确定整数规划问题:整数规划是线性规划的一个扩展,其中变量需要取整数值。
2.2 整数规划建模:整数规划问题可以通过将变量限制为整数来建模,通常使用0-1整数变量表示。
2.3 使用Matlab求解:Matlab中提供了intlinprog函数来求解整数规划问题,输入目标函数、约束条件和整数变量的取值范围即可得到最优解。
三、线性规划和整数规划问题的实际操作步骤3.1 准备数据:首先需要准备问题的数据,包括目标函数系数、约束条件系数和整数变量范围。
3.2 建立模型:将数据输入Matlab中的相应函数,建立线性规划或者整数规划模型。
3.3 求解问题:调用Matlab函数求解问题,得到最优解和最优值。
四、Matlab求解线性规划和整数规划问题的优势4.1 高效性:Matlab提供了高效的优化算法,能够快速求解复杂的线性规划和整数规划问题。
4.2 灵便性:Matlab支持多种约束条件和整数变量类型,可以灵便应对不同类型的优化问题。
4.3 可视化:Matlab还可以将优化结果可视化展示,匡助用户更直观地理解问题和解决方案。
五、总结通过本文的介绍,我们了解了如何使用Matlab求解线性规划和整数规划问题,包括建模方法、求解步骤和优势。
matlab解决整数规划问题(蒙特卡洛法)

matlab解决整数规划问题(蒙特卡洛法)整数规划:clc,clear;c = [-40;-90];A = [9 7;7 20];b = [56;70];lb = zeros(2,1);[x,fval]= intlinprog(c,1:2,A,b,[],[],lb);fval = -fvalx分⽀定界法或者割平⾯法求解纯或者混合整数线性规划问题;输出:当条件A,B之间不是且关系⽽是或的时候:固定成本问题(最优化函数中含有与xi⽆关的常量,相当于固定成本,优化函数可以写成总固定成本加上总可变成本之和):0-1整数规划问题(过滤隐枚举法,分枝隐枚举法)指派问题(0-1规划特殊情形:匈⽛利法)蒙特卡洛法(求解各种类型规划)下⾯主要介绍蒙特卡洛法(随机取样法):例题:如果⽤显枚举法试探,需要计算1010个点,计算量巨⼤。
但是⽤蒙特卡洛去计算106个点便可以找到满意解。
前提:整数规划的最优点不是孤⽴的奇点;⽽采集106个点后,我们有很⼤把握最优值点在106个点之中;function [f,g] = mengte(x);f = x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-...x(4)-2*x(5);g = [sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-8002*x(1)+x(2)+6*x(3)-200x(3)+x(4)+5*x(5)-200];rand('state',sum(clock));p0 = 0;ticfor i = 1:10^6x = 99*rand(5,1);x1 = floor(x);x2 = ceil(x);[f,g] = mengte(x1);if sum(g<=0)==4if p0<=fx0 = x1;p0=f;endend[f,g] = mengte(x2);if sum(g<=0)==4if p0 <= fx0 = x2;p0 = f;endendendx0,p0toc输出:蒙特卡洛法得到的解为最优解的近似解,10^6个数据已经⽤了将近7s的时间,所以如果增加⼗倍,可能得70s时间才能得到结果。
分支定界算法的MATLAB实现

