江苏省南京外国语学校2017-2018学年第一学期初一数学期终模拟试卷及详细答案

合集下载

2017-2018第一学期期末七年级数学试题及答案

2017-2018第一学期期末七年级数学试题及答案

2017—2018学年度第一学期期末教学质量检测七年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.一、选择题:(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中只有一项是符合题目要求的,请将它的代号填在题后的括号内.)1.-43的相反数是………… 【 】(A )43 (B )-34 (C ) -43(D ) 342.如图1,小明的家在A 处,书店在B 处,星期日他到书 店去买书,想尽快的赶到书店,请你帮助他选择一条最近的路线 ………………………………………………………………………………【 】 (A )A →C →D →B (B )A →C →F →B (C )A →C →E →F →B (D )A →C →M →B3.下列四种说法中,正确的是 ……………………………………………………… 【 】(A )“3x ”表示“3+x ” (B )“x 2”表示“x +x ”(C )“3x 2”表示“3x ·3x ” (D )“3x +5”表示“x +x +x +5”4.下列计算结果为负数的是 ………………………………………………………… 【 】 (A )-2-(-3) (B )()23- (C )21- (D )-5×(-7)5.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为 … 【 】 (A )6℃ (B )-6℃ (C )12℃ (D )-12℃6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠β一定互补的是 …【 】(A )(B ) (C ) (D )7.解方程2(3)3(4)5x x ---=时,下列去括号正确的是 …………………………【 】 (A )23345x x --+= (B )26345x x ---= (C )233125x x ---= (D )263125x x --+=8.定义新运算:a ⊕b =ab +b ,例如:3⊕2=3×2+2=8,则(-3)⊕4= ……………… 【 】 (A )-8 (B )-10 (C )-16 (D )-24 9. 已知3=x 是关于x 的方程:ax a x +=-34的解,那么a 的值是 ………………【 】 (A )2(B )49 (C )3 (D )29M图1A DB E F·10.如图2,小红做了四道方程变形题,出现错误有【(A )①②③(B )①③④ (C )②③④ (D )①②④11.如图3,将三角形ABC 绕着点C 顺时针旋转50°后得到三角形A ′B ′C , 若∠A´CB´=30°,则∠BCA ′的度数 是…………………………【 】 (A )110° (B )80°(C )50° (D )30°12.若x a +2y 4与-3x 3y 2b 是同类项,则2018(a -b )2 018的值是…………………………………………【 】 (A )2 018 (B )1 (C )-1 (D )-2 018 13.如图4,四个有理数在数轴上的对应点M 、P 、N 、 Q .若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是………………【 】 (A )点M (B )点N (C ) 点P (D )点Q14.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%, 则5月份的产值是…………………………【 】(A )(a -10%)(a +15%)万元 (B )a (1-10%)(1+15%)万元 (C )(a -10%+15%)万元 (D )a (1-10%+15%)万元 15.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是…………【 】(A )4n +1 (B )3n +1 (C )4n +2 (D )3n +2 16. 已知线段AB =10cm ,P A + PB =20cm ,下列说法正确的是…………………………【 】 (A )点P 不能在直线AB 上 (B )点P 只能在直线AB 上 (C )点P 只能在线段AB 的延长线上 (D )点P 不能在线段AB 上 二、填空题(本大题共3小题,共10分;17-18题每小题3分,19题每空2分)17.数轴上的点A 表示﹣3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度. 18. 如图5,已知∠AOB =50°,∠AOD= 90°,OC 平分∠AOB . 则∠COD 的度数是 .N M P Q 图4图3 图2图5D19.根据如图6所示的程序计算,写出关于x 的代数式 为 ;若输入x 的值为1,则输出 y 的值为 .三、解答题(本大题共6个小题,共58分,解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)(1)解方程:1)3(31)1(31++-=-x x(2)计算:32)12()4161()8(2)21(432---⨯-+-÷--⨯图621. (本题满分8分)小明受到《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图7-1、图7-2、图7-3的操作实验:发现问题:(1)投入第1个小球后,水位上升了 cm ,此时桶里的水位高度达到了 cm ; 提出问题:(2)设投入n 个小球后没有水溢出,用n 表示此时桶里水位的高度 cm ; 解决问题:(3)请你求出最多投入小球多少个水没有从量筒中溢出?(列方程方程求解)图7-1 图7-2 图7-322. (本题满分10分)已知:ab a B A 7722-=-,且7642++-=ab a B . (1)求A 等于多少?(2)若0)2(12=-++b a ,求A 的值.23.(本题满分10分)如图8-1,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米。

江苏省常州外国语学校2017-2018学年七年级上册数学期中考试试卷(解析版)

江苏省常州外国语学校2017-2018学年七年级上册数学期中考试试卷(解析版)

江苏省常州外国语学校2017-2018学年七年级上册数学期中考试试卷(解析版)一.细心填一填1.﹣(﹣5)的相反数是________;的倒数是________;绝对值等于3的数是________.2.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9,﹣3;则两名学生的实际得分为________分,________分.3.太阳半径大约是696 000千米,用科学记数法表示为________米.4.单项式﹣的系数是________,次数是________.5.已知单项式3a2b m﹣1与3a n b的和仍为单项式,则m+n=________.6.已知A=a+a2+a3+a4+…+a2n,若a=1,则A=________;若a=﹣1,则A=________.7.如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有________个;各面都没有涂色的有________个.8.若a+b+c=0,则(a+b)(b+c)(c+a)+abc=________.9.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为________.10.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009的差倒数a2010=________.二.精心选一选11.下列几种说法正确的是()A. ﹣a一定是负数B. 一个有理数的绝对值一定是正数C. 倒数是本身的数为1D. 0的相反数是012.下列比较大小正确的是()A. ﹣(﹣3)<+(﹣3)B.C. ﹣|﹣12|>11D.13.有理数a、b在数轴上的位置如图所示,则a+b的值()A. 大于0B. 小于0C. 大于等于0D. 小于等于014.下列各式的计算,正确的是()A. 3a+2b=5abB. 5y2﹣3y2=2C. ﹣12x+7x=﹣5xD. 4m2n﹣2mn2=2mn15.数轴上一点A,一只蚂蚁从A出发爬了5个单位长度到了原点,则点A所表示的数是()A. 5B. ﹣5C. ±5D. ±1016.下列各式中值必为正数的是()A. |a|+|b|B. a2+b2C. a2+1D. a17.a是一个三位数,b是一个两位数,若把b放在a的左边,组成一个五位数,则这个五位数为()A. b+aB. 10b+aC. 100b+aD. 1000b+a18.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A. 1B. 4C. 7D. 不能确定19.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a,b,c的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为()A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c20.观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A. 3n﹣2B. 3n﹣1C. 4n+1D. 4n﹣3三.用心算一算21.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);(2);(3);(4)若“三角” 表示运算a﹣b+c,若“方框” 表示运算x﹣y+z+w,求× 的值,列出算式并计算结果.22.化简(1)4xy﹣3x2﹣3xy+2x2(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6).23.先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2+4a),其中a=﹣2.四.大胆试一试24.气象资料表明,高度每增加1千米,气温大约下降6℃.(1)我国著名风景区黄山的天都峰高1700米,当地面温度约为18℃时,求山顶气温.(2)小明和小颖想出一个测量山峰高度的方法,小颖在山脚,小明在峰顶,他们同时在上午10点测得山脚和山峰顶的气温分别为a℃和b℃,你知道山峰高多少千米吗?25.2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力驰援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+10,﹣5.(1)救灾过程中,B地离出发点A有多远?B地在A地什么方向?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?26.我们把分子为1的分数叫做单位分数,如…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如,,…观察上述式子的规律:(1)把写成两个单位分数之和;(2)把表示成两个单位分数之和.27.将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;(2)十字框框住的5个数之和能等于2010吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;(3)十字框框住的5个数之和能等于355吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.答案解析部分一.<b >细心填一填</b>1.【答案】﹣5;;3或﹣3【考点】相反数,绝对值,倒数【解析】【解答】解:根据相反数和倒数的定义得:∵﹣(﹣5)=5,∴﹣(﹣5)的相反数为﹣5;∵﹣2 =﹣,∴﹣2 的倒数为,根据绝对值的定义得:绝对值等于3的数是:3或﹣3.【分析】相反数就是在这个数的前面添上负号;求一个数的倒数,先将原数化成假分数,再利用倒数的定义求解;绝对值等于3的数有两个,它们互为相反数。

