数学实际问题与反比例函数

合集下载

人教版九年级数学下册1实际问题与反比例函数

人教版九年级数学下册1实际问题与反比例函数

3. 已知一个三角形的面积为1,一边的长为x,这边上的高为y,则
y关于x的函数关系式为 y =
2
,(x>0) 该函数图象在第

Ι 象限。
4. 一辆汽车行驶在一段全程为100千米的高速公路上,那么这辆汽
车行完全程所需的时间t(小时)与它的速度v(千米/小时)之间
的关系式为 t =
100


小练习
知识点三:力学,电学等知识中存在着反比例函数。
实战演练
3. 用电器的输出功率P与通过的电流I、用电器的电阻R之间的
关系时 = 2 ,下面说法正确的是( B )
A. 若为定值,则与R成反比例。
B. 若为定值,则2 与R成反比例。
C. 若为定值,则与R成正比例。
D. 若为定值,则2 与R成正比例。
小练习
实战演练
4. 一个物体对桌面的压力为10 N,受力面积为S 2 ,压强为
其图象如图所示。
(1)写出p关于V 的函数解析式;
(2)当气球内气体的气压大于144千帕时,
气球就会爆炸。为了安全起见,气体的体积
应不小于多少立方米? (保留两个有效数字)
答案
解:(1)根据气体温度 = 气体的气压(p)×气体体积( )
= 60x1.6 = 96,即pV = 96,可求p关于V的函数解析式:
① 当电路中电压一定时,电流与电阻成反比例关系。
② 当做的功一定时,作用力与力的方向上通过的距离成反比例。
③ 气体质量一定时,密度与体积成反比例关系。
④ 当压力一定时,压强与受力面积成反比例关系。
实际问题
5. 气球内充满了一定质量的气体,当温度不变时,气球内气体
的气压p(单位:千帕)是气体体积V(单位:立方米)的反比例函数,

实际问题与反比例函数-完整版PPT课件

实际问题与反比例函数-完整版PPT课件
2、利用反比例函数解决实际问题的关键: 建立反比例函数模型.
实际问题与反比例函数
1、物理问题转化为与反比例函数有关的数学问题; 2、根据自变量的范围求相应的函数值的范围; 3、注意数形结合.
实际问题与反比例函数
在物理学中,有很多量之间的变化是反比例 函数的关系,因此,我们可以借助于反比例函数 的图象和性质解决一些物理学中的问数
古希腊科学家阿基米德曾 说过:“给我一个支点, 我可以把地球撬动。” 你认为这可能吗?为什么?
阻力
动力
阻力臂
动力臂
阻力×阻力臂=动力×动力臂
实际问题与反比例函数
实际 问题
建立数学模型 运用数学知识解决
反比例 函数
实际问题与反比例函数
小结 1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式
(1)列实际问题中的函数关系式首先应分析清楚各变 量之间应满足的分式,即实际问题中的变量之间的关系 立反比例函数模型解决实际问题; (2)在实际问题中的函数关系式时,一定要在关系式 后面注明自变量的取值范围。

实际问题与反比例函数

实际问题与反比例函数

实际问题与反比例函数知识点一:反比例函数的图象应用知识要点1.反比例函数图象的平移:(1(22.反比例函数图象的对称性:典例分析例1、反比例函数的图象经过点)32,3(-M ,将其图象向上平移2个单位后,得到的图象所对应的函数解析式为 _________ .例2、若将反比例函数xky =的图象绕原点O 逆时针旋转90︒后经过点A (-2,3),则反比例函数的解析式为__________.巩固练习:1.反比例函数的图象经过点)32,6(-M ,将其图象向右平移2个单位后,得到的图象所对应的函数解析式为______ .2.已知反比例函数xky =的图象经过点A (-2,3),将它绕原点O 逆时针旋转90︒后经过点A (-2,3),则旋转后的反比例函数的解析式为__________.知识点二:反比例函数的应用知识要点1.方式方法:把实际问题中寻找变量之间的关系,建立数学模型,运用数学知识解决实际问题。

