基于单片机的交通灯的设计和实现

合集下载

基于51单片机的交通灯控制设计

基于51单片机的交通灯控制设计

基于51单⽚机的交通灯控制设计课程设计任务书及成绩课程名称单⽚机课程设计题⽬交通灯控制设计课程设计⽬标与任务、计划与进度安排:实践教学要求与任务:1、了解交通灯的基本⼯作原理;2、⽤Proteus模拟实现交通灯控制;3、⽤Keil C51编程实现上述功能;4、⽤Keil与Proteus联调。

⼯作计划与进度安排:17周查找相关资料。

18周详细设计。

19周程序测试,书写论⽂,进⾏答辩。

1 引⾔交通事业蓬勃发展,交通流量年年增长,⼤、中、⼩城市的汽车、摩托车等各种车辆与⽇俱增,道路交通繁忙,经常有严重堵车现象,特别是在交叉⼝,机动车、⾮机动车、⾏⼈来往⾮常混乱,为了在叉⼝的各条⼲道实现合理的科学分流。

本⼈根据单⽚机具有物美价廉、功能强、使⽤⽅便灵活、可靠性⾼等特点,提出了⼀种⽤STC89c51单⽚机⾃动控制交通信号灯及时间显⽰的⽅法,同时给出了软硬件的实现⽅法,为交通指挥⾃动化提供了⼀种新的廉价⼿段,具有⼀定的推⼴意义。

本⽂介绍了控制基本原理以及控制的表现,同时也介绍了城市交通信息系统的设计⽬标, 开发途径及其系统结构与功能和数据地理编码、建库, 同时, 论述了系统中交通现状、交通管理、交通规划及背景信息查询模块的建造及应⽤。

介绍了⽤于城市交叉路⼝的三⾊程控交通信号时间显⽰器的研制⽅案,对其电源供电、发光⼆极管构成的负载结构、灯⾊时间检测都给出了精巧合理的优化结构,⼤幅度地提⾼了产品可靠性并降低了制造成本。

2 应⽤软件介绍2.1 C语⾔介绍C语⾔是于1972年由贝尔实验室的Dennis Ritchie在B语⾔的基础上开发出来的。

最初的C语⾔是作为UNIX操作系统的开发语⾔⽽被⼈们所认识。

此后,贝尔实验室对C语⾔进⾏了多次改进和版本的公布,C语⾔的优点才引起⼈们的普遍注意。

随着UNIX操作系统在各种机器上的⼴范使⽤,使C语⾔得到了迅速推⼴。

1978年由Brian W. Kernighan和Dennis M. Ritchit合著了《The C Programming Language》⼀书,该书对C语⾔作了详细的描述,这本书对C语⾔发展影响深远,并成为了后来C语⾔版本的基础,称之为标准C。

基于单片机的智能交通灯控制器设计

基于单片机的智能交通灯控制器设计

基于单片机的智能交通灯控制器设计一、本文概述随着城市化进程的加快,交通拥堵问题日益严重,智能交通系统的应用与发展成为解决这一问题的关键。

其中,智能交通灯控制器作为交通系统的重要组成部分,对于提高道路通行效率、保障行车安全具有重要意义。

本文旨在设计一种基于单片机的智能交通灯控制器,通过优化算法和硬件设计,实现交通灯的智能控制,以适应不同交通场景的需求,提升城市交通的整体运行效率。

本文将首先介绍智能交通灯控制器的研究背景和意义,阐述现有交通灯控制系统的不足和改进的必要性。

接着,文章将详细介绍基于单片机的智能交通灯控制器的设计方案,包括硬件电路的设计、控制算法的选择与优化等方面。

在此基础上,本文将探讨如何通过软件编程实现交通灯的智能控制,并讨论如何在实际应用中调试和优化系统性能。

文章将总结研究成果,展望智能交通灯控制器在未来的发展方向和应用前景。

通过本文的研究,旨在为城市交通管理提供一种新的智能化解决方案,为缓解交通拥堵、提高道路通行效率提供有力支持。

本文的研究也有助于推动单片机技术和智能交通系统的发展,为相关领域的研究和实践提供有益的参考和借鉴。

二、单片机技术概述单片机,即单片微型计算机(Single-Chip Microcomputer),是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。

