永磁无刷直流电机矢量控制系统实现毕业设计(论文)

合集下载

《2024年考虑转矩脉动最小化的永磁无刷直流电机控制系统》范文

《2024年考虑转矩脉动最小化的永磁无刷直流电机控制系统》范文

《考虑转矩脉动最小化的永磁无刷直流电机控制系统》篇一一、引言随着工业自动化和智能化的发展,对电机控制系统的性能要求越来越高。

其中,永磁无刷直流电机(Brushless DC Motor, BLDCM)因结构简单、高效可靠等特点在众多领域得到广泛应用。

然而,电机在实际运行中往往会出现转矩脉动问题,这不仅影响电机的运行平稳性,还可能产生噪音和振动,对系统性能产生负面影响。

因此,如何有效控制并最小化转矩脉动成为永磁无刷直流电机控制系统研究的重点。

二、永磁无刷直流电机控制系统概述永磁无刷直流电机控制系统主要由电机本体、逆变器、控制器等部分组成。

其中,控制器是系统的核心部分,负责根据电机的工作状态和需求,实时调整逆变器的输出电压和电流,从而控制电机的运行。

该系统具有高效率、高精度、低噪音等优点,广泛应用于电动汽车、机器人、精密机床等领域。

三、转矩脉动产生的原因及影响转矩脉动是指电机在运行过程中产生的转矩波动。

其主要原因包括:电磁场分布不均、逆变器非线性特性、电机参数变化等。

这些因素导致电机在运行过程中产生周期性或随机性的转矩波动,影响电机的运行平稳性,产生噪音和振动,严重时甚至可能导致系统失效。

因此,减小转矩脉动对于提高电机控制系统的性能具有重要意义。

四、转矩脉动最小化的控制策略为了减小永磁无刷直流电机的转矩脉动,需要采取有效的控制策略。

常见的控制策略包括:1. 优化电机设计:通过优化电机的电磁场分布、减小逆变器的非线性特性等手段,从源头上减小转矩脉动。

2. 控制器优化:通过改进控制算法,如采用先进的控制策略(如矢量控制、直接转矩控制等)以及优化参数设置等手段,实现对电机运行状态的精确控制,从而减小转矩脉动。

3. 传感器技术:利用高精度的传感器实时监测电机的运行状态,为控制器提供准确的反馈信息,帮助控制器更好地调整电机的运行状态,减小转矩脉动。

五、实际应用及效果分析针对不同应用场景的永磁无刷直流电机控制系统,采用相应的控制策略进行实验验证。

《2024年永磁同步电机矢量控制系统的研究与设计》范文

《2024年永磁同步电机矢量控制系统的研究与设计》范文

《永磁同步电机矢量控制系统的研究与设计》篇一一、引言随着科技的发展和工业自动化水平的提升,电机驱动技术正逐步从传统的控制方式转向更加精确、高效和智能的矢量控制。

永磁同步电机作为一种高效率、高功率密度的电机类型,在各个领域得到了广泛的应用。

本文旨在研究并设计一个基于矢量控制的永磁同步电机(PMSM)控制系统,以提高电机的运行效率和稳定性。

二、永磁同步电机概述永磁同步电机(PMSM)是一种采用永磁体产生磁场,通过电磁感应原理进行能量转换的电机。

其结构简单,运行效率高,广泛应用于工业、汽车、家电等领域。

然而,为了实现电机的精确控制,需要采用先进的控制策略。

其中,矢量控制是一种常用的控制方法。

三、矢量控制系统的原理与优势矢量控制,又称场向量控制,通过实时调整电机的电压和电流,实现电机磁场和转矩的精确控制。

相比于传统的控制方式,矢量控制具有更高的控制精度和更优的能量转换效率。

它能够根据电机的运行状态,实时调整电压和电流的幅值、相位和频率,从而实现对电机转矩的精确控制。

