中考数学创新题集锦(含答案)

合集下载

初中数学竞赛创新试题及答案

初中数学竞赛创新试题及答案

初中数学竞赛创新试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -2B. 0C. 1D. 22. 如果一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π3. 一个数的平方是16,这个数可能是:A. 2B. 4C. -2D. C和-24. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是:A. 5B. 6C. 7D. 85. 如果一个数的绝对值是5,那么这个数可能是:A. 5C. A和BD. 06. 一个数的立方是-27,这个数是:A. -3B. 3C. -27D. 277. 一个数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 18. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -49. 如果一个数的平方是25,那么这个数的立方是:A. 125B. 250C. 375D. 62510. 一个数的立方根是-2,那么这个数是:A. -8B. 8D. 2二、填空题(每题3分,共15分)11. 一个数的平方是9,这个数是_________。

12. 如果一个数的平方根是2,那么这个数是_________。

13. 一个数的立方是64,这个数是_________。

14. 一个数的倒数是2/3,那么这个数是_________。

15. 如果一个数的立方根是3,那么这个数是_________。

三、解答题(每题5分,共55分)16. 一个直角三角形的斜边长度是13厘米,其中一个直角边是5厘米,求另一个直角边的长度。

17. 一个数列的前三项是1, 1, 2,每一项都是前两项的和,求这个数列的第10项。

18. 一个圆的直径是14厘米,求这个圆的面积。

19. 一个数的平方是25,求这个数的平方根。

20. 一个数的立方是-125,求这个数。

四、证明题(每题10分,共20分)21. 证明:对于任意一个正整数n,n的平方总是大于或等于n。

初三数学创新试卷答案

初三数学创新试卷答案

一、选择题(每题5分,共25分)1. 下列选项中,不属于实数的是()A. 2.5B. -3C. √4D. π答案:D解析:实数包括有理数和无理数,π是无理数,不属于实数。

2. 已知一元二次方程 x^2 - 5x + 6 = 0,其两个根分别为 a 和 b,则 a + b 的值为()A. 5B. 6C. -5D. -6答案:A解析:根据一元二次方程的求根公式,可得 a + b = -(-5) = 5。

3. 在直角坐标系中,点 A(2,3) 关于 y 轴的对称点坐标为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)答案:A解析:点 A(2,3) 关于 y 轴的对称点坐标为 (-2,3)。

4. 下列函数中,y 是 x 的反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 1/xD. y = 3x答案:C解析:反比例函数的形式为 y = k/x(k ≠ 0),故选 C。

5. 已知等差数列 {an} 的首项 a1 = 3,公差 d = 2,则第 10 项 an 的值为()A. 21B. 23C. 25D. 27答案:C解析:等差数列的通项公式为 an = a1 + (n - 1)d,代入数据得 an = 3 + (10 - 1)×2 = 25。

二、填空题(每题5分,共25分)6. 若 a > b,则 |a| - |b| 的值为 _______。

答案:a - b解析:因为 a > b,所以 |a| = a,|b| = b,所以 |a| - |b| = a - b。

7. 若二次函数 y = ax^2 + bx + c(a ≠ 0)的图像开口向上,则 a 的取值范围是 _______。

答案:a > 0解析:二次函数的图像开口向上,说明 a 的值必须大于 0。

8. 在直角三角形 ABC 中,∠A = 90°,∠B = 30°,则 AC 的长度是 AB 的_______ 倍。

创新题中考数学试卷答案

创新题中考数学试卷答案

一、选择题(每题3分,共30分)1. 下列哪个函数是奇函数?A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C解析:奇函数的定义是f(-x) = -f(x),只有C选项满足此条件。

2. 在直角坐标系中,点A(2,3),点B(5,1),则线段AB的中点坐标为:A. (3,2)B. (4,2)C. (3,1)D. (4,1)答案:B解析:中点坐标公式为((x1+x2)/2, (y1+y2)/2),代入得(4,2)。

3. 若等差数列{an}的公差d=2,且a1+a5=18,则a3的值为:A. 8B. 10C. 12D. 14答案:B解析:由等差数列性质,a1+a5 = 2a3,代入得2a3=18,解得a3=9。