江苏省南京玄武外国语学校2017-2018学年七年级上期末数学试题(解析版)

江苏省南京玄武外国语学校2017-2018学年七年级上期末数学试题(解析版)

2017-2018 学年第一学期南京市玄外七年级数学期末检测试卷一、选择题(本大题共 6 小题,每小题 2 分,共 12 分).1. 如图是某个几何体的展开图,该几何体是()A. 三棱柱B. 圆锥C. 四棱柱D. 圆柱【答案】A【解析】试题解析:侧面为三个长方形,底边为三角形,故原几何体为三棱柱.故选A.2. 截止 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过 1600 亿美元.数字 1600 亿用科学记数法表示为()A. 16 ×1010B. 1.6 ×1010C. 1.6 ×1011D. 0.16 ×1012【答案】C【解析】解:1600亿用科学记数法表示为1.6×1011,故选C.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a和n的值.3. 实数 a、b、c、d 在数轴上的对应点的位置如图所示,则正确的结论是()A. a>-4B. bd>0C.D. b +c>0【答案】C【解析】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A.a<﹣4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>4>|b|,故C符合题意;D.b+c<0,故D不符合题意.故选C.点睛:本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.4. 如图所示,点 P 到直线 l 的距离是()A. 线段 PA 的长度B. 线段 PB 的长度C. 线段 PC 的长度D. 线段 PD 的长度【答案】B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.5. 计算的结果是()A. B. C. D.【答案】B【解析】解:原式=.故选B.6.如果和互补,且,则下列表示的余角的式子中:①;②;③;④.正确的是()A. ①②③④B. ①②④C. ①②③D. ①②【答案】B【解析】解:∵∠α与∠β互补,∴∠β=180°﹣∠α,∠α=180°﹣∠β,∴90°﹣∠β表示∠β的余角,∴①正确;∠α﹣90°=180°﹣∠β﹣90°=90°﹣∠β,∴②正确;180°﹣∠α=∠β,∴③错误;(∠α﹣∠β)=(180°﹣∠β﹣∠β)=90°﹣∠β,∴④正确;故选B.学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)7. 将21.54°用度、分、秒表示为 ______.【答案】21°32′24″【解析】试题分析:21.54°=21°32′24″,故答案为:21°32′24″.考点:度分秒的换算.8. ______ .【答案】【解析】解:原式=.故答案为:.9. 如果x-y=3,m+n=2,则( y + m) -( x - n) 的值是_____.【答案】-1【解析】解:当x-y=3,m+n=2时,原式=y+m-x+n=-(x-y)+(m+n)=-3+2=-1.故答案为:-1.10. 平面上有三个点,以其中两点为端点画线段,共可画__________线段.【答案】3条【解析】解:平面上有三个点,以其中两点为端点画线段,共可画3条线段.故答案为:3条.11. 如果 m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2015 + 2016n +c2017 的值为_____.【答案】0【解析】试题解析:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0考点:代数式求值.12. 如图所示,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为12,则x - 2 y =_______.【答案】0【解析】由折叠正方体后可知,x的对面是2,y的对面是4,∵相对面上两个数之积为24∴2x=24,4y=24∴x=12,y=6∴x-2y=12-2×6=0故答案为:0.点睛:本题主要考查正方体的平面展开图相关知识,解题的技巧在于将平面展开图围成正方体即可按题意列出方程求出x、y的值后即可求出代数式. x-2y的值.13. 数学兴趣小组原有男生和女生相同,如果增加 6 名女生,那么女生是全组人数的,求这个数学兴趣小组原有多少人?设数学兴趣小组原有 x 人,可得方程_______________ .【答案】【解析】解:设数学兴趣小组原有x人,根据题意得:.故答案为:.14. 若3x = 2 ,9 y =7 ,则33 x -2 y的值为_____.【答案】【解析】解:==.故答案为:.15. 如图,这些图形都是由完全相同的小梯形按一定规律组成的,如果第 1 个图形的周长为 5,那么第 2 个图形的周长为 8,则第 n 个图形的周长为__________ .【答案】3n+2【解析】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第n个图形的周长为3n+2.故答案为:3n+2.点睛:本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.16. 如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为_____.【答案】6【解析】解:观察图形可知长方体盒子的长=5﹣(3﹣1)=3,宽=3﹣1=2,高=1,则盒子的容积=3×2×1=6.故答案为:6.点睛:本题考查了几何体的展开图,正确理解无盖长方体的展开图,与原来长方体的之间的关系是解决本题的关键,长方体的容积=长×宽×高.三、解答题(本大题共 9 小题,共 68 分)17. 计算题(1)(2)(3)先化简,再求值:,其中x、y 满足【答案】(1)(2)(3)-x+y2,【解析】试题分析:(1)先去括号和绝对值,然后计算即可;(2)根据有理数混合运算法则计算即可;(3)根据非负数的性质,先求出x、y的值,然后化简多项式,最后代入求值.试题解析:解:(1)原式=====;(2)原式===;(3)由题意得:,y+2=0,解得:,y=-2.原式==当,y=-2时,原式==.18. 解方程:(1)7 - 2 (5x -1)= 4(2x -3)(2)【答案】(1)x=(2)x=-【解析】试题分析:(1)方程去括号,移项合并同类项,化系数为1即可;(2)方程去分母,去括号,移项合并同类项,化系数为1即可.试题解析:解:(1)去括号得:7-10x+2=8x-12移项得:-10x-8x=-12-7-2合并同类项得:-18x=-21解得:x=.