单片机以其体积小、功能强、成本低、可靠性高、应用广泛等特点,广泛应用于工业控制、智能仪表、家用电器、医疗设备、航空航天、军事装备等领域。

单片机作为智能交通灯控制器的核心部件,具有不可替代的重要作用。

它负责接收来自传感器的交通信号输入,根据预设的交通规则和算法,快速作出判断,并输出相应的控制信号,以驱动交通信号灯的亮灭和变化,从而实现交通流量的有序控制和疏导。

51单片机交通灯毕业设计方案

51单片机交通灯毕业设计方案

51单片机交通灯毕业设计方案
以下是一个基于51单片机的交通灯设计方案:
1. 硬件设计:
- 使用51单片机作为主控制器。

- 使用红黄蓝三个LED作为信号灯的显示器件。

- 使用按钮作为手动触发信号灯切换的输入设备。

- 使用数码管显示当前信号灯状态的计时器。

- 使用适当的电阻、电容、继电器等连接单片机和LED、按钮、数码管等。

2. 软件设计:
- 配置51单片机的I/O口,将LED、按钮和数码管连接到正
确的引脚。

- 编写主程序,设置中断或轮询等方式读取按钮状态,并根
据按钮状态切换信号灯状态。

- 通过控制LED引脚的输出电平,实现红黄蓝三个信号灯的
闪烁、亮灭和切换。

- 使用定时器计时,实现信号灯的定时控制。

根据交通规则,红灯、黄灯、绿灯的显示时间可以根据需要设定。

- 使用数码管显示当前信号灯的状态和剩余时间,方便车辆
和行人了解交通灯变化。

3. 功能设计:
- 根据交通规则,设置交通灯的变换顺序和时间,确保道路
的交通流畅和安全。

- 根据需要加入手动触发信号灯切换的功能,允许人工控制,
例如紧急情况下的交通调节。

- 可以考虑加入流量检测、车辆和行人优先等功能,提高交
通效率和安全性。

- 可以通过串口或无线通信模块,实现与其他设备的联动,
例如与车载导航系统、交通监控系统等的数据交换和协同控制。

以上是一个基本的51单片机交通灯设计方案,可以根据具体
需求进行进一步调整和优化。

基于51单片机的智能交通灯系统设计说明

基于51单片机的智能交通灯系统设计说明

十字路口交通灯控制系统的设计1.设计思路近年来,随着科技的飞速发展,电子器件也随之广泛应用,其中单片机也不断深入人民的生活当中。

本模拟交通灯系统利用单片机AT89C51作为核心元件,实现了通过信号灯对路面状况的智能控制。

从一定程度上解决了交通路口堵塞、车辆停车等待时间不合理、急车强通等问题。

系统具有结构简单、可靠性高、成本低、实时性好、安装维护方便等优点,有广泛的应用前景。

本模拟系统由单片机硬/软件系统,两位8段数码管和LED灯显示系统。

和复位电路控制电路等组成,较好的模拟了交通路面的控制。

1.1 电源提供方案采用单片机控制模块提供电源。

1.2显示界面方案采用数码管显示。

这种方案只显示有限的符号和数码字符,简单,方便。

1.3 输入方案:直接在I/O口线上接上按键开关。

由于该系统对于交通灯及数码管的控制,只用单片机本身的I/O 口就可实现,且本身的计数器及RAM已经够用,故选择该方案。

2 单片机交通控制系统总体设计2.1单片机交通控制系统的通行方案设计设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。