4. 若sinA=1/2,cosB=3/5,且A、B均为锐角,则tan(A+B)的值为:A. 1B. 2C. 3D. 4答案:B解析:利用正切和公式tan(A+B) = (tanA+tanB)/(1-tanAtanB),代入得tan(A+B) = (1/2+3/5)/(1-1/23/5) = 2。

5. 若等比数列{an}的公比q=2,且a1+a3=24,则a5的值为:A. 64B. 32C. 16D. 8答案:A解析:由等比数列性质,a1a3 = a2^2,代入得a1a3 = 2^22^2 = 16,又因为a1+a3=24,解得a1=4,a3=20,所以a5=a3q^2=202^2=64。

二、填空题(每题4分,共20分)6. 已知函数f(x)=2x-1,则f(-3)的值为______。

答案:-7解析:将x=-3代入函数f(x)中,得f(-3)=2(-3)-1=-7。

7. 在△ABC中,若a=3,b=4,c=5,则△ABC是______三角形。

答案:直角解析:根据勾股定理,a^2+b^2=c^2,代入得3^2+4^2=5^2,满足条件,所以△ABC 是直角三角形。

初中数学创新题型试卷

初中数学创新题型试卷

一、选择题(每题5分,共25分)1. 下列各数中,是实数的是()A. √-1B. √4C. √0D. √-92. 若a=2,b=-3,则下列代数式中值为正的是()A. a+bB. a-bC. a×bD. a÷b3. 下列函数中,表示一次函数的是()A. y=3x+5B. y=x^2-2x+1C. y=2x+√xD. y=|x|+14. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)5. 下列图形中,面积最大的图形是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形二、填空题(每题5分,共25分)6. 若x^2-5x+6=0,则x的值为______。

7. 已知一元二次方程x^2+px+q=0的判别式△=25,则p的值为______。

8. 在直角三角形ABC中,∠C=90°,AB=10cm,AC=6cm,则BC的长度为______cm。

9. 若a,b,c是等差数列的前三项,且a+b+c=12,a+c=8,则b的值为______。

10. 已知函数y=2x+1,若x的取值范围是[1,3],则y的取值范围是______。

三、解答题(每题10分,共40分)11. (10分)已知一元二次方程x^2-4x+3=0,求:(1)方程的两个实数根;(2)若x是方程的根,求x+1的值。

12. (10分)在直角坐标系中,点P(2,-3)到直线y=-x+4的距离为______。

13. (10分)已知数列{an}的通项公式为an=3n-2,求:(1)数列的前5项;(2)数列的前n项和S_n。

14. (10分)已知函数y=2x-3,若x的取值范围是[2,4],求y的取值范围。

四、附加题(20分)15. (10分)在平面直角坐标系中,已知点A(3,2),点B(-1,5),求:(1)直线AB的斜率;(2)直线AB的截距;(3)直线AB的方程。

初三上册创新数学试卷答案

初三上册创新数学试卷答案

一、选择题(每题3分,共30分)1. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11, 14B. 3, 6, 9, 12, 15C. 4, 8, 12, 16, 20D. 5, 10, 15, 20, 25答案:A解析:等差数列的定义是相邻两项之差为常数,观察选项A,相邻两项之差均为3,故选A。

2. 已知函数f(x) = 2x + 1,若f(x) + f(-x) = 9,则x的值为()A. 2B. 3C. 4D. 5答案:C解析:将x和-x分别代入函数f(x)中,得到f(x) + f(-x) = 2x + 1 + 2(-x) +1 = 2,由题意知f(x) + f(-x) = 9,所以2 = 9,解得x = 4。

3. 在直角坐标系中,点A(2, 3),点B(-3, -4),则线段AB的中点坐标为()A. (2, 3)B. (-1, -1)C. (1, 2)D. (-1, 2)答案:B解析:线段AB的中点坐标为两个端点坐标的平均值,即中点坐标为((2 + (-3))/2, (3 + (-4))/2) = (-1, -1)。

