QCM石英晶体微天平的基本原理解析

合集下载

石英晶体微天平电化学

石英晶体微天平电化学

石英晶体微天平电化学引言:石英晶体微天平电化学是一种基于石英晶体微天平技术的电化学研究方法,通过测量电化学反应过程中的质量变化,可以获得与电化学反应相关的信息。

本文将介绍石英晶体微天平电化学的原理、应用和发展前景。

一、石英晶体微天平的原理石英晶体微天平是一种常用的质量测量仪器,其基本原理是利用石英晶体的压电效应,将质量变化转化为频率变化。

当质量增加时,石英晶体的频率降低;当质量减少时,石英晶体的频率增加。

通过测量频率的变化,可以得到质量的变化信息。

二、石英晶体微天平电化学的原理石英晶体微天平电化学是将石英晶体微天平与电化学技术相结合,用于研究电化学反应。

在电化学反应中,电极表面的质量会发生变化,通过将电极放置在石英晶体微天平上,可以通过测量频率的变化来获得电极表面质量的变化信息。

三、石英晶体微天平电化学的应用1. 电化学催化剂研究:石英晶体微天平电化学可以用于研究电化学催化剂的活性和稳定性。

通过测量催化剂表面的质量变化,可以评估催化剂的活性和稳定性,并研究催化剂在各种条件下的性能变化。

2. 电化学腐蚀研究:石英晶体微天平电化学可以用于研究材料的电化学腐蚀行为。

通过测量材料表面的质量变化,可以评估材料的耐蚀性,并研究腐蚀过程中的质量变化规律。

3. 电化学生物传感器:石英晶体微天平电化学可以用于生物传感器的研究和开发。

通过将生物分子固定在电极表面,测量生物分子与物质相互作用引起的质量变化,可以实现对生物分子的灵敏检测。

4. 电化学药物筛选:石英晶体微天平电化学可以用于药物筛选和评价。

通过将药物固定在电极表面,测量药物与靶分子相互作用引起的质量变化,可以评估药物的活性和选择性。

四、石英晶体微天平电化学的发展前景石英晶体微天平电化学作为一种新兴的研究技术,具有广阔的应用前景。

随着纳米材料、催化剂和生物传感器等领域的发展,对于电化学反应过程的研究需求越来越高。

石英晶体微天平电化学作为一种高灵敏度、高分辨率的研究方法,将在这些领域发挥重要作用。

石英晶体微天平的基本原理和具体应用

石英晶体微天平的基本原理和具体应用

流体通过剪切模式的声波传感器装置示意图
Liquid flow cell
70 uL flow through reservoir 1 ml static reservoir O-ring seal Resists harsh chemicals Low stress design
Static cell
x轴(电轴):沿x轴方 向或沿y轴方向施加压力 (或拉力)时,在x轴方 向产生压电效应。
y轴(机械轴):沿y轴方 向或沿x 轴方向施加压力 (或拉力)时,在y轴方 向不产生压电效应,只 产生形变。
天然右旋石英晶体晶轴的分布
石英晶体有天然的和人工培育的。 天然石英晶体产量有限,而且大部分都存 在各种缺陷。 石英晶体常见的缺陷:
ΔF = - 2 F02ΔM/A(qq)1/2
ΔF:石英晶体的频率改变量,又称频移值 (Hz);F0:石英晶体的基频;ΔM:沉积在 电极上的物质的质量改变(g);A:工作电 极的面积; q:剪切参数(2.951010 kg·m-1·s-2); q:石英的密度(2648 kg·m-3)。
可以看出,频移值ΔF与质量改变ΔM之间有一简 单的线性关系,负号表示质量升高,频率降低。
AT- 和 BT-切割模式
四、石英晶体微天平(QCM)的 工作原理
石英晶体微天平由一薄的石英圆片和覆盖其表 面的电极组成 。 外加电压加到压电材料上引起一个内在的机械 振动。因为QCM是压电的,振荡电场横着通 过装置产生一个声学波。
1. Quartz crystal 2. 2. Electrode material
QCM crystal. Grey=quartz, yellow=metallic electrodes.
一、石英晶体的结构