一共可以有四个状态。

通过具体的路口交通灯状态的分析我们可以把这四个状态归纳如下:(1)东西方向红灯灭,同时绿灯亮,南北方向黄灯灭,同时红灯亮,倒计时80秒。

此状态下,东西向禁止通行,南北向允许通行。

(2)东西方向绿灯灭,同时黄灯亮,南北方向红灯亮,倒计时3秒。

此状态下,除了已经正在通行中的其他所以车辆都需等待状态转换。

(3)南北方向红灯灭,同时绿灯亮,东西方向黄灯灭,同时红灯亮,倒计时60秒。

此状态下,东西向允许通行,南北向禁止通行。

(4)南北方向绿灯灭,同时黄灯亮,东西方向红灯亮,倒计时3秒。

此状态下,除了已经正在通行中的其他所以车辆都需等待状态转换。

用图表表示灯状态和行止状态的关系如下:表1交通状态及红绿灯状态灯禁止通行,转绿灯允许通行,之后黄灯亮警告行止状态将变换。

基于单片机的交通灯设计

基于单片机的交通灯设计

基于单片机的交通灯设计为了提高城市交通的效率和安全性,交通信号灯作为一个重要的交通管理措施被广泛应用于各种路口和交叉口。

成为了近年来一个备受关注的研究方向。

单片机作为一种集成电路,具有可编程性和高度灵活性,能够实现各种功能的控制和管理。

因此,利用单片机技术设计交通信号灯可以更好地满足现代城市交通管理的需求,提高交通效率,减少交通事故的发生。

本文将分为以下几个部分来详细介绍基于单片机的交通灯设计。

首先,将介绍交通信号灯的发展历史和现状,分析传统的交通信号灯存在的问题和不足。

然后,将介绍单片机技术在交通信号灯设计中的应用和优势,探讨利用单片机实现交通信号灯控制的原理和方法。

接着,将详细介绍基于单片机的交通信号灯系统的硬件设计和软件设计,包括单片机的选型和编程,各个灯的控制逻辑以及整个系统的实现过程。

最后,将通过实验验证基于单片机的交通信号灯设计的可行性和有效性,并对该设计方案进行优化和改进。

交通信号灯作为一种重要的城市交通设施,可以指挥车辆和行人按照规定的时间和顺序通行,有效地控制交通流量,减少交通拥堵和事故发生。

然而,传统的交通信号灯存在一些问题,如固定的时间设置导致交通拥堵,无法适应实际交通情况变化等。

因此,设计一种智能化、自适应的交通信号灯系统显得尤为重要。

单片机作为一种集成电路,具有逻辑控制功能和高度可编程性,可以实现复杂的控制任务。

利用单片机技术设计交通信号灯系统,能够实现灵活的控制策略,根据实际交通情况自动调整灯光的亮灭时间,提高交通效率,减少交通事故的发生。

因此,基于单片机的交通信号灯设计成为了当前交通管理领域的研究热点之一。

在基于单片机的交通信号灯设计中,硬件设计和软件设计是两个关键的环节。

硬件设计包括单片机的选型、外围器件的选择和连接等。

在选择单片机时,需要考虑其性能、功耗、成本等因素,满足交通信号灯系统的实际需求。

外围器件的选择和连接也需要考虑到稳定性、可靠性和安全性等因素,保证交通信号灯系统的正常运行和可靠性。

基于单片机的智能交通灯的设计

基于单片机的智能交通灯的设计

基于单片机的智能交通灯的设计智能交通灯是一种基于单片机控制的新型交通信号灯系统。

相比传统的交通信号灯,智能交通灯具有更高的智能化和自动化水平,能够根据实时交通流量和道路条件进行自适应调整,从而提高交通效率和安全性。

下面将介绍基于单片机的智能交通灯的设计。

首先,整个系统由交通灯控制器、传感器、电源和显示设备组成。

交通灯控制器采用单片机作为核心处理器,通过编程实现交通灯的自动控制。

传感器主要用于收集道路的实时交通流量数据,可以使用车辆检测器、红外线传感器等。

电源则提供系统所需的电能,可以通过交流电转直流电供电。

显示设备包括LED灯组成的交通信号灯。

其次,智能交通灯的设计要考虑到交通流量、道路条件和等待时间等因素。

通过传感器采集到的交通流量数据,可以实时判断道路上的车辆数量和行车速度情况,并根据这些数据来进行灯光的控制。