(2)去分母得:2(2x+1)-(x-5)=6去括号得:4x+2-x+5=6移项得:4x-x=6-5-2合并同类项得:3x=-1解得:x=.19. 如图是一个由 5 个大小相同的小正方体搭成的几何体.(1)画出几何体的左视图;(2)几何体的主视图与俯视图(填“相同”或“不同”)【答案】(1)图形见解析(2)不同【解析】试题分析:左视图有两列,左边第1列有两个小正方体,右边1列只有一个小正方体.试题解析:解:(1)图形如下图:(2)不同.20. 已知:关于x 的方程的解是x=2(1)若a=4,求b 的值;(2)若 a ≠0 且b≠0 ,求代数式的值.【答案】(1)b=3(2)【解析】试题分析:(1)把若,x=2代入方程即可求出b的值,(2)将x=2代入方程即可求出,将代入即可求解.试题解析:(1)因为方程的解是x=2,若,则可得:,解得:,(2) 因为方程的解是x=2,所以,所以,,,因为且,所以,所以.21. (1)按题意画图:如图,AC 垂直于BC;①画 B 的角平分线BD 交AC 于点 D;②过点 D 画 AB 的垂线段 DF;③过点 A 画 AC 的垂线 AM,AM 与 BD 的延长线交于点 G;(2)在(1)所画的图中,通过观察测量发现哪些线段的长度相等,请把它们写出来.【答案】(1)图形见解析(2)见解析【解析】试题分析:(1)根据语句作出图形即可;(2)根据角平分线的定义和平行线的性质可得出AG=AB,由角平分线的性质得出DC=DF,由全等三角形的性质得到BC=BF.试题解析:解:(1)①BD即为所求;②DF即为所求;③AM即为所求;(2)∵BD是角平分线,∴∠DBC=∠ABC.∵AM⊥AC,BC⊥AC,∴MA∥CB,∴∠AGD=∠ABD,∴AG=AB.∵BD是角平分线,∠C=∠DFB=90°,∴DC=DF.在Rt△DCB和Rt△DFB中,∵BD=BD,DF=DC,∴Rt△DCB≌Rt△DFB,∴BC=BF.故相等的线段有:AG=AB,DC=DF,BC=BF.22. 如图,将一副三角尺的直角顶点重合在一起.(1)若OB 是∠DOC 的角平分线,求∠AOD 的补角的度数是多少?(2)若∠COB 与∠DOA 的比是2:7,求∠BOC 的度数.【答案】(1)45°(2)40°【解析】试题分析:(1)根据角平分线的性质得出∠AOD的度数,即可得出结论;(2)设∠COB=2x°,则∠DOA=7x°.由∠AOB=∠COD,可得∠AOC=∠DOB=2.5x°,则有2.5x°+2x°=90°,解出x的值即可得到结论.试题解析:解:(1)∵OB是∠DOC的角平分线,∴∠COB=∠BOD=45°,∴∠AOD=90°+45°=135°,∴∠AOD的补角=180°-135°=45°;(2)设∠COB=2x°,则∠DOA=7x°.∵∠AOB=∠COD,∴∠AOC=∠DOB=(7x°-2x°)÷2=2.5x°,∴2.5x°+2x°=90°,解得:x=20.∴∠BOC=2x°=40°.23. 已知:如图,点C 是线段AB 上一点,且5BC=2AB,D 是AB 的中点,E 是CB 的中点,(1)若DE=6,求AB 的长;(2)求AD:AC.【答案】(1)20(2)【解析】试题分析:(1)设CE=x.由中点定义,得到CE=EB=x,CB=2x,从而得到AB=5x,AC=3x.由D是AB的中点,得到AD=DB=2.5x,得到DE=DB-EB=2.5x-x=1.5x=6,解得x=4,即可得到结论;(2)由(1)可知:AD=2.5x,AC=3x,即可得到结论.试题解析:解:(1)设CE=x.∵E是CB的中点,∴CE=EB=x,∴CB=2x,∴5×2x=2AB,∴AB=5x,∴AC=3x.∵D是AB的中点,∴AD=DB=AB=2.5x,∴DE=DB-EB=2.5x-x=1.5x=6,∴x=4.∴AB=5x=20;(2)由(1)可知:AD=2.5x,AC=3x,∴AD:AC=2.5x:3x=.24. 在淘宝网上有家“俊杰”皮鞋店,对店里的一款皮鞋按利润率60%定价.“双11”时对这款皮鞋在原价八折后再参加“满100 元减10 元,满200 元减24 元”的活动.此时销售一双皮鞋可获利32 元.求这双皮鞋的成本是多少元?【答案】150或200【解析】试题分析:设这双皮鞋的成本是x元.则根据等量关系:成本(1+利润率)×打折数-减少的金额=成本+获利,列方程即可.注意要分两种情况讨论.试题解析:解:设这双皮鞋的成本是x元.根据题意得:(1)若参加满100 元减10 元,则x(1+60%)×0.8-10=x+32,解得:x=150;(2)若参加满200 元减24 元,则x(1+60%)×0.8-24=x+32,解得:x=200.答:这双皮鞋的成本是150元或200元.25. 如图,线段AB=24,动点P 从A 出发,以每秒2 个单位的速度沿射线AB运动,运动时间为t 秒(t>0),M 为AP 的中点.(1)当点P 在线段AB 上运动时,①当t 为多少时,PB=2AM?②求2BM-BP的值.(2)当P 在AB 延长线上运动时,N 为BP 的中点,说明线段MN 的长度不变,并求出其值.(3)在P 点的运动过程中,是否存在这样的t 的值,使M、N、B 三点中的一个点是以其余两点为端点的线段的中点,若有,请求出t 的值;若没有,请说明理由.【答案】(1)①6②24(2)12(3)18或36【解析】试题分析:(1)①分两种情况讨论:点P在点B左边;点P在点B右边,分别求出t的值即可;②AM=x,BM=24﹣x,PB=24﹣2x,表示出2BM﹣BP后,化简即可得出结论;(2)P A=2x,AM=PM=x,PB=2x﹣24,PN=PB=x﹣12,表示出MN的长度,即可得到结论;(3)分三种情况讨论:①当P在线段AB上时;②当P在线段AB的延长线上,M在线段AB上时;③当P 和M都在线段AB的延长线上时.试题解析:解:(1)①设出发x秒后PB=2AM,当点P在点B左边时,P A=2x,PB=24﹣2x,AM=x,由题意得:24﹣2x=2x,解得:x=6;当点P在点B右边时,P A=2x,PB=2x﹣24,AM=x,由题意得:2x﹣24=2x,方程无解.综上所述:出发6秒后PB=2AM.②∵AM=x,BM=24﹣x,PB=24﹣2x,∴2BM﹣BP=2(24﹣x)﹣(24﹣2x)=24;(2)∵P A=2x,AM=PM=x,PB=2x﹣24,PN=PB=x﹣12,∴MN=PM﹣PN=x﹣(x﹣12)=12(定值);(3)①当P在线段AB上时,如图1,有AP=2t,BP=24-2t,AM=MP=t,PN=NB=12-t,MN=12.若MN=NB,则12=12-t,解得t=0,不合题意,舍去.②当P在线段AB的延长线上,M在线段AB上时,如图2,有AP=2t,BP=2t-24,AM=MP=t,MB=24-t,PN=NB=t-12.若MB=NB,则24-t=t-12,解得t=18.综上所述:t=18或36.点睛:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.。