2.常见题型:利用反比例函数求具体问题中的值,解决确定反比例函数中常数k 值的实际问题。

典例分析题型一:反比例函数的实际应用例1、京沈高速公路全长658km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t (h )与行驶的平均速度v (k m /h )之间的函数关系式为?例2、若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( )例3、小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v (米/分),所需时间为t (分)(1)则速度v 与时间t 之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少? (3)如果小林骑车的速度为300米/分,那他需要几分钟到达单位?巩固练习:1.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图像是( )A .B .C .D .2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( )(第2题图) A .不大于3m 3524 B .不小于3m 3524 C .不大于3m 3724D .不小于3m 37243.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的横截面积S (mm 2)的反比例函数,其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条的横截面积是1.6 mm 2时,面条的总长度是多少米?4.正在新建中的饿某会议厅的地面约5002m ,现要铺贴地板砖. (1)所需地板砖的块数n 与每块地板砖的面积S 有怎样的函数关系?(2)为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案,每块地板砖的规格为80×802cm ,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?5.一场暴雨过后,一洼地存雨水20m 3,如果将雨水全部排完需t 分钟,排水量为a m 3/min ,且排水时间为 5~10min(1)试写出t 与a 的函数关系式,并指出a 的取值范围; (2)当排水量为3m 3/min 时,排水的时间需要多长? (3)当排水时间4.5分钟时,每分钟排水量多少?题型二:反比例函数与一次函数的交点问题例1、如图,一次函数y =kx +5(k 为常数,且k ≠0)的图象与反比例函数y =-8x的图象交于A (-2,b ),B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移m (m >0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.【思路点拨】(1)将点A 坐标代入反比例函数解析式得b ,将A 坐标代入一次函数解析式得k ; (2)联立两函数解析式,得一元二次方程,有一个公共解则Δ=0,即可求出m 的值. 【解答】(1)∵A (-2,b )在y =-8x上, ∴-2b =-8,b =4.∴A (-2,4). ∵A (-2,4)在y =kx +5上, ∴k =12, ∴一次函数为y =12x +5. (2)向下平移m 个单位长度后,直线为y =12x +5-m ,由题意,得15.82y y x m x=-=+⎧⎪⎨⎪-⎪⎪⎩,整理得12x 2+(5-m )x +8=0, ∵平移后直线与双曲线有且只有一个公共点, ∴Δ=(5-m )2-4×12×8=0,解得m =1或9. 方法归纳:解决一次函数和反比例函数的问题常常从反比例函数突破,求两函数的交点问题通常联立成方程组,转化为方程解决.若两函数图象有两个交点,则对应的一元二次方程的Δ>0;若两函数图象有1个交点,则对应的一元二次方程的Δ=0;若两函数图象没有交点,则对应的一元二次方程的Δ<0.巩固练习:1.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2).⑴ 分别求出直线及双曲线的解析式; ⑵ 求出点D 的坐标;⑶ 利用图象直接写出当x 在什么范围内取值时,12y y >.2.反比例函数中y =5x-,当x <2时,y 的取值范围是 ;当y ≥-1时,x 的取值范围是 .3.一次函数y =kx+b 与反比例函数y =2x 的图象如图,则关于x 的方程kx+b =2x的解为( ) xyD CBAOA . x l =1,x 2=2B . x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-题型三:反比例函数求面积类问题例2、如图,点A 、B 在反比例函数ky x的图象上, A 、B 两点的横坐标分别为a 2a (a >0),AC ⊥x 轴于点C ,且ΔAOC 的面积为2. ⑴求该反比例函数的解析式;⑵若点(-a ,y 1),(-2a ,y 2)在该反比例函数的图象上,试比较y 1 与y 2的大小;⑶求ΔAOB 的面积.例3、如图,一次函数y =-x +2的图象与反比例函数y =-3x的图象交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称. (1)求A 、B 两点的坐标; (2)求△ABC 的面积.巩固练习:1.如图,在△AOB 中,∠ABO =90°,OB =4,AB =8,反比例函数y =kx在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求反比例函数解析式; (2)求点C 的坐标.2.如图,在直角坐标系xOy 中,直线y =mx 与双曲线y =nx相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m 、n 的值; (2)求直线AC 的解析式.课后作业1.如图1,一次函数y x b =+与反比例函数ky x=的图象相交于A 、B 两点,若已知一个交点为A (2,1),则另一个交点B 的坐标为( )图1A . (2,-1)B .(-2,-1)C . (-1,-2)D . (1,2)2.点P 为反比例函数图象上一点,如图2,若阴影部分的面积是12个(平方单位),则解析式为 __________3.如图3,利用函数图象解不等式xx 1<,则不等式的解集为______________4.不解方程,利用函数的图象判断方程02=-x x的解的个数为_____________ 5.如图,在平面直角坐标系xOy 中,已知一次函数y =kx +b 的图象经过点A (1,0),与反比例函数y =mx(x >0)的图象相交于点B (2,1). (1)求m 的值和一次函数的解析式;(2)结合图象直接写出:当x >0时,不等式kx +b >mx的解集.6.如图,一次函数y =kx +b (k ≠0)的图象过点P (-32,0),且与反比例函数y =m x(m ≠0)的图象相交于点A (-2,1)和点B . (1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?7.已知一次函数y =kx -6的图象与反比例函数y =-2kx的图象交于A 、B 两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标; (2)判断点B 的象限,并说明理由.。