例如,当一些方向的交通流量较大时,该方向的灯光可以延长绿灯时间,以减少等待时间和堵塞情况。

同时,系统还可以根据实际道路条件进行调整,例如在下雨天或冰雪天气中,可以适当延长红灯时间,以提高行车安全性。

此外,智能交通灯系统还可以配备优先级设定功能。

这意味着交通灯可以根据不同交通参与者的特定需求来设置优先级顺序。

例如,救护车和消防车可以通过特定的信号发送给交通灯系统,以优先通行。

当系统接收到这些信号时,可以尽快改变交通灯状态,并确保畅通无阻地通行。

最后,在智能交通灯的设计过程中,还需要注意安全性和可靠性。

系统中的单片机必须能够稳定运行,并能够及时控制交通灯的状态。

同时,对于车辆和行人来说,应该提供明确的信号指示,以确保他们能够正确理解和响应交通灯的指示。

综上所述,基于单片机的智能交通灯的设计可以提高交通效率和安全性。

通过采集道路上的实时交通流量数据,并根据这些数据来自动调整交通灯的控制,可以减少交通拥堵和事故发生的概率。

此外,智能交通灯还可以根据不同交通参与者的特定需求来进行优先级设置,提高交通系统的灵活性和适应性。

基于单片机的交通灯控制系统设计与实现

基于单片机的交通灯控制系统设计与实现

基于单片机的交通灯控制系统需要包含以下组成部分:1.硬件设备组成:单片机、LED 灯、显示屏等硬件设备。

2.设计思路描述:交通灯控制系统的设计思路是基于定时器的,利用计数器和定时器来控制红绿灯的转换,同时通过按键检测实现手动控制。

3.程序设计:程序需要完成按键检测、信号灯控制和定时器计数等功能。

具体实现可以分为以下几步:(1) 根据硬件设备的引脚对应关系,定义各个引脚的控制方式和状态。

(2) 在程序中定义计时器和定时器,用于计时和设置红绿灯状态。

例如,计时器每隔一定时间就会触发定时器,设置红绿灯的状态,并且根据状态判断相应的亮灯和熄灯。

(3) 通过按键检测来实现手动控制,当检测到按键按下时,立即切换灯的状态,当再次按下时,又立即切换回之前的状态。

4.实现代码:下面是一个该系统的简单代码示例,供参考:#include <reg52.h>#define uint unsigned int#define uchar unsigned charsbit KEY1 = P3^0;//按键定义sbit RED = P2^2;//红灯定义sbit YELLOW = P2^1;//黄灯定义sbit GREEN = P2^0;//绿灯定义/*函数声明*/void initTimer0();void delay1ms(uint count);/*主函数*/int main(){initTimer0();/*初始化计时器*/while(1){if(KEY1 ==0){/*按键按下*/delay1ms(5);/*消抖*/if(KEY1 ==0){/*仍然按下*//*绿灯亮10s*/GREEN =1;delay1ms(10000);GREEN =0;/*黄灯亮3s*/YELLOW =1;delay1ms(3000);YELLOW =0;/*红灯亮7s*/RED =1;delay1ms(7000);RED =0;/*黄灯亮2s*/YELLOW =1;delay1ms(2000);YELLOW =0;}}}return0;}/*函数定义*/void initTimer0(){TMOD &=0xF0;TMOD |=0x01;TH0 =0xFC;TL0 =0x18;EA =1;ET0 =1;TR0 =1;}/*1ms延时函数*/void delay1ms(uint count){uint i,j;for(i=0;i<count;i++){for(j=0;j<125;j++){}}}/*计时器中断函数*/void timer0() interrupt 1{TH0 =0xFC;TL0 =0x18;}以上是一个简单的基于单片机的交通灯控制系统设计与实现示例。