2017-2018学年第一学期期末测试七年级数学试题及答案

2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。

南京外国语学校七年级(上)期末数学试卷含答案

南京外国语学校七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷一、选择题(本大题共6小题,共12.0分)1.下列等式成立的是()A. -23=(-2)3B. -32=(-3)3C. -3×23=-32×2D. -32=(-2)32.下列各组中,同类项是()A. 52与25B. a2b与-b2aC. 0.2ab与-a2bD. a2b3与-a3b23.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A. 140B. 120C. 160D. 1004.若直线l外一点P与直线l上四点的连线段长分别为1cm,2cm,3cm,4cm,则点P到直线l的距离最接近()A. 1cmB. 2cmC. 3cmD. 4cm5.如图正方体纸盒,展开后可以得到()A. B.C. D.6.20182019的个位上的数字是()A. 2B. 4C. 6D. 8二、填空题(本大题共10小题,共20.0分)7.若气温为零上10℃记作+10℃,则-5℃表示气温为.8.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示______ km.9.方程-3x+2=0的解为______.10.如果某市去年销售汽车m辆,预测今年的销售量比去年增加a%,那么今年可销售汽车______ 辆.11.正方体切去一个块,可得到如图几何体,这个几何体有______条棱.12.如图,一副三角板如图示摆放,∠α与∠β的度数之间的关系应为______.13.计算:(-0.25)2019×(-4)2018=______.14.已知a=-0.23,b=-23,c=(-)2,d=(-1)5,用”<”号把a、b、c、d连接起来:______.15.图中五个相连的阴影正方形可以折叠成一个无盖的正方体盒子.小荣同学想从余下的正方形中增选一个,折叠为有盖的正方体纸盒,可增选的正方形有______(填写序号).16.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画______个三角形.三、计算题(本大题共2小题,共14.0分)17.计算与化简(1)48÷[(-2)3-(-4)](2)x2-5xy+yx+2x218.解方程:x-=2-四、解答题(本大题共7小题,共54.0分)19.画出如图所示物体的主视图、左视图、俯视图.20.如图,已知直线AB、CD,点M在直线AB上,点N在直线CD上.(1)过点N画直线AB的垂线,交AB于点E;(2)过点M画直线CD的平行线,交NE于点F.21.比较(m+n)与(m-n)的大小.22.如图,正方形硬纸板的边长为a,其4个角上剪去的小正方形的边长为b(b<),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为______(用含a、b的代数式表示);2a=10cm b个容积值.我的选择:b=______.23.如图,射线OC端点O在直线AB上,∠AOC=∠DOC,OE平分∠DOB.(1)当∠AOC=110°时,求∠BOE的度数;(2)OC与OE有怎样的位置关系?为什么?24.钟面角是指时钟的时针与分针所成的角.(1)如图,钟面时刻2:00时,钟面角为60°时,再举一例:钟面时刻为______,钟面角为60°;(2)6:00至7:00之间,哪些时刻钟面角为90°?列方程求解.25.归纳人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1、n=2、n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1)完成表格信息:______、______;(2)通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加______个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得______个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明……”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3)请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+…+(2n-1)的和是多少?答案和解析1.【答案】A【解析】解:A、∵-23=-(2×2×2)=-8;(-2)3=(-2)×(-2)×(-2)=-8,故本选项正确;B、∵-32=-(3×3)-9;(-3)3=(-3)×(-3)×(-3)=-27,故本选项错误;C、∵-3×23=-3×8=-24,-32×2=-9×2=-18,故本选项错误;D、∵-32=-9,(-2)3=-8,故本选项错误.故选:A.根据乘方的定义将各数解答即可.此题考查了有理数的乘方,计算时要注意符号随指数的奇偶性的不同而有所变化.2.【答案】A【解析】解:A、52与25,是同类项,符合题意;B、a2b与-b2a,相同字母的次数不相同,不是同类项;C、0.2ab与-a2b,相同字母的次数不相同,不是同类项;D、a2b3与-a3b2,相同字母的次数不相同,不是同类项;故选:A.根据同类项的概念,所含字母相同,并且相同字母的指数也相同,所有常数项都是同类项,分别判断即可.此题主要考查了同类项,正确把握同类项的定义是解题关键.3.【答案】B【解析】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.本题考查了销售问题的数量关系利润=售价-进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.4.【答案】A【解析】解:由垂线段最短,得点P到直线l的距离小于或等于1cm,故选:A.根据垂线段最短,可得答案.本题考查了点到直线的距离,利用点到直线的距离最短是解题关键.5.【答案】D【解析】解:A.两个蓝色圆所在的面折叠后是对面,不合题意;B.白色圆与一个蓝色圆所在的面折叠后是对面,不合题意;C.白色圆与一个蓝色圆所在的面折叠后是对面,不合题意;D.白色圆与两个蓝色圆所在的面折叠后是相邻的面,符合题意;故选:D.根据折叠后白色圆与蓝色圆所在的面的位置进行判断即可.本题主要考查了几何体的展开图,实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.6.【答案】A【解析】解:∵20181,20182,20183,20184,20185,20186个位数字是按8,4、2、6循环的;∴2019÷4=504…3,即20182019的个位数字是第505组第3个数,为2.故选:A.先计算20181,20182,20183,20184,20185,20186等数字的个位数字的变化规律,进而推算出20182019的个位上的数字.此题考查了有理数乘方的变化规律,解答时要先通过计算较小的数字得出规律,然后得到相关结果.7.【答案】零下5℃【解析】解:∵气温为零上10℃记作+10℃,根据正负数表示相反意义的量,∴气温为零下记为负数,∴-5℃表示气温为零下5℃.根据正负数表示相反意义的量来判断,气温为零上10℃记作+10℃,则-5℃表示气温为零下5℃.本题考查的是用正负数来表示具有相反意义的量,注意意义相反的表示方法是解题要点.8.【答案】1.5×108【解析】解:150 000000km=1.5×108km.科学记数法的一般形式为:a×10n,在本题中a应为1.5,10的指数为9-1=8.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.9.