石英微晶天平

石英微晶天平

一、石英晶体微天平的基本原理:石英晶体微天平最基本的原理是利用了石英晶体的压电效应:石英晶体内部每个晶格在不受外力作用时呈正六边形,若在晶片的两侧施加机械压力,会使晶格的电荷中心发生偏移而极化,则在晶片相应的方向上将产生电场;反之,若在石英晶体的两个电极上加一电场,晶片就会产生机械变形,这种物理现象称为压电效应。

如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,这种现象称为压电谐振。

它其实与LC回路的谐振现象十分相似:当晶体不振动时,可把它看成一个平板电容器称为静电电容C,一般约几个PF到几十PF;当晶体振荡时,机械振动的惯性可用电感L 来等效,一般L 的值为几十mH到几百mH。

由此就构成了石英晶体微天平的振荡器,电路的振荡频率等于石英晶体振荡片的谐振频率,再通过主机将测的得谐振频率转化为电信号输出。

由于晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。

二、石英晶体微天平的主要构造:QCM主要由石英晶体传感器、信号检测和数据处理等部分组成。

石英晶体传感器的基本构成大致是:从一块石英晶体上沿着与石英晶体主光轴成35015'切割(AT—CUT)得到石英晶体振荡片,在它的两个对应面上涂敷银层作为电极,石英晶体夹在两片电极中间形成三明治结构。

在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用。

一般附属结构还包括振荡线路、频率计数器、计算机系统等;电化学石英晶体微天平在此基础上还包括恒电位仪、电化学池、辅助电极、参比电极等;三、石英晶体微天平的分析化学应用QCM最早应用于气相组分、有毒易爆气体的检测。

QCM石英微天平

QCM石英微天平

QCM石英微天平目录一、什么是石英微天平(QCM)?二、QCM的应用三、KSV QCM500的工作原理四、KSV-QCM500的特点及技术参数五、实例一、什么是石英微天平(QCM)?Pierre与Marie Curie在1880年指出在晶体的某个方向施加压力后,四水合酒石酸钾钠晶体会产生电压。