基于51单片机的交通信号灯模拟控制系统

基于51单片机的交通信号灯模拟控制系统

基于51单片机的交通信号灯模拟控制系统一、实验目的和要求1.掌握单片机基本资源使用。

2.掌握单片机电路原理图绘制和仿真。

3.掌握单片机C语言软件开发以及联合仿真。

二、实验内容和原理实验内容:1.根据题目绘制单片机电路原理图。

2.绘制程序流程图并编写C语言程序3.在仿真程序中进行联合仿真,最后提交实验报告三、主要仪器设备keilC,proteus。

四、操作方法与实验步骤4.1 题目要求用单片机设计一个十字路口交通灯模拟控制系统,要求东西、南北两个方向都通行20秒,警告3秒,禁止20秒,同时要考虑到东西、南北两个方向出现异常情况,出现异常情况器该方向通行60秒。

4.2 系统设计思路南北的绿红黄发光二极管与单片机AT89C51单片机的P1.0,P1.1,P1.2相连。

东西的绿红黄发光二极管与单片机AT89C51单片机的P1.4,P1.5,P1.6相连。

改变单片机P1口编码控制交通灯。

控制过程中会出现两种异常情况用外中断0和外中断1处理。

时间单位采用500ms信号,由定时/计数器0定时50ms,循环10次产生,定时/计数器0采用查询方式,主程序中设定定时/计数器0的工作方式:方式1。

4.2 电路图绘制(包含详细的参数选定文字和图像叙述)C1=1nF,C2=1nF,C3=1nF,R1=300,R2=300,R3=300,R4=300,R5=300,R6=300,R7=300,R8=300,R9=300,R10=300,R11=300,R12=300,R13=3004.3 C程序编制(包含详细的文字和程序流程图)4.3 仿真分析(包含文字和图像叙述)东西绿灯,南北红灯东西黄灯,南北红灯南北绿灯,东西红灯南北黄灯,东西红灯东西发生异常时,东西通行,南北禁止,东西方向绿灯闪,南北方向红灯闪南北发生异常时,南北通行,东西禁止,南北方向绿灯闪,东西方向红灯闪五、讨论和心得(不少于100字)通过这次对交通灯信号的模拟,了解了交通灯4种正常状态,2种异常状态,它们分别是:状态1,东西方向绿灯,南北方向红灯20秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——基于单片机的交通灯的设计和实现班级:计算机061参加人员:林传杰学号:23E-mail:332866429qq.目录1 引言 (1)2 交通管理方案论证 (2)2.1 设计任务 (2)2.2 方案介绍 (2)3 交通灯系统硬件设计 (3)3.1 单片机概述 (3)3.2 系统构成 (4)3.3芯片选择与介绍 (4)3.3.1 AT89C51芯片 (4)3.3.2 输出信号与信号灯 (5)3.3.3 交通灯控制线路图 (6)4 交通灯软件设计 (7)4.1 程序设计流程图 (7)4.2延时的设定 (7)4.2.1 计数器初值计算 (7)4.2.2 相应程序代码 (7)4.3 程序的主控制调用 (8)5实验平台 (8)5.1实验平台 (8)5.2实验步骤 (10)5.2.1 按系统需求绘制电路图 (10)5.2.2 编写程序 (10)6 实训心得 (11)1 引言今天,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。