【答案】x=【解析】解:∵-3x+2=0,∴-3x=-2,∴x=,故答案为:x=.依次移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.10.【答案】m+a%m【解析】解:由题意得今年汽车的销售量为:m+a%m,故答案为:m+a%m.今年的销售量比去年增加a%,则增加了a%m辆,再用去年的销售量加上今年增加的辆数即可.此题主要考查了列代数式,关键是正确理解题意,表示出增加的汽车数量.11.【答案】12【解析】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.通过观察图形即可得到答案.此题主要考查了认识正方体,关键是看正方体切的位置.12.【答案】∠α+∠β=90°【解析】解:∠α+∠β=180°-90°=90°故答案为:∠α+∠β=90°根据平角定义可得∠α+∠β=180°-90°=90°.此题主要考查了平角,余角,如果两个角的和等于90°(直角)13.【答案】-0.25【解析】解:(-0.25)2019×(-4)2018=(-0.25)×(-0.25)2018×(-4)2018=(-0.25)×(0.25×4)2018=-0.25故答案为:-0.25.根据同底数幂的乘法法则、积的乘方法则计算,得到答案.本题考查的是积的乘方、幂的乘方,掌握同底数幂的乘法法则、积的乘方法则是解题的关键.14.【答案】b<d<a<c【解析】解:a=-0.23=-0.008,b=-8,c=(-)2=,d=(-1)5=-1,∵-8,∴b<d<a<c.故答案为:b<d<a<c.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.15.【答案】①⑤【解析】解:如图,只可以增选①或⑤.故答案为:①⑤.利用正方体的展开图即可解决问题.本题主要考查了正方体的展开图.解题时勿忘记正方体展开图的各种情形.16.【答案】10【解析】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.根据题意画出图形即可得到结论.本题考查了三角形,正确的画出图形是解题的关键.17.【答案】解:(1)原式=48÷(-8+4)=48÷(-4)=-12;(2)原式=(1+2)x2+(-5+1)xy=3x2-4xy.【解析】(1)先计算乘方,再计算括号内的,最后计算除法即可得;(2)根据合并同类项法则计算可得.本题主要考查实数的运算与合并同类项,解题的关键是掌握合并同类项法则和实数的运算顺序与运算法则.18.【答案】解:6x-3(x-3)=12-2(x+2),6x-3 x+9=12-2x-4,5x=-1,x=-.【解析】依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.19.【答案】解:如图所示:.【解析】主视图是从几何体的正面看所得到的图形,左视图是从几何体的左边看所得到的图形,俯视图是从几何体的上面看所得到的图形.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.20.【答案】解:(1)直线NE即为所求.(2)直线MF即为所求.【解析】根据垂线,平行线的定义画出图形即可.本题考查作图-复杂作图,垂线,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】解:(m+n)-(m-n)=m+n-m+n=2n,①当n>0时,2n>0,所以(m+n)>(m-n);②当n=0时,2n=0,所以(m+n)=(m-n);③当n<0时,2n<0,所以(m+n)<(m-n).【解析】直接将原式相减进而利用分类讨论得出答案.此题主要考查了整式的加减,正确分类讨论是解题关键.22.【答案】b(a-2b)264 72 48 16 1.9【解析】解:(1)由题意知纸盒的底面边长为a-2b、高为b,则这个纸盒的容积为b(a-2b)2;故答案为:b(a-2b)2.(2)当a=10,b=1时,b(a-2b)2=1×(10-2)2=64(cm3);当a=10,b=2时,b(a-2b)2=2×(10-4)2=72(cm3);当a=10,b=3时,b(a-2b)2=3×(10-6)2=48(cm3);当a=10,b=4时,b(a-2b)2=4×(10-8)2=16(cm3);故答案为:64,72,48,16.(3)当a=10,b=1.9时,b(a-2b)2=1.9×(10-3.8)2=73.036(cm3);当a=10,b=1.9时,所得到的无盖长方体容积大于表格中的四个容积值.故答案为:1.9.(1)由题意知纸盒的底面边长为a-2b、高为b,根据长方体的体积公式可得;(2)根据a、b的值,求出容积填表即可;(3)只要取一个比1.4大且比2小的数,代入计算,即可找到的无盖长方体容积大于表格中四个容积的值.此题主要考查了几何体的体积求法以及展开图面积问题,根据题意表示出长方体体积是解题关键.23.【答案】解:(1)∵∠AOC+∠BOC=180°,∠AOC=110°,∴∠BOC=180°-∠AOC=180°-110°=70°,∵∠COD=∠AOC=110°,∴∠BOD=∠COD-∠BOC=110°-70°=40°,∵OE平分∠BOD,∴∠BOE=∠BOD=×40°=20°;(2)OC与OE的位置关系是垂直.理由:∵∠COD=∠AOC,∴∠COD=(360°-∠AOD),∵OE平分∠DOB,∴∠DOE=∠BOD,∵∠AOD+∠BOD=180°∴∠COE=∠COD-∠DOE=(360°-∠AOD)-∠BOD=(360°-∠AOD-∠BOD)=[360°-(∠AOD+∠BOD)]=×180°=90°,∴OC⊥OE.【解析】(1)由∠AOC的度数可以求得∠BOC和∠DOC的度数,由角的和差可以求出∠BOD,由OE平分∠BOC,可以求得∠BOE的度数;(2)求出∠COE的度数,即可确定OC与OE有怎样的位置关系.本题考查角的计算、角平分线的定义,解题的关键是根据题目中的信息,建立各个角之间的关系,然后找出所求问题需要的条件.24.【答案】10:00(答案不唯一)【解析】解:(1)如图所示,10:00时,钟面角为60°.故答案是:10:00(答案不唯一);(2)解:设6点x分时,钟面角为90°,则6点半前时,6点半后时,30°×(6+)-6°x=90°解这个方程,得x=6°x-30°×(6+)=90°解这个方程,得x=.答:6点分或者分时钟面角为90°.(1)根据钟面上两格之间的圆心角为30°进行解答.(2)根据分针1分钟转动6°,时针1分钟转动0.5°,根据角度之间的等量关系:角度差是90°列出方程即可求解.考查了一元一次方程的应用,钟面角,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【答案】5 7 5 7 2 (2n+1)【解析】解;(1)由图形规律可得,答案为5,7;(2)∵5-3=7-5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,7最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.故答案为2,(2n+1);3证明:∵S=1+3+5+7+…+(2n-5)+(2n-3)+(2n-1)∴S=(2n-1)+(2n-3)+(2n-5)+…+7+5+3+1∴S+S=2n•n=2n22S=2n2S=n2解;(1)由图形规律可得,答案为5,7;(2)因为5-3=7-5=2,所以三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,因为三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,7最多剪出的小三角形个数7=2×3+1,所以三角形内点的个数为n时,最多剪出的小三角形个数2n+1;(3)列表归纳即可.本题考查了根据图形规律列代数式,正确找出图形规律是解题的关键.。