初中数学 反比例函数在实际问题中的应用有哪些

初中数学 反比例函数在实际问题中的应用有哪些

初中数学反比例函数在实际问题中的应用有哪些反比例函数在实际问题中有许多应用,下面列举一些常见的应用场景:1. 速度和时间的关系:在物理学和运动学中,速度和时间之间的关系通常可以用反比例函数来描述。

例如,当一个物体以恒定速度运动时,它所用的时间与所走的距离成反比。

反比例函数可以帮助我们计算在给定速度下所需的时间,或者在给定时间内所能达到的距离。

2. 工作和时间的关系:在工程学和生产领域中,工作和时间之间的关系通常可以用反比例函数来描述。

例如,如果一台机器在单位时间内完成的工作量是恒定的,那么完成某项工作所需的时间与工作量成反比。

反比例函数可以帮助我们计算在给定工作量下所需的时间,或者在给定时间内可以完成的工作量。

3. 面积和边长的关系:在几何学中,许多图形的面积和边长之间存在反比例关系。

例如,正方形的面积与边长的平方成反比,圆的面积与半径的平方成反比。

反比例函数可以帮助我们计算在给定面积下的边长,或者在给定边长下的面积。

4. 电阻和电流的关系:在电学中,电阻和电流之间的关系通常可以用反比例函数来描述。

根据欧姆定律,电阻与电流成反比。

反比例函数可以帮助我们计算在给定电阻下的电流,或者在给定电流下的电阻。

5. 质量和密度的关系:在物理学中,物体的质量和密度之间通常存在反比例关系。

根据定义,密度等于物体的质量除以其体积。

因此,当质量增加时,密度会减小,反之亦然。

反比例函数可以帮助我们计算在给定密度下的质量,或者在给定质量下的密度。

6. 投资和收益的关系:在金融领域中,投资和收益之间通常存在反比例关系。

例如,当我们投资的金额增加时,相同的投资收益率下的收益会减少。

反比例函数可以帮助我们计算在给定投资金额下的收益,或者在给定收益率下的投资金额。

这些都是反比例函数在实际问题中的一些常见应用。

通过将实际问题转化为反比例函数的形式,我们可以更好地理解和解决这些问题,并在实际生活中应用数学知识。

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏反比例函数是数学中的一种函数关系,其中变量之间存在倒数关系。