但这一技术在19世纪就已出现了。

1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。

这是世界上最早的交通信号灯。

1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。

它由红绿两块以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。

1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。

1914年,电气启动的红绿灯出现在美国。

这种红绿灯由红绿黄三色圆形的投光器组成,安装在纽约市5号大街的一座高塔上。

红灯亮表示“停止”,绿灯亮表示“通行”。

1918年,又出现了带控制的红绿灯和红外线红绿灯。

带控制的红绿灯,一种是把压力探测器安在地下,当车辆接近时,红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下喇叭,就使红灯变为绿灯。

红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。

红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。

信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。

1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。

绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。

左右转弯车辆都必须让合法地正在路口行驶的车辆和过人行横道的行人优先通行。

红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。

黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。

随着经济的发展,交通运输中出现了一些传统方法难以解决的问题。

道路拥挤现象日趋严重,造成的经济损失越来越大,并一直保持大比例的增长。

现在交通系统已不能满足经济发展的需求。

由于生活水平的提高,人们对交通运输的安全性及服务水平提出了更高的要求。

在交通中管理引入单片机交通灯控制代替交管人员在交叉路口服务,有助于提高交通运输的安全性、提高交通管理的服务质量。

并在一定程度上尽可能的降低由道路拥挤造成的经济损失,同时也减小了工作人员的劳动强度。

中国车辆数量不断增加,交通控制在未来的交通管理中起着越来越重要的作用。

智能交通灯的管理比重修一条马路无论在经济、交通运行速率上都有很好的效益、更加节约资源。

使交管人员有更多的精力投入到管理整个城市交通控制,带来更大的经济和社会效益,为创造美好的城市交通形象发挥更多的作用。

2 交通管理方案论证2.1 设计任务东西(EW)、南北(SN)两干道交于一个十字路口,各干道有一组红、黄、绿三个指示灯,指挥车辆和行人安全通行。

红灯亮禁止通行,绿灯亮允许通行,黄灯闪烁表示离红灯亮还有5S时间(警告状态)。

本设计给两干道分配了20S和30S的时间选择,可以根据干道上行人车辆流量来分配长短不同的时间。

2.2 方案介绍把设计任务细化为四个状态,其对应状态如图:整个交通灯控制由四个状态组成,可以用程序设计实现,也可用时序逻辑实现.以下方案就是分别用了这两种方法。

设计思想:说明:1、按键1和2按下是定时20秒,弹起定时30秒;button1控制右边两位数码管显示,button2控制左边两位数码管显示;2、按键3是当交叉路口发生交通事故时,紧急暂停通行;3、按键旁边的红点点一下按键就一直处于按下状态;我设计的按键控制是开光转换按键,所以需要更改状态需要按键一直按下去,不过要等一个方向的工作结束才能生效;比如:开始右边两位显示30秒,接下去左边如果按键没按下,左边显示也是30秒,如果需要接下去左边显示20秒,就在右边30秒工作的时候将控制左边的按键按下;想重新回到30秒就弹起按键就行了;3 交通灯系统硬件设计3.1 单片机概述单片机是由运算器、控制器、存储器、输入设备以及输出设备共五个基本部分组成的。

单片机是把包括运算器、控制器、少量的存储器、最基本的输入输出口电路、串行口电路、中断和定时电路等都集成在一个尺寸有限的芯片上。

通常,单片机由单个集成电路芯片构成,部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。

因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。

单片机经过1、2、3、3代的发展,目前单片机正朝着高性能和多品种方向发展,它们的CPU功能在增强,部资源在增多,引脚的多功能化,以及低电压、低功耗。

可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。

不过,这种电脑,通常是指个人计算机,简称PC机。

它由主机、键盘、显示器等组成。

还有一类计算机,大多数人却不怎么熟悉。

这种计算机就是把智能赋予各种机械的单片机。

顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。

因为它体积小,通常都藏在被控机械的“肚子”里。

它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。

现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。

各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。

现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。

究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。

目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。

导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。

更不用说自动控制领域的机器人、智能仪表、医疗器械了。

它主要是作为控制部分的核心部件。

因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。

3.2 系统构成电路板一块,AT89C51单片机一片,七段数码管四个。

发光二极管9个(红黄绿各三个,一组控制东西干道,一组控制南北干道,一组显示按键状态),三个按键(按键1控制东西干道时间,按键2控制南北干道时间,按键三控制紧急暂停通行),若干电阻。