四、永磁同步电机矢量控制系统的设计与实现(一)硬件设计硬件部分主要包括电机本体、功率驱动器、传感器和控制单元。

其中,电机本体采用永磁同步电机;功率驱动器负责将电能转换为机械能;传感器用于实时检测电机的运行状态;控制单元则是整个系统的核心,负责实现矢量控制算法。

(二)软件设计软件部分主要包括矢量控制算法的实现。

在控制单元中,通过软件编程实现矢量控制算法,根据电机的运行状态实时调整电压和电流的参数,从而实现对电机的精确控制。

此外,还需要考虑系统的抗干扰能力、故障诊断与保护等功能。

五、关键技术与难点分析(一)电流检测与控制技术电流检测与控制是矢量控制系统的关键技术之一。

为了实现电机的精确控制,需要实时检测电机的电流状态,并根据电流的状态调整电压的参数。

这需要采用高精度的电流检测器件和先进的控制算法。

(二)抗干扰能力与故障诊断技术由于电机运行环境复杂多变,系统需要具备较高的抗干扰能力和故障诊断能力。

《2024年永磁同步电机的矢量控制系统》范文

《2024年永磁同步电机的矢量控制系统》范文

《永磁同步电机的矢量控制系统》篇一一、引言随着现代电力电子技术和控制理论的发展,永磁同步电机(PMSM)在工业、能源、交通、航空等各个领域得到了广泛的应用。

为了提高永磁同步电机的运行效率和性能,矢量控制技术得到了广泛的研究和应用。

本文旨在介绍永磁同步电机的矢量控制系统的基本原理、控制策略以及应用实例,以帮助读者更好地理解这一先进的电机控制技术。

二、永磁同步电机的基本原理永磁同步电机是一种利用永磁体产生磁场,通过电机内部的电流与磁场相互作用,实现电机转动的电机。

其基本原理包括电机的电磁关系、转矩产生原理等。

在了解这些基本原理的基础上,我们可以更好地理解矢量控制系统的实现方式。

三、矢量控制系统的基本原理矢量控制系统是一种基于磁场定向控制的电机控制系统,其基本原理是通过精确控制电机内部的电流和电压,实现对电机转矩和转速的精确控制。

在永磁同步电机中,矢量控制系统通过测量电机的电压、电流和转速等参数,计算出电机的磁场方向和大小,然后通过控制电机的电流和电压,实现对电机转矩和转速的精确控制。

四、矢量控制策略1. 空间矢量脉宽调制(SVPWM)策略:SVPWM策略是矢量控制系统中常用的控制策略之一,其基本思想是将电机内部的电流和电压进行空间矢量分解,然后根据一定的规则选择合适的空间矢量进行合成,以实现对电机转矩和转速的精确控制。

2. 直流侧电流直接控制策略:该策略通过对电机的直流侧电流进行直接控制,实现对电机转矩的精确控制。

这种策略具有响应速度快、精度高等优点,适用于对转矩要求较高的场合。

3. 反馈控制策略:反馈控制策略是矢量控制系统中的一种重要策略,其基本思想是通过测量电机的实际运行状态,与设定的目标值进行比较,然后根据比较结果调整电机的电流和电压,以实现对电机转矩和转速的精确控制。

五、应用实例以某电动汽车为例,其驱动系统采用了永磁同步电机的矢量控制系统。

该系统通过精确控制电机的电流和电压,实现了对电机转矩和转速的精确控制。

(完整版)永磁同步电动机的矢量控制毕业论文设计

(完整版)永磁同步电动机的矢量控制毕业论文设计

优秀论文审核通过未经允许切勿外传永磁同步电动机的矢量控制1 绪论1.1 电气伺服系统发展现状和动向自从上个世纪60年代,电气伺服系统取代了大部分的电液伺服传动系统成为伺服系统的主要形式。

