计数器及其应用

合集下载

计数器及其应用

计数器及其应用

计数器及其应用计数器是一种电子电路,用于计数和存储计数值。

其主要应用在数字电路、通信系统中,实现定时、分频、频率合成、时序控制等功能。

计数器的电路可以采用门电路或触发器实现,现代计数器多采用集成电路实现。

本文将介绍计数器的基本原理及其应用。

一、计数器基本原理计数器的基本原理是采用一个稳定的时钟信号,在触发器之间形成一串级联,从而实现计数功能。

当时钟信号触发触发器时,计数器的计数值就会发生变化。

计数器在达到预设的计数值后,会产生一个计数完成的信号。

计数器可分为同步计数器和异步计数器两种。

同步计数器是采用同步触发器构成的,其输入端通过控制信号实现采集和判断,并保证计数器具有同步性。

同步计数器的优点是速度快、精度高、使用简单。

但如果计数器级数过多,会影响同步的准确性。

1.分频器分频器是计数器最普遍的应用之一。

分频器可以将信号的频率降低到所需要的频率范围内,以满足特定的应用要求。

例如,在数字通信中,需要将高速数据信号降低到低速信号,以便接收器能够正确地解码。

此时,计数器可以采用分频的方式将高速数据信号降低到接收器所需要的频率范围内。

2.定时器/计时器计数器可以作为定时器或计时器使用,以便在计数到预设值后触发所需的操作。

例如,在微控制器中,可以使用计数器来产生定期的中断信号,以处理异步事件,如键盘输入、AD 转换等。

3.频率合成器频率合成器是将多个信号合成一个具有所需频率的信号的电路。

计数器可以作为频率合成器的关键元素,以实现多个时钟信号的组合。

例如,在无线电通信中,需要将低频信号转换为高频信号,以便在接收器中进行处理。

此时,计数器可以用来产生所需的频率。

4.中断控制器中断控制器是计算机系统中常用的设备。

计数器可以用作中断控制器的定时器。

例如,在多任务操作系统中,任务的调度器可以使用中断控制器的定时器,以触发时钟中断,以进行上下文切换等操作。

5.逻辑分析仪逻辑分析仪是一种测试和诊断数字电路的设备。

计数器可以用于将测试信号进行分型,并用微处理器或计算机进行分析和诊断。

计数器及其应用

计数器及其应用

计数器及其应用1. 什么是计数器?计数器是一种用于计数的工具或设备,用于记录事件发生的次数。

在计算机科学中,计数器是一种特殊的寄存器,用于存储和跟踪特定事件的次数或周期的数量。

计数器一般具有以下特点:•由一组二进制位组成,可以用来表示不同的数字。

•可以递增或递减,根据特定条件进行操作。

•可以设置初始值和最大值。

•可以实现快速计数和重置操作。

在计算机领域,计数器是广泛应用于各种场景的重要元素,特别是在数字逻辑和计算机体系结构中。

此外,计数器也被广泛用于实现诸如时序控制、数据传输、定时器和性能分析等功能。

2. 计数器的应用计数器可以应用于许多领域和场景中。

下面介绍几个常见的计数器应用:2.1 计时器计时器是最常见的计数器应用之一,用于测量事件的时间间隔。

计时器可以用来实现定时器、秒表、计算程序运行时间等功能。

当计时器开始计数时,计数器会递增,当计时器停止时,计时器会停止递增。

计时器通常使用时钟信号来驱动计数操作。

2.2 程序计数器在计算机体系结构中,程序计数器是一种具有特殊功能的计数器。

它用于跟踪程序中的指令位置,即当前执行的指令的地址。

程序计数器一般存储在CPU中,并且在每个时钟周期内自动递增。

程序计数器在处理器中起着非常重要的作用,特别是在实现分支指令和循环指令时。

2.3 性能计数器性能计数器是用于衡量计算机系统或程序性能的计数器。

它们可以统计各种硬件事件的数量,如指令执行周期、缓存命中率、TLP(事务级并行度)等。

性能计数器可以帮助开发人员分析程序的性能瓶颈,并针对性地进行优化。

2.4 电子计数器电子计数器是一种电子设备,用于进行数字计数。

它们通常由数字显示屏、按键和计数逻辑电路组成。

电子计数器可用于各种应用,如物料计数、步行计数、车辆流量监测等。

电子计数器具有高精度、快速计数和可靠性等优势。

3. Markdown文本格式Markdown是一种轻量级的标记语言,用于简单而高效地编写文档。

它使用简单的标记符号来表示文本的样式和结构,可以转换为HTML、PDF等多种格式。

计数器及应用实验报告

计数器及应用实验报告

计数器及应用实验报告计数器及应用实验报告引言:计数器是一种常见的电子设备,用于记录和显示特定事件或过程中发生的次数。

在实际应用中,计数器广泛用于各种领域,如工业自动化、交通管理、计时系统等。

本文将介绍计数器的原理、分类以及在实验中的应用。

一、计数器的原理计数器是由一系列的触发器组成的,触发器是一种能够存储和改变状态的电子元件。

计数器的工作原理是通过触发器的状态改变来记录和显示计数值。

当触发器的状态从低电平变为高电平时,计数器的计数值加一;当触发器的状态从高电平变为低电平时,计数器的计数值减一。

计数器可以根据需要进行正向计数、逆向计数或者同时进行正逆向计数。

二、计数器的分类根据计数器的触发方式,计数器可以分为同步计数器和异步计数器。

同步计数器是指所有触发器在同一个时钟脉冲的控制下进行状态改变,计数值同步更新;异步计数器是指触发器的状态改变不依赖于时钟脉冲,计数值异步更新。

根据计数器的位数,计数器又可以分为4位计数器、8位计数器、16位计数器等。

三、计数器的应用实验1. 实验目的本实验旨在通过设计和搭建一个简单的计数器电路,了解计数器的工作原理和应用。

2. 实验器材- 74LS74触发器芯片- 电路连接线- LED灯- 开关按钮3. 实验步骤步骤一:搭建计数器电路根据实验原理,将74LS74触发器芯片与LED灯和开关按钮连接起来,形成一个简单的计数器电路。