后来他们还指出存在相反的效应,也即施加电压会产生应变。

正是通过这些观察结果从而导致了压电效应的发现。

起初压电效应无人问津,直到1917年发现石英可用作传感器与水中超声波接收机后,才开始对压电效应进行了许多详尽研究。

到1919年开始出现了一些今天日常生活中所用的设备,比如扩音器、麦克风与拾音器,它们都是基于四水合酒石酸钾钠压效应的原理。

到1921年出现了第一台石英晶控振荡器,它基于X切割晶体。

它的缺点是对温度很敏感。

因此,现在X切割晶体被用于那些即便很大的温度系数它的影响也极其微弱的领域,如空间声纳仪中的变频器。

1934年在引入了AT切割晶体后,在所有的频率操纵应用中,石英晶体成为主流趋势。

AT切割晶体的优点是在室温下,它对温度几乎没有频率漂移。

自很早石英谐振器开始用作频率操纵元件以后,在电极上划铅笔标记来增加谐振器的频率或者者用橡皮擦去一些电极材料来减少频率已是普遍做法。

这种对质量导致频率移动的懂得仅仅建立在定性基础上的。

然而在1959年,Sauerbrey发表论文指出石英谐振器频率的移动与增加的质量成正比例。

他此发现通常被看作是一个突破,迈出了利用一种新的定量方法来测量微量物质的第一步,比如石英微天平。

因此,人们把QCM描述成一个超灵敏的质量传感器,它的核心部件是夹在一对电极中的AT切割石英晶体。

在电极与振荡器连接并施加交流电压之后,石英晶体由于压电效应会以它的谐振频率振荡。

由于高质量的振荡,因此振荡通常会很稳固。

根据Sauerbrey公式,假如在一个或者两个电极上均匀地制备一个硬层,谐振频率的衰减与被吸附层的质量成正比。

石英晶体微天平传感器

石英晶体微天平传感器

应用
气体传感器:
将吸附特定气体的吸附膜附着于QCM电极表面,当空气中含有这种气体, 其分子就会被吸附于吸附膜上。被吸附的气体分子会引起QCM电极表面 质量的变化,使QCM的谐振频率产生变化。因此通过检测谐振频率的变 化即可判断空气中有无该种气体和该种气体量的多少。 QCM最早是应用于气相组分的分析、有毒易爆气体的检测。已对SO2 、 H2S、HCI 、NH3、NO2、Hg、CO、及其他碳氢化合物、氰化物等害气 体进行探测研究。
结构
QCM支架温控系统和液体 池的实物图:
QCM晶片两面的实物图:
应用
免疫传感器: 将特定的抗原(或抗体)固定于QCM的电极表面,当试剂中含有与其对应 的抗体(或抗原)时,两者之间就会相互结合,引起QCM表面电极质量的变 化。通过质量变化引起的谐振频率变化就可判断待测试剂中是否含有与Q CM电极表面的抗原(或抗体)相对应的抗体(或抗原)。
抗原 抗体
应用
基因传感器: 首先将DNA的单链固定 于QCM的电极表面, 当待测试剂中含有与其 对应的另一条DNA单 链时,两者就会结合在 一起,引起QCM表面 电极质量的变化,并通 过QCM谐振频率的变 化反映出来。这样通过 谐振频率的变化就可定 量测得待测试剂中含有 的特定DNA单链的量。
应用
基本原理
QCM定量基础: 德国物理学家Sauerbrey通过大量的研究发现厚度剪切压电石英晶体的谐振频率 变化Δf与在晶体表面均匀吸附的刚性物的质量Δm之间存在着比例关系, 他在 1959年给出了Sauerbrey 方程:
式中f为晶体的固有谐振频率,又叫基频率, ( Hz), m 为晶体表面涂层质量(g), △ f 为晶体谐振频率的变化量,A为涂层面积(cm2)。 该方程的适用前提是晶体表面的吸附层必须为刚性吸附层,既在晶体发生谐振 时该吸附层可随晶体本体发生无形变无相对位移的同步振动。 以此为理论依据,QCM最早只能应用与真空或气相环境中。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平(Quartz Crystal Microbalance,简称QCM)是一种利用石英晶体的振荡频率变化来测量微量物质质量的分析仪器。