按驱动装置的执行电动机类型来分,通常分为直流(DC)伺服系统和交流 (AC)伺服系统。

直流伺服系统发展早,70年代已经实用化,在各类机电一体化产品中大量使用各种结构的DC伺服电动机。

直流伺服系统控制简单,灵活实现正反转,调速范围宽,稳定性高,响应速度快,无超调,定位精度和跟踪精度高。

但是直流伺服系统也有难以克服的缺点;直流电动机转子绕组的发热大,影响与其相连接的丝杠精度;采用机械换向会产生电火花,直流伺服系统难以工作在易燃、易爆的工作场合;高速运行和大容量设计受到机械换相器的限制;电刷和换向器易磨损,日常维护工作量大;结构复杂,制造困难,成本高等。

机械换向器的存在是造成以上问题的主要原因。

交流电机没有机械换向器,克服了直流电机的缺点。

进入20世纪80年代后,功率电子器件和微电子技术水平得到迅速提高,基于先进控制理论、电力电子器件和微处理器的发展,交流伺服控制技术日趋成熟。

交流伺服系统以其体积小,转动惯量最小,耐高速,可频繁起制动,过载能力强,瞬时输出转矩大,对环境适应性强,运行可靠性高,无需维护等特点而广泛适用于CNC和工业机器人等工业领域。

到了90年代,交流伺服系统己经在许多场合取代了直流伺服系统,某些性能甚至超过了直流伺服系统,从而出现了取代直流伺服系统成为电气伺服系统主体的趋势。

目前国内外交流伺服系统研究正向着数字化、智能化、网络化、绿色化的方向发展:高性能和全数字化伺服系统是当代交流伺服系统发展的趋势,这种系统被广泛应用在高精度数控机床、机器人、特种加工装备和精细进给系统中。

由于微电子技术的发展,微处理器的运算速度不断提高,功能不断增强,特别在电机控制专用DSP芯片出现后,全数字伺服系统在实现电流控制、速度控制和位置控制全部数字化的同时,极大的增强了伺服系统设计和使用的灵活性。

《2024年永磁同步电机矢量控制系统的研究与设计》范文

《2024年永磁同步电机矢量控制系统的研究与设计》范文

《永磁同步电机矢量控制系统的研究与设计》篇一摘要:随着现代工业的快速发展,永磁同步电机(PMSM)以其高效率、高精度和良好的调速性能,在工业自动化、新能源汽车、航空航天等领域得到了广泛应用。