南京外国语中学七年级上学期期末数学试题

南京外国语中学七年级上学期期末数学试题

南京外国语中学七年级上学期期末数学试题一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 5.-2的倒数是( )A .-2B .12-C .12D .26.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .347.下列等式的变形中,正确的有( )①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个8.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点确定一条直线B.两点之间,线段最短C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离9.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A.设B.和C.中D.山10.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 11.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A .8B .12C .18D .20二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.写出一个比4大的无理数:____________.15.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.18.已知23,9n m n a a -==,则m a =___________.19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.数字9 600 000用科学记数法表示为 .22.计算7a 2b ﹣5ba 2=_____.23.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、解答题25.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?26.计算(1)()22315a a a a +⋅-⋅. (2)()2232246()x y x y xy -÷.27.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2∠∠=,则COD ∠是AOB ∠的内半角.()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______;()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角. ()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.28.计算:(1)(﹣0.5)+(﹣32)﹣(+1) (2)2+(﹣3)2×(﹣112) (33825﹣2|﹣(﹣1)201829.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 30.如图1,在一条可以折叠的数轴上,点A ,B 分别表示数-9和4.(1)A ,B 两点之间的距离为________.(2)如图2,如果以点C 为折点,将这条数轴向右对折,此时点A 落在点B 的右边1个单位长度处,则点C 表示的数是________.(3)如图1,若点A 以每秒3个单位长度的速度沿数轴向右运动,点B 以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A 、B 两点相距4个单位长度?四、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 33.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 6a +(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C【解析】【分析】根据AC 比BC 的14多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s ,当P 到达B 时,此时t=15s ,最后分情况讨论点P 与Q 的位置.【详解】解:设BC =x ,∴AC =14x +5 ∵AC +BC =AB ∴x +14x +5=30, 解得:x =20, ∴BC =20,AC =10,∴BC =2AC ,故①成立,∵AP =2t ,BQ =t ,当0≤t ≤15时,此时点P 在线段AB 上,∴BP =AB ﹣AP =30﹣2t ,∵M 是BP 的中点∴MB =12BP =15﹣t ∵QM =MB +BQ ,∴QM =15,∵N 为QM 的中点,∴NQ =12QM =152, ∴AB =4NQ ,当15<t ≤30时,此时点P 在线段AB 外,且点P 在Q 的左侧,∴AP =2t ,BQ =t ,∴BP =AP ﹣AB =2t ﹣30,∵M 是BP 的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.4.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.5.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握6.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.7.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.8.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.9.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.11.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.15.-3【解析】【分析】根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】x=-代入方程即可得到关于a,b的代数式,变形即可得出答案.根据题意将1解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.16.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.19.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.22.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.23.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 24.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、解答题25.(1)2.6元;(2)7000步.【解析】【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x步,则甲走了3x步,乙走了3x步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元,∴他当日可捐了2.6元钱;(2)设丙走了x步,则甲走了3x步,乙走了3x步,由题意得若丙参与了捐款,则有0.0002(3x+3x+x)=8.4,解之得:x =6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x +3x )=8.4,解之得:x =7000,符合题意,∴丙走了7000步.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想.26.(1)32a a -;(2)46x -【解析】【分析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x yx y =-÷46x =-. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.27.(1)10°;(2) 20;(3)见解析.【解析】【分析】(1)根据内半角的定义解答即可;(2)根据内半角的定义解答即可;(3)根据根据内半角的定义列方程即可得到结论.【详解】解:()1COD ∠是AOB ∠的内半角,AOB 70∠=,1COD AOB 352∠∠∴==, AOC 25∠=,BOD 70352510∠∴=--=,故答案为10,()2AOC BOD α∠∠==,AOD 60α∠∴=+,COB ∠是AOD ∠的内半角,()1BOC 60α60α2∠∴=+=-, α20∴=,∴旋转的角度α为20时,COB ∠是AOD ∠的内半角; ()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角; 理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,AOD 30α∠∴=+,()130302αα∴+=-, 解得:10α=,103t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,30AOD ∠α∴=+,()130302αα∴+=-, 90α∴=,90303t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,36030αBOC ∠∴=+-,()136030α360α302∴+-=--, α330∴=,330t 110s 3∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,BOC 36030α∠∴=+-,()()136030α303036030α2∴+-=+-+-, 解得:α350=,350t s 3∴=, 综上所述,当旋转的时间为10s 3或30s 或110s 或350s 3时,射线OA ,OB ,OC ,OD 能构成内半角.【点睛】 本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.28.(1)﹣3;(2)54;(3)﹣6. 【解析】【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【详解】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣112) =2﹣34 =54; (3)原式=﹣2﹣5+2﹣1=﹣6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.29.(1)14y=;(2)1x=-.【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y-3)=2(y-4);6928y y-=-.6298y y-=-.41y=.14y=.(2)131 24x x+--=.2(1)(3)4x x+--=.2234x x+-+=.-1x=.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.30.(1)13;(2)-2;(3)t= 9秒或17秒.【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C表示的数是x,分别表示出AC、BC,再根据AC-BC=1列出方程解答即可;(3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.【详解】解:(1)AB=4-(-9)=13(2)设点C表示的数是x,则AC=x-(-9)=x+9,BC=4-x,∵A落在点B的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x)=2x+5=1,解得:x=-2,∴点C 表示的数是-2.故答案为:-2.(3) 设运动t 秒后,点A 与点B 相距4个单位,由题意可知点A 表示的数为-9+3t ,点B 表示的数为4+2t ,∴()93424t t -+-+=(), ∴()93424t t -+-+=()或()93424t t -+-+=-() 解得t=17或9.答:运动9秒或17秒后,点A 与点B 相距4个单位.【点睛】本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式表示出线段的长度.四、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25, 解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21.(3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.。

2017年秋南京各校初一上月考真题数学卷汇编与答案

2017年秋南京各校初一上月考真题数学卷汇编与答案

二、单项选择题(每小题 2 分,共 20 分) 11.一个有理数的平方是正数,那么这个有理数的立方是________. A.整数 B.正数 C.负数 D.正数或负数
8
12. (−5) 表示的意义是________.
6
A. −5 乘以 6 的积; A. a 、 b 都是正数
B. 6 个 −5 相乘的积
a1 = 3 ,则 a2011 = ________.
x
8. “井底之蛙”要爬出井来,它每小时爬上 5m ,休息一小时又下滑 3m ,若井深 11m ,则它爬 出井来需________ h . 9.在 −3 , −2 , −1 , 4 , 5 中取三个数,把三个数相乘,所得到的最大乘积是________. 10.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第 (1) 个图 案有 4 个三角形,第 (2) 个图案有 7 个三角形,第 (3) 个图案有 10 个三角形,…依此规律,第 n 个图 案有________个三角形(用含 n 的代数式表示)
5
(3) −5.2 × 1.3 + 4.8 × ( −1.3)
5 7 5 1 (4) − + − ÷ − 6 8 12 24
16 (5) −99 × 34 17
(6) 3.72 ×
3 1 3 + 3.6 × − + × ( −1.52 ) 11 11 11
A. 0 个 ① 0 是绝对值最小的数
B. 1 个
C. 2 个
D. 3 个
17.下列说法正确的有________. ②绝对值等于本身的数是正数 ④两个数比较,绝对值大的反而小 C. 3 个 D. 4 个 B. 2 个 ③数轴上原点两侧的数互为相反数 A. 1 个 18.下列各组数中,相等的一组是________.