在实际生活中,我们经常会遇到一些与反比例关系相关的问题,如物体的速度与时间的关系、工人的工作效率与工作时间的关系等等。

利用反比例函数关系式解决这些实际问题是非常重要的数学应用。

首先,让我们先回顾一下反比例函数的定义和特性。

反比例函数是指当两个变量的乘积为常数时,它们之间存在反比关系。

具体而言,如果变量x和y之间满足xy=k(k为常数),则可以表示为y=k/x。

在这个函数中,x称为自变量,y称为因变量,k称为比例常数。

通过理解反比例函数的特性,我们可以利用它来解决实际问题。

下面举几个例子来说明。

例子1:电动车每小时行驶的距离与电池电量之间存在反比例关系。

当电池电量为100%,电动车可以行驶100km。

那么当电池电量为80%时,电动车可以行驶多远?首先,我们已知电池电量与行驶距离之间存在反比例关系。

设电池电量为x%,行驶距离为y km,则有xy=100。

由题可知,当电池电量为100%时,行驶距离为100km。

代入反比例关系式得100y=100,推导出y=1、所以当电池电量为80%时,电动车可以行驶1 km。

例子2:工人完成一件工作需要10小时。

如果增加一个助手,工作效率翻倍。

那么增加两个助手后,需要多少小时完成这件工作?我们已知工作时间与工作效率之间存在反比例关系。

设工作时间为x小时,工作效率为y,根据题意可得xy=10。

由题可知,增加一个助手后工作效率翻倍,即2y。

代入反比例关系式得2xy=10,推导出x=5、所以增加两个助手后,需要5小时完成这件工作。

例子3:水池自来水管每分钟注满该水池的1/4、如果将水池换成大水缸,注满水缸需要25分钟。

那么换成同样的自来水管,注满水缸需要多少分钟?我们已知注水时间与水池容积之间存在反比例关系。

设注水时间为x 分钟,水池容积为y,根据题意可得xy=25、由题可知,注满水缸需要25分钟。

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏利用反比例函数关系式解决实际问题数学是一门非常重要的学科,在我们生活中处处都有数学的运用。

反比例函数是初中数学内容中的一部分,它在解决实际问题中有着广泛的应用。

在本文中,我们将以一些实际问题为例,来说明如何利用反比例函数关系式解决这些问题,并给出一些建议。

问题一:电子产品的价格每年以15%的速度下降,如果第一年的售价为1000元,问第五年的售价是多少?解析:题目中已经给出了每年降价的百分比,因此我们可以使用反比例函数来解决这个问题。

设第n年的售价为y元,根据反比例函数的关系式y=k/x,其中k为常数,x为年份。

根据题目中的已知条件:第一年的售价为1000元(即x=1,y=1000),我们可以得到:1000=k/1,解得k=1000因此,反比例函数的模型为y=1000/x。

要求第五年的售价,即x=5,带入模型中计算得:y=1000/5=200因此,第五年的售价为200元。

问题二:一辆汽车以每小时80公里的速度行驶,从A地到B地共耗时5小时,问如果以每小时100公里的速度行驶,从A地到B地需要多长时间?解析:题目中给出了两种速度以及耗时,我们可以利用反比例函数来解决这个问题。

设从A地到B地的距离为x公里,根据反比例函数的关系式t=k/v,其中k为常数,t为时间,v为速度。

根据题目中的已知条件:以每小时80公里的速度行驶共耗时5小时(即v=80,t=5),我们可以得到:5=k/80,解得k=400因此,反比例函数的模型为t=400/v。

要求以每小时100公里的速度行驶的时间,即v=100t=400/100=4因此,以每小时100公里的速度行驶,从A地到B地需要4小时。

通过以上两个实际问题的解析,我们可以看出,在解决实际问题中,我们可以利用反比例函数的关系式来建立数学模型,并通过已知条件来确定常数。

通过数学模型,我们可以求解未知量,解决实际问题。

在利用反比例函数解决实际问题的过程中,我们需要注意以下几点:1.明确已知条件:在建立数学模型之前,我们需要明确题目中给出的已知条件,包括数值以及物理意义。

人教版数学九年级下册《 实际问题与反比例函数》PPT课件

人教版数学九年级下册《 实际问题与反比例函数》PPT课件

例 1 市煤气公司要在地下修建一个容积为 104 m3 的圆 柱形煤气储存室. (1) 储存室的底面积 S (单位:m2) 与其深度 d (单位:m)
有怎样的函数关系?
解:根据圆柱的体积公式,得 Sd =104, ∴ S 关于d 的函数解析式为S 104 . d
(2) 公司决定把储存室的底面积 S 定为 500 m2,施工
探究新知 【思考】第(1)问的解题思路是什么?第(2)问和第(3) 问与过去所学的解分式方程和求代数式的值的问题有何联系?
方法点拨:第(1)问首先要弄清此题中各数量间的关系, 然后根据圆柱的体积公式:圆柱的体积=底面积×高,由 题意知S是函数,d是自变量,改写后所得的函数关系式是 反比例函数的形式.第(2)问实际上是已知函数S的值, 求自变量d的取值,第(3)问则是与第(2)问相反.
方法点拨:此题类似应用题中的“工程问题”,关系式为工作 总量=工作速度×工作时间,题目中货物总量是不变的,两个 变量分别是速度v和时间t,因此具有反比关系.第(2)问涉 及了反比例函数的增减性,即当自变量t取最大值时,函数值v 取最小值.
巩固练习
学校锅炉旁建有一个储煤库,开学时购进一批煤,现在 知道:按每天用煤0.6吨计算,一学期(按150天计算)刚 好用完.若每天的耗煤量为x吨,那么这批煤能维持y天. (1)则y与x之间有怎样的函数关系? (2)画出函数图象; (3)若每天节约0.1吨,则这批煤能维持多少天?
解:设轮船上的货物总量为 k 吨,根据已知条件得k =30×8=240, 所以 v 关于 t 的函数解析式为 v 240 . t
探究新知
(2) 由于遇到紧急情况,要求船上的货物不超过5天卸载完毕, 那么平均每天至少要卸载多少吨?
解:把 t =5 代入 v 240 ,得 t