步骤二:测试计数器功能将电路连接到电源,并按下开关按钮。

观察LED灯的亮灭情况,记录计数器的计数值变化。

步骤三:应用实验根据实际需求,将计数器电路应用到实际场景中。

例如,可以将计数器电路连接到流水线上,用于记录产品的数量;或者将计数器电路连接到交通信号灯上,用于记录通过的车辆数量。

4. 实验结果与分析通过实验测试,我们可以观察到LED灯的亮灭情况,并记录计数器的计数值变化。

根据实验结果,我们可以验证计数器的功能是否正常。

在应用实验中,我们可以根据实际需求来设计和改进计数器电路,以满足不同场景下的计数需求。

计数器及其应用的实验原理

计数器及其应用的实验原理

计数器及其应用的实验原理1. 什么是计数器?计数器是一种电子数字逻辑电路,用于计算和记数。

它由触发器和逻辑门组成,根据输入信号的变化来记录和显示一个有序的数字序列。

计数器可以实现加法、减法、乘法和除法等运算。

2. 计数器的工作原理计数器基于触发器工作,触发器是一种可以存储和改变其状态的电子开关。

常见的触发器有RS触发器、JK触发器和D触发器。

计数器根据触发器的状态改变来计数。

2.1 二进制计数器二进制计数器是最常用的计数器类型。

它由多个触发器按照一定顺序串联而成,每个触发器表示一个二进制位(0或1)。

当计数器接收到时钟信号时,触发器按照设定的计数模式改变其状态,从而实现计数功能。

2.2 计数模式计数器可以采用不同的计数模式,如递增计数、递减计数、加法计数和减法计数等。

计数模式根据输入信号的变化来确定计数的方向和方式。

3. 计数器的应用3.1 秒表计数器可用于制作秒表。

通过将计数器连接到一个时钟信号源,每个时钟周期就会触发计数器计数一次。

当需要计时时,可以启动计数器并显示经过的时间。

3.2 频率计计数器可以用来测量和显示信号的频率。

通过将计数器连接到输入信号,每个计数器计数周期都会表示输入信号的一个完整周期。

根据计数器计数的频率,可以得到输入信号的频率。

3.3 数字表计数器可以用于制作数字表。

通过将计数器的输出与数码管连接,可以实现数字表对时间、温度、湿度等数值的显示。

通过控制计数器的计数速度,可以调整数字表的刷新速率。

3.4 电子游戏计数器还可以用于制作电子游戏。

通过将计数器的输出与游戏的计分系统连接,可以实现计分的功能。

玩家的得分通过计数器累加并显示在游戏界面上。

4. 总结计数器是一种重要的数字电路,可以用于计数、计时和计算等应用。

它基于触发器的工作原理,通过触发器的状态改变来实现计数功能。

计数器可应用于秒表、频率计、数字表和电子游戏等领域。

掌握计数器的原理和应用可以帮助我们理解和设计更复杂的数字逻辑电路。

实验五 计数器及其应用

实验五 计数器及其应用

实验五计数器及其应用一、实验目的1.熟悉由集成触发器构成的计数器电路及其工作原理。

2.熟练掌握常用中规模集成电路计数器及其应用方法。

二、实验原理所谓计数,就是统计脉冲的个数,计数器就是实现“计数”操作的时序逻辑电路。

计数器的应用十分广泛,不仅用来计数,也可用作分频、定时等。

计数器种类繁多。