本文针对永磁同步电机矢量控制系统展开研究与设计,通过深入分析其控制策略与系统结构,提高电机控制的准确性与稳定性。

一、引言永磁同步电机(PMSM)是一种依靠永磁体产生磁场的同步电机,具有结构简单、运行效率高等优点。

而矢量控制技术作为一种先进的控制方法,可以实现对永磁同步电机的精确控制。

本文旨在研究与设计一种高性能的永磁同步电机矢量控制系统,以提高电机的运行性能和效率。

二、永磁同步电机基本原理永磁同步电机的基本原理是利用永磁体产生的磁场与定子电流产生的磁场相互作用,实现电机的转动。

其运行性能与电机的参数、控制策略等密切相关。

因此,了解电机的运行原理和特性,是进行矢量控制系统设计的基础。

三、矢量控制技术分析矢量控制技术是一种先进的电机控制方法,通过精确控制电机的电流分量,实现对电机转矩和转速的精确控制。

本文将深入分析矢量控制技术的原理、方法及优点,为后续的系统设计提供理论依据。

四、系统结构设计系统结构设计是永磁同步电机矢量控制系统的关键部分。

本文将设计一种以数字信号处理器(DSP)为核心的控制系统,包括电源模块、电流检测模块、速度检测模块、控制器模块等。

通过合理的系统结构设计,实现电机的高效、稳定运行。

五、控制策略研究在控制策略方面,本文将采用基于空间矢量脉宽调制(SVPWM)的矢量控制方法。

通过对电机的电流分量进行精确控制,实现对电机转矩和转速的精确控制。

同时,将引入现代控制理论,如模糊控制、神经网络控制等,进一步提高系统的控制性能和鲁棒性。

六、仿真与实验分析为了验证所设计系统的可行性和有效性,本文将进行仿真与实验分析。

通过建立电机的仿真模型,对所设计的矢量控制系统进行仿真测试。

同时,将在实际电机上进行实验测试,分析系统的运行性能和控制效果。

(毕业论文)永磁无刷直流电机论文

(毕业论文)永磁无刷直流电机论文

小功率永磁无刷直流电动机的设计和仿真研究摘要永磁无刷直流电动机是把电机、电子和稀土材料的高新技术产品发展紧密的结合在一起的新型电机,它具有单位体积转矩高、重量轻、转矩惯量小、控制简单、能耗少和调速性能好等优点,因而在航天航空、数控机床、机器人、汽车、计算机外围设备、军事等领域及家用电器等方面都获得了广泛的应用。

因此,设计性能优异的永磁无刷直流电机具有重要的理论意义和应用价值。

本论文系统的研究了35w小功率永磁无刷直流电机的本体设计,包括设计方法、有限元分析、性能计算、软件仿真等。

本文主要的研究内容如下:1、综述了永磁无刷直流电机的研究现状、存在问题和发展前景,分析了永磁无刷直流电机的基本理论。

2、建立永磁无刷直流电机的数学模型,先利用解析法对该电机进行电磁设计,然后利用有限元法对电机进行优化。

3、基于星形连接三相三状态的控制电路,利用Infolytic公司的MagNet电磁场分析软件建立了永磁无刷直流电机的有限元分析模型,仿真分析其静态气隙磁场分布及动态带负载时的电机特性。

并将软件仿真所得结果与设计计算结果进行比较分析,验证了设计方法的正确性。

关键词:电机设计,无刷直流电动机,有限元分析,稳态特性第一章绪论1.1永磁无刷直流电动机的发展状况永磁无刷直流电动机是一种新型的电动机,其应用广泛,相关技术仍然在不断的发展中,该类电动机的发展充分体现了现代电动机理论、电力电子技术和永磁材料的发展过程。

其中,永磁材料、大功率开关器件、高性能微处理器等的快速发展对永磁无刷直流电动机的进步功不可没。

1821年9月,法拉第建立的世界上第一台电机就是永磁电机,自此奠定了现代电机的基本理论基础。

十九世纪四十年代,人们研制成功了第一台直流电动机。

1873年,有刷直流电动机正式投入商业应用。

从此以后,有刷直流电动机就以其优良的转矩特性在运动控制领域得到了广泛的应用,占据了极其重要的地位。

随着生产的发展和应用领域的扩大,对直流电动机的要求也越来越高。

基于DSP的永磁同步电动机矢量控制系统研究 电气工程及其自动化专业毕业设计 毕业论文

基于DSP的永磁同步电动机矢量控制系统研究 电气工程及其自动化专业毕业设计 毕业论文

诚信声明本人声明:1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果;2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料;3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。

作者签名:日期:年月日湖南工程学院毕业设计(论文)任务书————☆————设计(论文)题目:基于DSP的永磁同步电动机矢量控制系统研究姓名周琳系别应用技术学院专业电气工程及其自动化班级0786 学号200713010616指导老师颜渐德教研室主任谢卫才一、基本任务及要求:1)掌握矢量控制的基本原理。

2)掌握永磁同步电动机矢量控制系统。

3)利用MATLAB软件仿真,分析。

4)硬件设计及软件设计二、进度安排及完成时间:2月20日:布置任务,下达设计任务书2月21日——3月10日:查阅相关的资料(总参考文章15篇,其中2篇以上IEEE的相关文章)。

3月13日——3月25日:毕业实习、撰写实习报告3月27日——5月30日:毕业设计、4月中旬毕业设计中期抽查6月1日——6月7日:撰写毕业设计说明书(论文)6月8日——6月10日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP。