给定 一 个整数规 戈 的数字 题 ,一个 直观 的求 解 思路 是先 做 出它 的松 弛 问题 。如果 松弛 问题 的最优
整数 规 划 。如果 所有 变 量 都是 整 变量 , 叫做 纯 整 数 规划 , 全是f ,1 O 1变量 的 , 叫做f , } 0 1规划 。 否则是 混合
整数规 划 。
L : { t A ≤( , P s. 或= 或≥) . b
【 x>Oj l 2 … , ) y ( , , n = 其 中 c (1 2… , ) = x ,2… , ), = c, , c T (i , c
A= 嘞) ,= 6,2… ,m 。 ( ~ 6 (l , b) b
Ab ta t T e b a c e i tt n lw ma s h u e it g ro e l e r r g a s r c : h r n h d l a i a y a k t e p r e e r h i a o r mmi g q e t n t e s l t n me o mi o n t n p n u si , h o u o t d o i h i o o e y t e b a c i g se n o n i g se . B a c ig se ’ a r ae h o d t n f rt e i tg r l e r s c mp s d b r n h n t p a d b u d n t p “ r n h n tp ’h s c e td t e c n i o o h n e e i a h i n p o rmmi g a p aa c ,b t “ u d n tp” ma n a c h e r h t e e iin y o i s t e p o e u t r ga n p e rn e u o b n ig s e y e h n e t e s a c h f c e c .C mp l r c d r wi e h e h MAT AB c mp ee i c mp e r c s r u h t ec mp tr L , o l t st s o lx p o e st o g h o u e . h h Ke o d : it g rl e rp o r mmi g; r n h a d B u d Meh d; r c d r yW r s ne e n a rga i n B a c n o n to po e ue
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划和整数规划是数学规划中的两个重要分支,广泛应用于运筹学、经济学、工程学等领域。
Matlab作为一种功能强大的数值计算软件,提供了丰富的工具箱和函数,可以方便地求解线性规划和整数规划问题。
一、线性规划问题的求解线性规划问题是在一组线性约束条件下,求解线性目标函数的最优值的问题。
通常可以表示为如下形式的标准线性规划问题:Maximize (or Minimize) Z = c'xSubject to: Ax ≤ bx ≥ 0其中,c是长度为n的目标函数系数向量,x是长度为n的决策变量向量,A是m×n的系数矩阵,b是长度为m的约束条件向量。
在Matlab中,可以使用线性规划工具箱(Linear Programming Toolbox)中的函数linprog来求解线性规划问题。
linprog函数的基本语法如下:[x, fval, exitflag, output, lambda] = linprog(c, A, b, Aeq, beq, lb, ub, x0, options)其中,c是目标函数系数向量,A和b是不等式约束条件的系数矩阵和约束条件向量,Aeq和beq是等式约束条件的系数矩阵和约束条件向量,lb和ub是决策变量的下界和上界,x0是初始解向量,options是求解选项。
linprog函数的输出结果包括最优解x、最优目标函数值fval、退出标志exitflag、输出信息output和拉格朗日乘子lambda。
二、整数规划问题的求解整数规划问题是在线性规划问题的基础上,要求决策变量取整数值的问题。
通常可以表示为如下形式的标准整数规划问题:Maximize (or Minimize) Z = c'xSubjec t to: Ax ≤ bx ≥ 0x为整数在Matlab中,可以使用整数规划工具箱(Integer Programming Toolbox)中的函数intlinprog来求解整数规划问题。
整数规划与matlab1

割平面法
计算步骤: (1~3) 1、用单纯形法求解( IP )对应的松弛问题( LP ):
⑴.若( LP )没有可行解,则( IP )也没有可行解, 停止计算。
⑵.若( LP )有最优解,并符合( IP )的整数条件, 则( LP )的最优解即为( IP )的最优解,停止计算。
⑶.若( LP )有最优解,但不符合( IP )的整数条件, 转入下一步。
aij x j bi yi Mi (i 1,2,...,p)
j 1
p
yi p q
i 1
2. 0-1型整数规划的解法
n个变量有2n种组合,采用隐枚举法。 列出2n种组合,先求出一个可行解,计算
目标函数值,作为当前的最优解。对于其它 组合,先计算目标函数值,若不如当前的最 优解,就不必检验它的可行性。
3
26
满足条件
Z值
是∨ 否×
∨
0
∨
5
∨
-2
∨
3
×
∨
8
×
×
0-1 整数规划求解
由上表可知,问题的最优解为 X*=( x1 =1 x2=0 x3=1 ) 由上表可知: x1 =0 x2=0 x3=1 是一个可行解,为尽快找到最优解,可 将3 x1-2 x2+5 x3 ≥5 作为一个约束,凡是目标函数值小于5 的组合不必 讨论,如下表。
MATLAB命令 1、整数线性规划命令 intlinprog(c, intcon, A, b, Aeq, beq, VLB, VUB) 例如:intcon=1:2; %x(intcon)为整数.
2、0-1规划命令 *bintprog (c, A, b, Aeq, beq, x0, options)