4. 已知等腰三角形的底边长为6,腰长为8,则该三角形的周长为()A. 22B. 24C. 26D. 28答案:D解析:等腰三角形的两腰长度相等,周长为底边长加上两腰长,即周长为6 + 8 + 8 = 22。

5. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3答案:C解析:函数y = x^3在定义域内单调递增,因为其导数y' = 3x^2恒大于0。

二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an = 3n - 2,则第10项an = __________。

答案:28解析:将n = 10代入通项公式,得到a10 = 3 10 - 2 = 28。

7. 若sinα = 0.6,cosα = 0.8,则tanα = __________。

数学中考创新题型选择题汇总

数学中考创新题型选择题汇总

数学中考创新题型选择题汇总1. 已知函数f(x) = x^2 - 2x + 1,求f(x)的零点个数。

2. 已知a、b、c为三角形的三边,且满足a^2 + b^2 = c^2,求证三角形ABC是直角三角形。

3. 已知等差数列{an}的首项a1=1,公差d=2,求第10项a10的值。

4. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的导数。

5. 已知等比数列{bn}的首项b1=2,公比q=2,求第6项b6的值。

6. 已知函数h(x) = log2(x+1),求h(x)的反函数。

7. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的顶点坐标。

8. 已知等差数列{cn}的首项c1=1,公差d=2,求第10项c10的值。

9. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的极值点。

10. 已知函数h(x) = log2(x+1),求h(x)的定义域。

11. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的单调区间。

12. 已知等比数列{dn}的首项d1=2,公比q=2,求第6项d6的值。

13. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的拐点坐标。

14. 已知函数h(x) = log2(x+1),求h(x)的值域。

15. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的奇偶性。

16. 已知等差数列{en}的首项e1=1,公差d=2,求第10项e10的值。

17. 已知函数g(x) = x^3 - 3x^2 + 3x - 1,求g(x)的单调递增区间。

18. 已知函数h(x) = log2(x+1),求h(x)的单调递减区间。

19. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0,求f(x)的周期。

中考数学创新题集锦(含答案)(共12页)

中考数学创新题集锦(含答案)(共12页)

中考数学创新题-------折叠剪切问题折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题.一.折叠后求度数【1】将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .950答案:C【2】如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′等于( )A .50°B .55°C .60°D .65° 答案:A【3】 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.答案:36° 二.折叠后求面积【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( ) A .4 B .6 C .8 D .10图(1) 第3题图 C D E B A 图 (2)答案:C【5】如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A .2B .4C .8D .10答案:B【6】如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。

操作:(1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;(2)将△AFB 以BF 为折痕向右折过去,得图c 。

则△GFC 的面积是( )A.1cm 2B.2 cm 2C.3 c m 2D.4 cm 2E A A A B B B C C C GD D D F F F 图a 图b 图c 第6题图答案:B三.折叠后求长度【7】如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED BC⊥,则CE的长是()(A)10315-(B)1053-(C)535-(D)20103-答案:D四.折叠后得图形【8】将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是()A.矩形 B.三角形 C.梯形 D.菱形答案:D【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是()A. B. C. D.答案:D【10】小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )AB CDEF第7题图第8题图第9题图答案:D【11】如图,把矩形ABCD 对折,折痕为MN (图甲),再把B 点叠在折痕MN 上的B '处。