6月11日——6月12日:毕业设计答辩目录摘要 (I)ABSTRACT (II)第1章概述 (1)1.1永磁同步电动机的发展概况及应用前景 (1)1.1.1 永磁同步电动机发展概况 (1)1.1.2 永磁同步电动机特点及应用 (2)1.2永磁同步电动机控制系统的发展现状与趋势 (3)1.3课题研究的背景及本文的主要研究内容 (4)1.4本课题的研究意义 (5)第2章永磁同步电动机的结构及其数学模型 (7)2.1永磁同步电动机的结构 (7)2.2永磁同步电动机的数学模型 (8)2.2.1 永磁同步电机在静止坐标系(UVW)上的模型 (8)α-)上的模型方程 (10)2.2.2 永磁同步电机在两相静止坐标系(β2.2.3 永磁同步电机在旋转坐标系(d q-)上的数学模型 (12)第3章永磁同步电机矢量控制及空间矢量脉宽调制 (16)3.1永磁同步电机的控制策略 (16)3.1.1永磁同步电机外同步控制策略 (16)3.1.2 永磁同步电机自同步控制策略 (16)3.1.3 永磁同步电动机的弱磁控制 (19)3.2空间矢量脉宽调制(SVPWM) (19)3.2.1 空间矢量脉宽调制原理 (19)3.2.2 空间矢量脉宽调制实现 (22)3.3PI控制器的设计 (24)3.3.1 电流环PI控制器的设计 (24)3.3.2 速度环PI控制器的设计 (25)第4章系统仿真模型 (26)4.1MATLAB仿真工具箱简介 (26)4.2闭环控制系统仿真 (27)4.3仿真结果及分析 (31)第5章永磁同步电机控制器的硬件设计 (34)5.1功率变换单元的设计 (34)5.1.1 三相桥式主电路 (35)5.1.2 IR2130驱动器 (36)5.1.3 信号隔离电路 (38)5.2检测单元的设计 (38)5.2.1位置检测单元的设计 (38)5.2.2 电流检测电路 (40)5.2.3 电压检测电路 (40)5.3控制器的设计 (41)5.3.1 DSP的特点和资源 (42)5.3.2 系统设计中所用的DSP硬件资源 (43)5.4电平转换 (44)5.5保护电路的设计 (45)5.5.1 过流保护电路 (45)5.5.2 过压保护电路 (46)5.5.3 上电保护电路 (46)5.5.4 系统保护电路 (47)第6章永磁同步电机控制器的软件设计 (48)6.1DSP软件一般设计特点 (48)6.1.1 公共文件目标格式 (48)6.1.2 Q格式表示方法 (49)6.2控制系统软件的总体结构 (50)6.3控制系统子程序设计 (53)6.3.1 位置和速度计算 (53)6.3.2 速度、电流PI控制 (55)6.3.3 电流的采样与滤波 (56)6.3.4 坐标变换软件实现 (58)6.3.5 正余弦值的产生 (58)6.3.6 空间矢量PWM程序 (59)结束语 (60)参考文献 (61)致谢 (62)附录 (63)基于DSP永磁同步电动机矢量控制系统研究摘要:本论文在分析了PMSM的结构、数学模型的基础上采用弧公司专用于电机控制的TMS320F2407A型数字信号处理器作为核心,开发了全数字化的永磁同步电机矢量控制调速系统,主要完成了以下几个方面的工作:(1)本文查阅大量的文献资料,阐述了永磁同步电机的发展概况及应用以及其控制系统的发展现状,讨论了此课题的研究意义。

无刷直流电机控制体系设计和实现论文

无刷直流电机控制体系设计和实现论文

无刷直流电机控制体系设计和实现论文1.1课题背景及选题意义1.1.1电力电子及微处理器技术对无刷直流电机发展 * 传统信号处理方法分为两大类:时域分析和频域分析。