根据计数体制的不同,计数器可分成二进制(即2n进制)计数器和非二进制计数器两大类。

在非二进制计数器中,最常用的是十进制计数器,其它的一般称为任意进制计数器。

根据计数器的增减趋势不同,计数器可分为加法计数器——随着计数脉冲的输入而递增计数的;减法计数器——随着计数脉冲的输入而递减的,可逆计数器——既可递增、也可递减的。

根据计数脉冲引人方式不同,计数器又可分为同步计数器——计数脉冲直接加到所有触发器的时钟脉冲(CP)输入端;异步计数器——计数脉冲不是直接加到所有触发器的时钟脉冲(CP)输入端。

1.异步二进制加法计数器异步二进制加法计数器是比较简单的。

图32 (a)是由4个JK(选用74LS112集成片)触发器构成的4位二进制(十六进制)异步加法计数器,图32 (b)和(c)分别为其状态图和波形图。

对于所得状态图和波形图可以这样理解:触发器FFo(最低位)在每个计数沿(CP)的下降沿(1 → 0)翻转,触发器FF1的 CP 端接 FF0的 Q0端 .因而当 FF0(Q0)由1→0时,FF1翻转。

类似地,当 FF l(Q l)由1→0时,FF2翻转,FF2(Q2)由1→0时,FF3翻转。

(a)逻辑图(b)状态图(c)波形图图32 4位二进制(十六进制)异步加法计数器4位二进制异步加法计数器从起始态0000到1111共十六个状态,因此,它是十六进制加法计数器,也称模16加法计数器 (模M = 16)。

从波形图可看到,Q0的周期是CP周期的二倍;Q l是Q0的二倍,CP的四倍;Q2是Q1的二倍,Q0的四倍,CP的八倍;Q3是Q2的二倍,Q l的四倍,Q0的八倍,CP 的十六倍。

计数器及其应用

计数器及其应用


计数值清0,输出标志位清0)。
术 学
5)若当前计数值大于等于设定值PV,计数器输出标

志位被置为1。
6)若当前计数值大于等于32 767或小于等于-32 768, 计数器停止计数。
四、增减计数器指令
应用举例:
长 沙 民 政 职 业 技 术 学 院
LD I0.0 //增计数输入端 LD I0.1 //减计数输入端 LD I0.2 //复位端 CTUD C30,+5 //增减计数,设定脉冲 数为5
四、 增减计数器指令
长 沙 民 政 职 业 技 术 学 院
四、 增减计数器指令
1)首次扫描时,其状态位为OFF,当前值为0。
2)当计数输入端(CU)有上升沿输入时,计数器当
长 沙
前计数值加1。

3)当计数输入端(CD)有上升沿输入时,计数器当

前计数值减1。


4)当复位输入端(R)接通时,计数器复位(当前
一、 计数器指令概述
计数器用来累计输入脉冲的次数。计数器也是由集

成电路构成,是应用非常广泛的编程元件,经常用来

对产品进行计数。

计数器与定时器的结构和使用基本相似,编程时输

入它的预设值PV(计数的次数),计数器累计它的脉

冲输入端电位上升沿(正跳变)个数,当计数器达到

预设值PV时,发出中断请求信号,以便PLC作出相应
长 计数器位:表示计数器是否发生动作的状态,当计数器
沙 的当前值达到预设值PV时,该位被置为“1”。
民 计数器当前值:存储计数器当前所累计的脉冲个数,它
政 用16位符号整数(INT)来表示,故最大计数值为32767。