2018年南京外国语学校初一上学期期末数学试卷(附答案)

2018年南京外国语学校初一上学期期末数学试卷(附答案)

1.下列运算正确的是()A.−22÷(−2)2=1B.(−a )3=−a 3C.(−2b 2)2=−4b 4D.(xy 2)3=xy 62.若直线l 外一点P 与直线l 上三点的连线段长分别为2cm ,3cm ,4cm ,则P 到直线l 的距离是()A.2cmB.不超过2cmC.3cmD.大于4cm 3.下列各组中,不是同类项的是()A.52与25 B.−ab 与baC.0.2a 2b 与−15a 2b D.a 2b 3与−a 3b 24.某商品的标价为200元,8折销售仍赚40元,则商品进价为()A.140元B.120元C.160元D.100元5.若关于x 的方程2x −4=3m 和x +2=m 有相同的解,则m 的值是()A.10 B.−10 C.8 D.−86.20172018的个位上的数字是()A.9B.7C.3D.17.若气温为零上10◦C 记作+10◦C ,则−3◦C 表示气温为.8.5万粒芝麻质量约为200g ,用科学记数法表示1粒芝麻的质量:g .9.方程−23x =1的解为.10.六棱锥有个面.11.如图,要将角钢(如图①)弯成98◦21′的钢架(如图②),就要在角钢上截去一块,图①中虚线组成的角应为.12.小明在平面镜里看到背后墙上电子钟显示的时间为,那么此刻的实际时间应该是.13.计算:(−0.25)2017×(−4)2018=.14.已知a =−0.32,b =−3−2,c =(−13)−2,d =(−13),用“<”号把a ,b ,c ,d 连接起来:.15.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm ,各装有10cm 高的水,如表记录了三个杯子的底面积.小明将甲、乙两杯内一些水倒入丙杯(过程中水没溢出),使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为cm .底面积(cm 2)甲杯60乙杯80丙杯10016.如图,已知图(1)中折线的长度为1cm (它是由1条线段截掉中间的13,然后在中间“生长”出一个角而成的,其中4条线段长度相等),图(2)(3)(4)···是由图(1)按照原来的特征分形得到的,仔细观察图中的分形规律,我们可以得到图(4)中折线的长度为cm .#!"分钟 满分#!"分考试时量2018年南京外国语学校初一上学期期末考试数 学一分选择题 (每小题3 二 填空题 每小题3分17.计算与化简:(1)−14÷13×(−3)−2;(2)(−2a2)2·a4−(−5a4)2.18.解方程:5−y+15=y.19.如图,正方形硬纸板的边长为a,其4个角上剪去的小正方形的边长为b (b<a2),这样可制作一个无盖的长方体纸盒.(1)这个纸盒的容积为;(2)画出这个长方体纸盒的三视图(在图上用含a,b的式子标明视图的长和宽).20.如图,已知点A,B,C都是方格纸中的格点(图中每1个小方格都是边长为1的正方形),请用直尺画图.(1)在网格中找一个格点D,连接CD,使CD∥AB;(2)在网格中找一个格点E,作直线CE,使CE⊥AB.三 解答题22.钟面角是指时钟的时针与分针所成的角(这里所说的角均是指不大于平角的角).显然,在3 : 00 的时刻,钟面角为 α,我们称此时钟面角首次为 α(如图(1)).(1)从3:00开始,再间隔分钟(用分数表示,不取近似值),钟面角第二次为90◦(如图(2)).(2)从钟面角第二次为90◦开始,再间隔多少分钟,钟面角第三次为90◦?请用列一元一次方程的方法解决这个问题.21.规定一种新运算法则:a ⋇b =a 2+2ab .例如3⋇(−2)=32+2×3×(−2)=−3.(1)求(−2)⋇3的值;(2)若1⋇x =3,求x 的值;(3)若(−2)⋇x =−2+x ,求(−2)⋇x 的值.24.教材中“探索研究”给我们留下一个问题:计算20+21+22+···+21000.小明和小芳对这个问题进行了探索研究.(1)【解决问题】小明回忆刚刚学过的幂的运算法则,用如下方法解决了这个问题.解:设S =20+21+22+···+21000,······①将①式的两边各项都乘2得2S =21+22+23+···+21001,······②请在答题卡指定的方框中完成小明后面的解题过程.(2)【体验创新】受教材中“细胞分裂”的启发,小芳拿出1张长方形纸片按如图方式进行操作.①如图1,先按水平的折痕对折纸片,撕开,并把其中一半扔在一边,完成第1次操作;②如图2,再按竖直的折痕对折余下纸片,撕开,并把其中一半扔在一边,完成第2次操作;③在余下纸片上依次重复上述两种操作···.当完成第n 次操作后,设余下纸片面积为1,请你帮助小芳回答下列问题:(1)第一次扔在一边的纸片面积为,它的2倍即原纸片的面积为;(2)如果把扔在一边的纸片都按原位置放回,那么小芳发现原纸片的面积还可以表示为;(3)利用小芳发现的结论,计算20+21+22+···+21000.23.如图,已知∠AOB 是直角,∠BOC 在∠AOB 的外部,且OF 平分∠BOC ,OE 平分∠AOC .(1)当∠BOC =60◦时,∠EOF 的度数为◦;(2)当∠BOC =α(0◦<α<90◦)时,求∠EOF的度数.25.在数轴上,点A 代表的数是−3,点B 代表的数是15,点Q 表示的数是1.(1)若P 从点A 出发,向点B 运动(到达点B 时运动停止),每秒运动2个单位长度,M 在AP 之间,N在P B 之间,且MP =12AP ,NP =23BP ,运动多长时间后MN =10?(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点Q 分别以每秒7个单位长度和3个单位长度的速度向右运动.试探索BQ −AQ 的值是否随着时间t (秒)的变化而变化?若变化,请说明理由;若不变,请求出这个值.(3)若CD 为数轴上一条线段(点C 在点D 的左边),CD =2,当CA +CB +CQ +DA +DB +DQ 的值最小时,请直接写出点C 对应的数c 的取值范围.123456BB D B D A1.A .−22÷(−2)2=−4÷4=−1,故此选项错误;B .(−a )3=−a 3,故此选项正确;C .(−2b 2)2=4b 4,故此选项错误;D .(xy 2)3=x 3y 6,故此选项错误.2.3.4.设该商品的进价为x 元,根据题意得200×0.8−x =40,解得x =120,则该商品的进价为120元.5.由2x −4=3m 得:x =3m +42;由x +2=m 得:x =m −2;由题意知3m +42=m −2,解之得:m =−8.6.因为2017的个位上的数字是7,20172的个位上的数字是9,20173的个位上的数字是3,20174的个位上的数字是1,20175的个位上的数字是7,所以个位上的数字按着7,9,3,1四个数字为一个循环,2018÷4=504···2,所以20172018的个位上的数字是9.7.零下3◦C8.4×10−3解析:200÷50000=0.004=4×10−3(g).9.x =−32解析:−23x =1,解:x =1÷(−23),x =−32.10.711.81◦39′解析:截去的部分,正好与98◦21′构成平角,因而在角钢上截去的缺口(图①中的虚线组成的角)应为180◦−98◦21′=81◦39′.12.21:05解析:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,∴此时实际时刻为21:05.13.−4解析:(−0.25)2017×(−4)2018=(−0.25)2017×(−4)2017×(−4)=[(−0.25)×(−4)]2017×(−4)=12017×(−4)=1×(−4)=−4.14.b <a <d <c 解析:∵a =−0.32=−0.09,b =−3−2=−19,c =(−13)−2=9,d =(−13)0=1,初一第一学期期末考试数学参考答案∴b <a <d <c .15.7.2解析:设后来甲、乙、丙三杯内水的高度分别为3x ,4x ,5x .根据题意得:60×10+80×10+100×10=60×3x +80×4x +100×5x ,解得:x =2.4cm ,则甲杯内水的高度变为3×2.4=7.2(cm).16.6427解析:由题意得:在图(2)中,折线的长度为:1+13=43(cm);在图(3)中,折线的长度为:43+43×13=169(cm);在图(4)中,折线的长度为:169+169×13=6427(cm).17.(1)原式=−1×3×(1(−3)2)=−1×3×19=−13.(2)原式=4a 4·a 4−25a 8=4a 8−25a 8=−21a 8.18.5−y +15=y,−y +15−y =−5,−y −1−5y =−25,−y −5y =−25+1,−6y =−24,y =4.19.(1)b (a −2b )2(2)长方体纸盒的三视图如图所示.20.(1)如图1所示,符合条件的格点D 有两个,即D 1,D 2.(2)如图2所示,符合条件的格点E 有两个,即E 1,E 2.21.(1)(−2)⋇3=(−2)2+2×(−2)×3=4−12=−8.(2)∵1⋇x =3,∴12+2x =3,∴2x =3−1,∴x =1.(3)−2⋇x =(−2)2+2×(−2)x ,(−2)2+2×(−2)x =−2+x ,4−4x =−2+x ,−4x −x =−2−4,−5x =−6,x =65.22.(1)36011解析:设再间隔y 分钟,钟面角第二次为90◦,依题意得:6y −0.5y =90×2,解得:y =36011,故再间隔36011分钟,钟面角第二次为90◦.(2)设间隔x 分钟,钟面角第三次为90◦,6x −0.5x =180,解得:x =36011.答:再间隔36011分钟,钟面角第三次为90◦.23.(1)45解析:∵∠AOB =90◦,∠BOC =60◦,∴∠AOC =∠AOB +∠BOC =150◦.∵OE 平分∠AOC ,∴∠EOC =12∠AOC =12×150◦=75◦.又∵OF 平分∠BOC ,∴∠F OC =12∠BOC =12×60◦=30◦,∴∠EOF =∠EOC −∠F OC =75◦−30◦=45◦.(2)∵OF 平分∠BOC ,∴∠BOF =∠F OC =12∠BOC =12α.∵OE 平分∠AOC ,∴∠AOE =∠EOC =12(∠AOB +∠BOC )=12(90◦+α),∴∠EOF =∠EOC −∠F OC =12(90◦+α)−12α=45◦.24.(1)②−①:S =21001−20=21001−1;(2)(1)2n −1;2n(2)20+20+21+22+23+...+2n −1(3)令S =20+21+22+ (21000)由题目结论可得,20+S =21001,∴S =21001−1.25.(1)当运动t 秒时,MN =10,AP =2t ,P B =18−2t ;M 在A ,P 之间,N 在P ,B 之间,且MP =12AP ,NP =23BP ,得MP =12AP =t ,NP =23BP =36−4t3,∴MN =MP +NP =t +36−4t3=10,解得:t =6,答:运动6秒后MN =10.(2)不变.当运动t 秒时,点A :−3−t ,点B :15+7t ,点C :1+3t ;∴BQ =15+7t −(1+3t )=14+4t ,AQ =1+3t −(−3−t )=4+4t ,∴BQ −AQ =10.(3)−1⩽c ⩽1.解析:设点C 对应的数为c ,要使CA +CB +CQ +DA +DB +DQ 最小,那么点Q 一定在CD 上,∵CD =2,∴−1⩽c ⩽1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校_______
____
__
__
_
班级_
__
__
__
__
__
_
姓名_
____
__
__
__
_
考试号_
__
____
__
__
_ …
……