时域分析常常是直接利用回波时域信号进行分析并给出结果,是最简单而且最直接的方法,特别是当信号中明显含有简谐成分、周期成分或瞬时脉冲成分更为有效。

(1)小型化和集成化微机电系统(MEMS)技术的发展将使电机控制系统朝控制电路和传感器高度集成化的方向发展,如将电流、电压、速度等信号融合后在进行反馈,可使无刷直流电机控制系统更加简单而可靠。

另外,由于无刷直流电机采用稀土永磁材料制作转子,转子侧无热源,故电机内部温升较传统直流电机小很多,使无刷直流电机逆变器控制电路装入电机内部成为可能。

逆变器与电机二者融为一体,使无刷直流电机与电子技术结合得更紧密,产品的附加值更高,整个控制系统也将朝小型化、集成化方向发展。

(2)控制器全数字化无刷直流电机性能的改善和提高,除了与电机转子永磁材料及电子驱动电路密切相关外,更与其控制器密切相关。

因此,也可以从提高电机控制器的性能着手来提高无刷直流电机控制系统的整体性能。

高速微处理器及高密度可编程逻辑器件技术的出现,为此提供了可行的方案和可靠的保证。

例如,在一些对控制成本和空间要求严格的应用中,增加位置传感器不太实用或无法接受,而DSP等芯片固有的高速计算能力正可被用来实现无刷直流电机的无位置传感器控制。

许多硬件工作,如传统的PID模拟电路,信号处理电路和逻辑判断电路等都可以由软件来实现,从而进一步减少了系统硬件电路的体积、提高了系统的可靠性和效率。

另外一些相对复杂的控制算法也可以通过DSP、CPLD或者FPGA等芯片来实现,这不但可以提高无刷直流电机控制系统的可靠性,也为其接口的通用化和控制的全数字化方向发展提供了坚实的堪础。

控制器的全数字化将使系统的硬件结构更加简单,促使柔性控制算法在电机控制中的应用,同时还易与上层和远程控制系统进行数据传输通信,便于系统故障的监视和诊断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。

电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。

无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。

本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。

控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。

本文主要研究内容如下:1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。

2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。

关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,SimulinkABSTRACTElectric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection.The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency .The main studies were as follows:(1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation.(2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.KEY WORDS: Electric Vehicle,BLDCM,Vector control,SVPWM,Simulink第一章绪论 (5)1.1 课题研究的背景和意义 (5)第二章无刷直流电机的工作原理以及数学模型 (9)4.4 SVPWM的具体实现方法 (36)4.3.1 电压空间矢量的空间位置 (37)4.3.2 电压空间矢量的合成 (37)第一章绪论1.1 课题研究的背景和意义燃油汽车在经过了一百多年的发展之后已经非常成熟丁,它使用方便、价格低廉,性能良好。

但随着燃油汽车的发展,汽车尾气的污染问题越来越严重。

日前,全世界拥有各类汽车约5亿辆,年消耗燃油约7亿吨,排放的有害物质超过2亿吨,约占空气污染总量的61%。

燃油汽车使用的燃料来自于石油,而石油足有限的不可再生资源,作为全世界重要的化工资源的石油被世界各国在汽车上大量地消耗,据近年的有关石油的国际会议估计,全世界探明的石油储量在未来50年内即可用完。

调查显示,截止2013年底,我国年机动车保有量接近3亿辆,与1980年相比增加了近30倍。

随着机动车保有量的快速增加。

机动车尾气排放污染物对空气的影响越来越严重,给区域和城市的环境带来巨大的压力。

另一方面,城市交通拥堵问题己成为阻碍我国许多城市发展的重要问题。

据调查,全国几乎所有城市汽车保有量都在不断增加,大量的机动车导致中心城区车流高峰期越演越烈,给城市居民出行带来严重不便,大、中型城市这种现象犹为脱出,严重的甚至导致大面积交通堵塞,交通事故频发。