计数器的基本原理及其应用

计数器的基本原理及其应用

计数器的基本原理及其应用1. 计数器的基本原理计数器是一种常见的电子元件,用于记录和显示某个事件发生的次数。

计数器的基本原理是将输入的信号进行计数,并将计数结果在显示器上进行显示。

1.1 二进制计数器二进制计数器是一种常见的计数器类型。

它使用二进制的数字系统来进行计数,每次计数增加1。

二进制计数器由触发器和逻辑门组成,每个触发器表示一个比特位,逻辑门用于实现计数逻辑。

1.2 分频计数器分频计数器是一种常见的应用计数器,主要用于信号频率的分频。

它根据输入信号的频率进行计数,当计数达到设定值时,产生一个输出脉冲信号。

分频计数器广泛应用于频率合成器、时钟分频器、频率测量等领域。

2. 计数器的应用计数器在各个领域都有广泛的应用。

以下是几个常见的计数器应用:2.1 电子时钟在电子时钟中,计数器被用于记录时间的计算和显示。

秒钟、分钟、小时等时间单位都可以使用计数器进行计数和显示。

2.2 电子秤电子秤通过计数器来记录物体的重量。

当物体放在秤上时,计数器开始计数读取传感器所测得的压力变化,然后将其转化为重量显示。

2.3 跑步计数器跑步计数器主要用于记录跑步的步数。

它通过计数器来计算每次迈步的次数,并在显示器上显示出来。

一些高级跑步计数器还可以记录运动时间、距离等信息。

2.4 交通信号灯交通信号灯中的计数器被用于控制交通信号的变换。

计数器会根据设定的周期进行计数,当计数达到设定的值时,触发信号灯的变换。

2.5 数据传输计数器在数据传输中也经常被使用。

通过计数器可以实现数据包的计数、错误检测等功能。

3. 注意事项在使用计数器时,需要注意以下几个方面:•选择适当的计数器类型和位数,以满足需求。

•注意输入信号的频率范围,不要超出计数器的最大计数范围。

•避免过量的计数,以免造成计数器溢出和数据错误。

•对于高速计数器,需要考虑信号延迟和噪声对计数器的影响。

4. 总结计数器是一种常见的电子元件,其基本原理是将输入信号进行计数,并在显示器上显示计数结果。

计数器及其应用实验总结

计数器及其应用实验总结

计数器及其应用实验总结计数器是一种常见的电子元件,用于计数和记录特定事件的次数。

在电子电路中,计数器通常由触发器和逻辑门组成,可以实现二进制计数和计数器的复位等功能。

在本次实验中,我们学习了计数器的基本原理和应用,并进行了相关实验。

首先,我们学习了计数器的基本原理。

计数器是由触发器组成的,触发器是一种存储器件,可以存储一个二进制位。

当触发器的输入发生变化时,输出也会相应地改变。

通过将多个触发器连接在一起,我们可以构建一个多位的计数器。

计数器的工作原理是通过触发器的状态变化来实现计数的功能。

在实验中,我们使用了74LS163型计数器芯片进行了实验。

该芯片是一个4位二进制同步计数器,可以实现二进制计数和计数器的复位功能。

我们通过连接适当的电路,将计数器与LED灯和开关相连,以便观察计数器的工作状态。

在实验过程中,我们首先进行了二进制计数实验。

通过连接计数器的输出引脚和LED灯,我们可以观察到计数器的计数过程。

当计数器的计数值增加时,LED灯的亮灭状态也会相应地改变。

通过这个实验,我们更加深入地理解了计数器的工作原理和二进制计数的特点。

接下来,我们进行了计数器的复位实验。

通过连接计数器的复位引脚和开关,我们可以实现计数器的复位功能。

当按下开关时,计数器的计数值会被清零,重新开始计数。

这个实验展示了计数器的复位功能,可以在需要重新计数的情况下使用。

除了基本的计数功能,计数器还可以应用于其他领域。

例如,在数字电子钟中,计数器可以用来计算时间,并驱动显示器显示时间。

在计算机中,计数器可以用来计算指令的执行次数,以及实现定时器和计时器等功能。

计数器的应用非常广泛,是电子领域中不可或缺的重要元件。

通过本次实验,我们对计数器的原理和应用有了更深入的了解。

计数器是一种常见的电子元件,可以实现二进制计数和计数器的复位等功能。