系统结构框图系统工作流程:(1)开启中断控制,数码管循环显示;(2) 中断时间到,进入中断处理程序,重新给定时器赋初值,搜索按键状态,判断显示状态,赋值给各参数,控制哪些灯亮哪几位数码管显示;(3)cnt加1,判断cnt是否等于20,确实1S时间到了,如果是sec减一;(4)判断sec是否到达5s,确实是否给警告标志参数赋值;(5)到达5s后程序判断sec等于0,确定更改状态;3.3芯片选择与介绍3.3.1 AT89C51芯片选用AT89C51芯片,其主要功能列举如下:为一般控制应用的 8 位单片机8051-based Fullly Static 24MHz CMOS controller with 32 I/O Lines,2 Timers/Counters, 6 Interrupts/2 Priority Levels, UART,Three-Level Program Memory Lock, 4K Bytes Flash Memory,128 Bytes On-chip RAM3.3.2 输出信号与信号灯要使行人能看见信号灯的情况,必须把P2口输出的信号降低,当P2某个端口为低电平,该支路指示灯亮(此处设计阴极接端口)。

LED 灯的显示原理:通过同名管脚上所加电平的高低来控制发光二极管是否点亮。

如下图:而七段数码管的显示及与74HC164的连接显示不同的字形如 SP,g,f,e,d,c,b,a 管角上加上0FEH所以SP上为0伏,不亮其余为TTL高电平,全亮则显示为8。

采用共阴极连接:显示数值dp g f e d c b a 驱动代码(16进制)0 0 0 1 1 1 1 1 1 FEH1 0 0 0 0 0 1 1 0 06H2 0 1 0 1 1 0 1 1 5BH3 0 1 0 0 1 1 1 1 4FH4 0 1 1 0 0 1 1 0 66H5 0 1 1 0 1 1 0 1 6DH6 0 1 1 1 1 1 0 1 7DH。

3.3.3 交通灯控制线路图DSN电路图已附上:traffic_light.DSN4 交通灯软件设计4.1 程序设计流程图略(word作图有点难度)程序流程图流程图说明:图中定时器在每50ms中断一下,设置为循环20次(此时为1秒),每1秒以后,sec 自动减1。

4.2延时的设定延时方法可以有两种一种是利用AT89C51部定时器的溢出中断来确定1秒的时间,另一种是采用软件延时的方法。

4.2.1 计数器初值计算定时器工作时必须给计数器送计数器初值,这个值是送到TH和TL中的。

他是以加法记数的,并能从全1到全0时自动产生溢出中断请求。

因此,我们可以把计数器记满为零所需的计数值设定为C和计数初值设定为TC 可得到如下计算通式:TC=M-C式中,M为计数器模值,该值和计数器工作方式有关。

在方式0时M为213;在方式1时M的值为216;在方式2和3为28 ;算法公式:T=(M-TC)T计数或TC=M-T/T计数T计数是单片机时钟周期TCLK的12倍;TC为定时初值如单片机的主脉冲频率为TCLK12MHZ,经过12分频方式0TMAX=213 *1微秒=8.192毫秒方式1TMAX=216 *1微秒=65.536毫秒显然1秒钟已经超过了计数器的最大定时间,所以我们只有采用定时器和软件相结合的办法才能解决这个问题.实现1秒的方法我们采用在主程序中设定一个初值为20的软件计数器和使T1定时50毫秒.这样每当T1到50毫秒时CPU就响应它的溢出中断请求,进入他的中断服务子程序。

相关文档
最新文档