长期以往,必将影响城市经济发展和生活水平的提高。

而随着农村城镇化步伐的加快,老百姓对交通工具的需求也与日剧增。

电动汽车具有清洁无污染、能量来源多样化、能量效率高的特点:同时电动汽车在改善交通安全以及道路使用等问题上,又便于实现智能化的管理。

固此,电动汽车已成为世界各国的研究热点。

我国的汽车工业的发展与世界其他国家相距甚远,电动汽车的开发为我国在新的起点上赶上世界先进水平提供了一个不可多得的大好时机。

电动汽车的研制也有利于促进高科技的发展、新兴丁业的兴起以及经济的发展。

因此,电动汽车的研制对我国具有特别重要的意义。

随着能源危机和城市交通拥挤的加剧,电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。

在上述形势下,发展电动车辆是必然趋势,也是符合绿色、低碳、可持续发展的客观需求。

项目提出的目标是:要提高我国电动汽车及相关领域的技术创新能力,培育一支具有汽车产品自主开发能力的队伍,并充分利用社会各方面的科技资源,在国际竞争中抢占新一代汽车技术制高点,促进我国汽车工业实现跨越式发展。

永磁无刷直流电机以其结构简单、可靠性高、效率高、体积小、重量轻等优点被广泛应用于车用电机驱动系统中。

电动车用电机驱动控制系统技术的优良直接影响着整车的安全性、舒适性、环保性和经济性。

因此研究更加可靠舒适、环境友好、经济的电动车用电机驱动系统势在必行。

1.2 永磁无刷直流电机发展与现状1955年美国D.H枷son等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。

1964年,它被美国航空航天局应用于卫星姿态控制、太阳能电池板的跟踪控制等领域。

1978年,当时的M籼esmaIlIl公司MAC经典无刷直流电动机及其驱动系统问世,电子换相式无刷直流电机进入实际应用阶段。

一直以来,各国学者对无刷直流电动机本体进行了深入的研究,先后成功研制方波直流永磁无刷电机和正弦波直流永磁无刷电机(被称为新一代的永磁同步电机)。

由于电机的永磁体、电机控制技术、电力电子技术尤其是功率开关器件的技术进步,永磁无刷直流电机的发展日新月异。

50年来,它被逐步推广到军工装备、工业、民用控制等领域,现已成为最具发展前途的电机产品。

近三十年,特别是改革开放以后,由于出口和内需的拉动,以及外资企业的进入和国内企业的高速发展,我国对永磁无刷直流电机技术的研究也紧跟时代的脚步。

自从上个世纪80年代初开始,国家科研院所、企业研发部门及部分高校的科研工作者就开始对永磁无刷直流电机及其驱动技术进行了深入的研究。

随着改革开放以来工业生产及民用设备对无刷直流电机需求逐渐增加,其控制技术也得到了快速发展,相关产业也已经成型。

永磁无刷直流电机采用永磁转子,其转子磁钢结构经过专门的磁路设计,使电机可以获得梯形波的气隙磁场。

电机不采用机械式换向器和电刷,而是采用由固态逆变器和转子位置检测器组成的电子换向器。

位置传感器用来检测转予在运动过程中的位置,并将位置信号转换为电信号,保证各相绕组的正确换流。

永磁无刷直流电动机在工作时,直接将方波电流输入永磁无刷直流电动机的定子中,控制永磁无刷直流电动机运转。

永磁无刷直流电动机的优点是效率高,起动转矩大,过载能力强,高速操作性能好,无电刷,结构简单牢固,免维护或少维护,体积小质量轻,但会产生转矩脉动,电流损耗大,工作噪声大。

电动车的大量使用极大带动永磁无刷直流电机的发展,同时,也对永磁无刷直流电机驱动控制技术提出了更高的要求。

对比一般工业及民用家电用永磁无刷直流电机的控制技术,电动车用永磁无刷直流电机的驱动控制技术难度更大,对运行安全性、驾驶舒适性、运行效率要求都更高。

相关文档
最新文档