在实际应用中,计数器有着广泛的应用,可以用于计算时间、指令执行次数等。

通过学习和实验,我们对计数器的工作原理和应用有了更深入的认识,为我们今后的学习和应用打下了坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)Abstract (1)1.计数器的定义及其分类 (2)2.计数器的分析方法 (2)3.几种集成计数器 (4)3.1 74161的功能 (6)3.2 74LS193的功能 (8)3.3 74LS290的功能 (10)4.计数器的应用领域 (12)参考文献 (12)计数器及其应用学生姓名:胡亚静学号:20095044079物理电子工程学院电子科学与技术专业指导老师:马建忠职称:讲师摘要:计数器是数字系统中使用的最多的时序电路,它主要由具有记忆功能的触发器构成。

计数器不仅能用于对时钟脉冲计数,还可以用于分频、定时、产生节拍脉冲和脉冲序列以及进行运算等,在计算机及各种数字仪表中,都得到了广泛的应用。

目前已有若干集成计数器产品。

关键词:计数器;状态方程;输出方程;功能表;时序图Abstract: Counter is the most widely used sequential circuit in digital system, it is mainly made up of triggers that has the ability to memory. Counter can be not only used to count the clock pulses, but also be used for frequency, timing , tempo pulse and pulse train generation as well as operations and so on, it has been widely used in the computer and various digital instruments. Nowadays there are several kinds of integrated counter productsKeywords: counter; equation of state; output equation; table for features; timing diagram1.计数器的定义及其分类计数器是能够用来记录输入脉冲的个数的逻辑电路。

按照计数器中的各个触发器状态翻转先后,可分为同步计数器和异步计数器;按照计数过程中,数字的增减可分为:加法计数器减法计数器和可逆计数器;按照计数过程中数字的编码方式可分为:二进制计数器和二-十进制计数器等;按照计数容量可分为:十进制计数器、十六进制计数器、进制计数器等[1]。

2.计数器的分析方法先写出驱动方程、状态方程和输出方程,再由状态方程和输出方程求出电路的状态转换表,画出对应的状态转换图和时序图,最后分析电路是几进制计数器、能否自启动。

例:分析同步二进制加法计数器[2],如图1示图1 同步二进制加法器驱动方程 状态方程输出方程状态转换表状态转换图时序图⎪⎪⎩⎪⎪⎨⎧====Q Q Q T Q Q T QT T 01230120101⎪⎪⎩⎪⎪⎨⎧⊕=⊕=⊕==++++Q Q Q Q Q Q Q Q Q Q Q Q Q Q 30121n 32011n 2101n 101n 0)()(Q Q Q Q C 0123=由此可知该电路是十六进制计数器。

3.几种集成计数器集成计数器在一些简单小型数字系统中被广泛应用,因为它们具有体积小、功耗低、功能灵活等优点。

集成计数器的类型很多,表1列举了若干集成计数器产品。

这里仅介绍其中几个较典型产品的功能和应用。

表1 几种集成计数器3.1 74161的功能74161是4位二进制同步加法计数器图2 (a)、(b)分别是它的逻辑电路图和引脚图,其中R D是异步清零端,LD是预置数控制端,A、B、C、D是预置数据输入端,EP和ET是计数使能端,RCO =ET•Q A•Q B•Q C•Q D是进位输出端,它的设置为多片集成计数器的级联提供了方便[3]。