…密


……





线…




……




……


…………答……

…题







……

2017—2018学年第一学期初一数学期终模拟试卷 班级: 姓名: 学号: 成绩: 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.把弯曲的河道改直,能够缩短航程,这样做的道理是( ) A .两点之间,射线最短 B .两点确定一条直线 C .两点之间,直线最短 D .两点之间,线段最短 2.如图几何体的主视图是( ) A . B . C . D . 3.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问有多少个小朋友?”若设共有x 个小朋友,则列出的方程是( ) A .3x ﹣1=4x+2 B .3x+1=4x ﹣2 C .= D .= 4.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③180°﹣∠α;④(∠α﹣∠β).正确的是:( ) A .①②③④ B .①②④ C .①②③ D .①② 5.如图,OC 是∠AOB 内的一条射线,OD 、OE 分别平分∠AOB 、∠AOC ,若∠AOC=m °,∠BOC=n °,则∠DOE 的大小为( ) A .2m ; B .; C .; D .2n m (第5题)(第17题) 6.下列不等式中,属于一元一次不等式的是( ) A .x +2y <3 ; B.1x <2; C .x 2+x >2; D.x +12-1>0 7. 与不等式-2x 5≤x 10-1的解集相同的不等式是( ) A .-2x ≤-1; B .-2x ≤x -10; C .-4x ≥x -10; D .-4x ≤x -10 8.下列说法中,正确的是( ) A .在同一平面内,经过已知一点有且只有一条直线与已知直线平行 B .两个相等的角是对顶角 C .互补的两个角一定是邻角
D .直线外一点与直线上各点连接的所有线段中,垂线段最短
9.已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC:∠AOB=4:3,
那么∠BOC的度数是()
A.10°B.40°C.70°D.10°或70°10.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()
A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=1
2 AB
二、填空题(本大题共12小题,每小题2分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
11.﹣8的相反数等于.
12.单项式的次数是.
13.若(x﹣2)2+|y+1|=0,则x﹣y=.
14.已知a﹣3b﹣4=0,则代数式4+2a﹣6b的值为.
15.若x=1是关于x的方程x﹣2m+1=0的解,则m的值为.
16.如图,线段AB=16,C是AB的中点,点D在CB上,DB=3,则线段CD的长
为.
17.如图(左边第1页中间),一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=.
18.已知∠1与∠2为对顶角,且∠1的补角的度数为80°,则∠2的度数为°.19.一件夹克衫先按成本提高50%后标价,再以8折优惠卖出,获利28元,则这件夹克衫的成本是元.
20.在同一平面内,∠BOC=50°,OA⊥OB,OD平分∠AOC,则∠BOD的度数
是.
21.如图所示的运算程序中,若开始输入的x值为5,我们发现第1次输出的数为2,再将2输入,第2次输出的数为﹣1,如此循环,则第2015次输出的结果为.
(第21题)(第22题)
22.一个正方体的表面涂满了同种颜色,按如图所示将它切成27个大小相等的小立方块.设其中仅有i个面(1,2,3)涂有颜色的小立方块的个数为x i,则x1、x2、x3之间的数量关系为.。

相关文档
最新文档