人教版九年级数学下册教案:26.2实际问题与反比例函数

人教版九年级数学下册教案:26.2实际问题与反比例函数
b.反比例函数图像的特点及其在实际问题中的应用。
-举例:分析反比例函数图像在坐标系中的位置,如何根据图像解决实际问题,如求两个反比例函数的交点。
c.反比例函数与其他函数的关系,特别是与一次函数、二次函数的转换。
-举例:通过具体例子,如反比例函数图像在x轴、y轴的渐近线,与一次函数图像的交点,探讨它们之间的联系。
4.引导学生探究反比例函数与其他函数的关系,培养数学探究和创新思维。
5.培养学生在解决反比例函数优化问题时,运用数学方法进行合理估算和预测的能力,提高数学问题解决的综合素养。
三、教学难点与重点
1.教学重点
a.反比例函数的定义及其性质的理解与应用。
-举例:通过实际情境引入反比例函数,如“某物品的价格与购买数量成反比”,强调y=k/x(k≠0)的形式,并让学生理解k的物理意义。
人教版九年级数学下册教案:26.2实际问题与反比例函数
一、教学内容
人教版九年级数学下册教案:26.2实际问题与反比例函数
1.教材章节:第二十六章反比例函数
2.内容列举:
a.实际问题中的反比例函数模型
b.反比例函数的定义及其性质
c.反比例函数的应用:求解实际问题
d.反比例函数与一次函数、二次函数的关系
小组讨论的环节也很有成效。学生们积极参与,互相交流想法,共同解决问题。我在旁听的时候,也适时给予了一些提示和引导,让学生们能够更深入地思考问题。从成果分享来看,大多数小组都能够理解反比例函数在实际问题中的应用,并且能够用所学知识去分析和解决问题。
然而,我也注意到,在实践活动和小组讨论中,有一部分学生参与度不高,可能是由于他们对知识的掌握还不够牢固,或者是性格较为内向,不愿意主动表达自己的观点。对于这部分学生,我需要进一步关注,通过课后辅导和鼓励,帮助他们更好地融入课堂,提高他们的自信心。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金曼克中学数学(科目)活页教案八年级二班第十七单元第 1 页
第 2 页
教学
方法
教学流程补充修订教学体会
学生探索研究、教师适当引导启发创设情境
寒假到了,小明正与几个同伴在结冰的河面上溜冰,
突然发现前面有一处冰出现了裂痕,小明立即告诉同伴
分散趴在冰面上,匍匐离开了危险区。

你能解释一下小
明这样做的道理吗?
例习题分析
例1.见教材第50页
分析:(1)问首先要弄清此题中各数量间的关系,
容积为104,底面积是S,深度为d,满足基本公式:圆
柱的体积=底面积×高,由题意知S是函数,d是自变
量,改写后所得的函数关系式是反比例函数的形式,(2)
问实际上是已知函数S的值,求自变量d的取值,(3)
问则是与(2)相反
例2.见教材第51页
分析:此题类似应用题中的“工程问题”,关系式为
工作总量=工作速度×工作时间,由于题目中货物总量
是不变的,两个变量分别是速度v和时间t,因此具有
反比关系,(2)问涉及了反比例函数的增减性,即当自
变量t取最大值时,函数值v取最小值是多少?
例1.(补充)某气球
内充满了一定质量的气
体,当温度不变时,气球
内气体的气压P(千帕)
是气体体积V(立方米)
的反比例函数,其图像如
图所示(千帕是一种压强
单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多
少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为
了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量P与V是反比例函数关系,并
且图象经过点A,利用待定系数法可以求出P与V的解
析式,得
V
P
96
,(3)问中当P大于144千帕时,气
用反比例函
数解决实际
问题的关键
是:弄清楚
实际问题中
所涉及的量
之间的关系。

相关文档
最新文档