图2 74161的电路图和引脚图表2是74161的功能表。

由表可知,74161具有以下功能:1. 异步清零当R D=0时,不管其他输入端的状态如何(包括时钟信号CP),计数器输出将被直接置零,称为异步清零。

2. 同步并行预置数在R D=1的条件下,当LD=0、且有时钟脉冲CP 的上升沿作用时,A、B、C、D 输入端的数据将分别被Q A~Q D所接收。

由于这个置数操作要与CP上升沿同步,且A~D的数据同时置入计数器,所以称为同步并行置数。

3. 保持在R D=LD=1的条件下,当ET•EP=0,即两个计数使能端中有0时,不管有无CP脉冲作用,计数器都将保持原有状态不变(停止计数)。

需要说明的是,当EP=0,ET=1时,进位输出RCO也保持不变;而当ET=0时,不管EP状态如何,进位输出RCO=0。

4. 计数当R D=LD=EP=ET=1时,74161处于计数状态。

表2 74161的功能表图3是74161的时序图。

由时序图可以清楚地看到74161的功能和各控制信号间的时序关系。

图3 74161的时序图由图3可知,首先加入一清零信号R D=0,使各触发器的状态为0,即计数器清零。

R D变为1后,加入一置数信号LD=0,该信号需维持到下一个时钟脉冲的正跳变到来后。

在这个置数信号和时钟脉冲上升沿的共同作用下,各触发器的输出状态与预置的输入数据相同(图中DCBA=1100)这就是预置操作。

接着是EP=ET=1,在此期间74161处于计数状态。

这里是从预置的DCBA=1100开始计数,直到EP=0,ET=1,计数状态结束,转为保持状态,计数器输出保持EP负跳变前的状态不变,图中Q D Q C Q B Q A=0010,RCO=0. 高速CMOS集成器件74HC161、74HCT161的逻辑功能、外形和尺寸、引脚排列顺序等与74161完全相同。

3.2 74LS193的功能74LS193是双时钟4位二进制同步可逆计数器[4]。

图4(a)、(b)分别是它的逻辑电路图和引脚图,表3是它的功能表。

74LS193的特点是有两个时钟脉冲(计数脉冲)输入端CP U和CP D。

在R D=0、LD=1的条件下,作加计数时,令CP D=1,计数脉冲从CP U输入;作减计数时,令CP U=1,计数脉冲从CP D输入。

此外,74LS193还具有异步清零和异步预置数的功能。

表3 图4 74LS193的电路图和引脚图表3 74LS193的功能表清零预置时钟预置数据输入输出当零号R=时,管钟脉冲的状态如何,计数器的输出将被直接置零;当R D=0,LD=0时,不管时钟脉冲的状态如何,将立即把预置数数据输入端A、B、C、D的状态置入计数器的Q A、Q B、Q C、Q D端,称为异步预置数。

74HC193、74HCT193的逻辑功能及引脚图与74LS193完全相同。

3.3 74LS290的功能74LS290是异步十进制计数器[5]。

其逻辑电路图和引脚图如图5(a)、(b)所示,它由1个1位二进制计数器和1个异步五进制计数器组成。

如果计数脉冲由CP A端引入,输出由Q A端引出,即得二进制计数器;如果计数脉冲由CP B端输入,输出由Q B~Q D引出,即得五进制计数器;如果将Q A与CP B相连,计数脉冲由CP A输入,输出由Q A~Q D引出,即得8421码十进制计数器。

因此,又称此电路为二-五-十进制计数器。

表4是74LS290的功能表。

图5 74LS290的电路图和引脚图表4 74LS290的功能表复位输入置位输入时钟输出R 0(1)R0(2)R9(1)R9(2)CPQAQBQCQD1 1 0 ××0 0 0 01 1 ×0 ×0 0 0 0×× 1 1 × 1 0 0 10 ×0 ×↓计数0 ××0 ↓计数×0 0 ×↓计数×0 ×0 ↓计数由表4可以看出,当复位输入R0(1)=R0(2)=1,且置位输入R9(1)=R9(2)=0时,74LS290的输出被直接置零;只要置位输入R9(1)=R9(2)=1,则74LS290的输出被直接置9,,即Q D Q C Q B Q A=1001;只有同时满足R0(1)=R0(2)=0和R9(1)=R9(2)=0时,才能在计数脉冲(下降沿)作用下实现二-五-十进制加计数。

74HC290、74HCT290的逻辑功能和引脚图与74LS290完全相同。

4.计数器的应用领域计数器通常被应用在以下任务中:1.对数字脉冲信号进行边沿计数;2.生成单个数字脉冲或脉冲串;3.对脉冲的高低电平宽度、周期、频率等特性进行测量;4.对编码器返回的旋转角度、线性位置等信息进行测量[6]。

参考文献:[1]康华光.电子技术基础:数字部分.4版.北京:高等教育出版社,2000.[2]阎石.数字电子技术基础.5版.北京:高等教育出版社,2005:278-281.[3]郑家龙.集成电子技术基础教程.北京:高等教育出版社,2002.[4]李良荣.现代电子技术设计-基于Multisim 7 & Ultiboard 2001.北京:机械工业出版社,2004.[5]Michael D .Ciletti. Verilog HDL高级数字设.张雅绮,译.北京:电子工业出版社,2005.[6]黄正谨.在系统编程技术及其应用.2版.南京.东南大学出版社.感谢下载!欢迎您的下载,资料仅供参考。

相关文档
最新文档