中考数学创新题型大集合

中考数学创新题型大集合
(3)直线 l : y kx 2 经过和谐点 P,与 x 轴交于点 D,与反比例函数 G:y
y
1 O 1
x
5、 【探究】 如图 1, 点 N m ,n
是抛物线 y1 4 x 2 1 上的任意一点,l 是过点 0,2 且
1
与 x 轴平行的直线,过点 N 作直线 NH⊥l,垂足为 H. ①计算: m=0 时,NH= ; m=4 时,NO= . ②猜想: m 取任意值时,NO NH(填“>”、“=”或“<”). 【定义】我们定义:平面内到一个定点 F 和一条直线 l(点 F 不在直线 l 上)距离相等 的点的集合叫做抛物线,其中点 F 叫做抛物线的“焦点”,直线 l 叫做抛物线的“准线”.如图 1 中 的点 O 即为抛物线 y1 的“焦点”, 直线 l: y 2 即为抛物线 y1 的“准线”.可以发现“焦点”F 在抛物 线的对称轴上. 【应用】 (1)如图 2,“焦点”为 F(-4,-1)、“准线”为 l 的抛物线 y2
创新题型
1、给出如下规定:两个图形 G1 和 G2,点 P 为 G1 上任一点,点 Q 为 G2 上任一点,如果 线段 PQ 的长度存在最小值,就称该最小值为两个图形 G1 和 G2 之间的距离. 在平面直角坐 标系 xOy 中,O 为坐标原点. 2 ,3 ) 和 (1) 点 A 的坐标为 A(1,0) ,则点 B(2,3) 和射线 OA 之间的距离为________, 点 C ( 射线 OA 之间的距离为________; (2)如果直线 y=x 和双曲线 y 研究) (3)点 E 的坐标为(1, 3 ),将射线 OE 绕原点 O 逆时针旋转 60,得到射线 OF,在坐标 平面内所有和射线 OE,OF 之间的距离相等的点所组成的图形记为图形 M. ①请在图 2 中画出图形 M,并描述图形 M 的组成部分; (若涉及平面中某个区域时可 以用阴影表示) ②将射线 OE,OF 组成的图形记为图形 W,抛物线 y x 2 2 与图形 M 的公共部 分记为图形 N,请直接写出图形 W 和图形 N 之间的距离.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:(1)如图
(2)由题可知AB=CD=AE,又BC=BE=AB+AE
∴BC=2AB,即
由题意知 是方程 的两根

消去a,得
解得 或
经检验:由于当 , ,知 不符合题意,舍去.
符合题意.

答:原矩形纸片的面积为8cm2.
【22】电脑CPU蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”。现为了生产某种CPU蕊片,需要长、宽都是1cm的正方形小硅片若干。如果晶圆片的直径为10.05cm。问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由。(不计切割损耗)
(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程 的两个实数根,试求出原矩形纸片的面积.
A.等腰三角形B.等边三角形
C.等腰直角三角形D.直角三角形
答案:B
【12】将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
答案:C
【13】如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )
答案:C
【14】如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,AD=BC.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( )
答பைடு நூலகம்:A
【18】如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于( ).
A. B. C. D.
答案:A
六.折叠和剪切的应用
【19】将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
A.50° B.55° C.60° D.65°
答案:A
【3】用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.
答案:36°
二.折叠后求面积
【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为( )
(A) (B)
(C) (D)
答案:D
四.折叠后得图形
【8】将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )
A.矩形 B.三角形 C.梯形 D.菱形
答案:D
【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )
A. B. C. D.
答案:D
【10】小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()
答案:D
【11】如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的 处。得到 (图乙),再延长 交AD于F,所得到的 是()
(1)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;
(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.
答案:(1)先求出DE= , , 后证之.
(2)注意到△DEM∽△CMG,求出△CMG的周长等于4a,从而它与点M在CD边上的位置无关.
A.4B.6C.8D.10
答案:C
【5】如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是
A.2 B.4 C.8 D.10
答案:B
【6】如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm。操作:
【20】同学们肯定天天阅读报纸吧?我国的报纸一般都有一个共同的特征:每次对折后,所得的长方形和原长方形相似,问这些报纸的长和宽的比值是多少?
答案: ∶1.
【21】用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.
A. B.
C. D.
答案:B
【17】从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )
A.a2–b2=(a+b)(a-b) B.(a–b)2=a2–2ab+b2
C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)
(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c。则△GFC的面积是( )
A.1cm2B.2 cm2C.3 cm2D.4cm2
答案:B
三.折叠后求长度
【7】如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且 ,则CE的长是( )
A.1B.2
C.3D.4
答案:D
五.折叠后得结论
【15】亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”
答案:180
【16】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则 与 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()
中考数学创新题
-------折叠剪切问题
折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题.
一.折叠后求度数
【1】将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为( )
A.600B.750C.900D.950
答案:C
【2】如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )
相关文档
最新文档