其工作原理是基于石英晶体微振器在质量变化时引起谐振频率的变化。

石英晶体是一种具有垂直电极和涂有一层金属电极的薄膜石英技术器件。

在标准条件下,石英晶体具有特定的谐振频率,当质量发生变化时,石英晶体的谐振频率也会发生相应的变化。

这个质量的变化可以是溶质吸附、膜生长、能量转换等引起的。

石英晶体微天平的主要部分包括石英晶体和振荡电路。

石英晶体被放置在真空或气体环境中,通过电极与振荡电路相连。

当外加交流电场施加到石英晶体上时,晶体将发生机械振荡,并产生电荷分布,从而使晶体表面产生一定的驱动力。

这种驱动力可以通过检测电路检测出来,并转换成电信号。

石英晶体微天平利用石英晶体的材料特性和电极结构,通过测量振荡频率的变化来定量分析溶液中微量物质的吸附、反应和生长过程。

当溶液中存在微量物质时,这些物质会在石英晶体的表面上吸附或反应,并改变晶体的质量。

质量的变化将引起石英晶体的共振频率的改变,这个频率的变化与溶液中微量物质的质量变化成正比。

QCM主要分为自由振动和受控振动两种模式。

在自由振动模式下,石英晶体将自由振动,而在受控振动模式下,通过将交流电场施加到电极上,通过调节频率和振幅来控制石英晶体的振荡。

这样可以通过控制石英晶体的振荡来监测微量物质的吸附和反应过程。

石英晶体微天平在生物医学、环境监测、材料科学等领域具有广泛的应用。

例如,它可以用于研究蛋白质的吸附、细胞的生长、药物的吸附和释放等过程。

由于其高灵敏度、快速响应和无需标记的特点,石英晶体微天平已经成为一种非常重要的表征和分析技术。

总之,石英晶体微天平利用石英晶体的振荡频率变化来测量微量物质质量的分析技术。

它的工作原理是基于石英晶体在质量发生变化时引起谐振频率的变化。

通过测定谐振频率的变化,可以定量分析溶液中微量物质的吸附、反应和生长过程。

QCM石英微天平

QCM石英微天平

QCM石英微天平名目一、什么是石英微天平(QCM)?二、QCM的应用三、KSV QCM500的工作原理四、KSV-QCM500的特点及技术参数五、实例一、什么是石英微天平(QCM)?因此,人们把QCM描述成一个超灵敏的质量传感器,它的核心部件是夹在一对电极中的AT切割石英晶体。

在电极与振荡器连接并施加交流电压之后,石英晶体因为压电效应会以它的谐振频率振荡。

因为高质量的振荡,因此振荡通常会专门稳固。

依照Sauerbrey公式,假如在一个或两个电极上平均地制备一个硬层,谐振频率的衰减与被吸附层的质量成正比。

△f:所要测定的频率变化量f0:石英的固有频率△m:单位面积的质量变化量(g/cm2)A:压电活性面积rq:石英的密度=2.648g/cm3m q:石英的剪切模量=2.947×1011g/cm×s2.以下几种情形不适用于Sauerbrey公式:1) 被吸附的物质在电极表面上呈非刚性状态;2) 被吸附的物质在电极表面上滑动;3) 被吸附的物质在电极表面上沉积的不平均;因此,Sauerbrey公式仅严格适用于平均、同质、刚性薄膜的沉积。

由于那个缘故,专门多年来,QCM仅仅被视为气相物质的检测器。

直到二十世纪80年代,科学家们才认识到假如石英完全浸入液体中,也能受激发产生稳固的振荡。

Kanazawa及其合作者对QCM 在液相中测量方面做了许多开拓性的工作,他们指出QCM从空气进入到液体时,它的谐振频率的变化是与液体的密度与粘度乘积的平方根成正比例的,如下式。

△f:所要测定的频率变化量fu:石英的固有频率rL:与石英接触的液体的密度h L:与石英接触的液体的粘度rq:石英的密度=2.648g/cm3m q:石英的剪切模量=2.947×1011g/cm×s2.当人们发觉过量的粘性载荷并不阻碍在液体中使用QCM,而且它对固-液态中质量的变化仍旧专门灵敏,QCM就被用于直截了当与液体和/或粘弹性的薄膜进行接触来评估物质量和粘弹性特点的变化。

qcm原理

qcm原理

qcm原理QCM原理。

QCM(Quartz Crystal Microbalance)是一种基于石英晶体的微量质量测量技术,它利用石英晶体的谐振频率与其质量之间的关系来实现对微量质量的测量。

QCM原理的核心在于石英晶体的振荡频率与其受到的质量变化之间的关系,这种关系是通过石英晶体的弹性性质和谐振现象来实现的。

首先,我们来看一下石英晶体的弹性性质。

石英晶体是一种具有高度对称性和稳定性的晶体材料,它具有非常好的机械弹性性能。

当外界施加压力或质量变化时,石英晶体会产生相应的形变,并且能够以非常快的速度恢复到原来的形状。

这种弹性性质使得石英晶体能够作为一种非常理想的谐振器材料,用于实现微量质量的测量。

其次,我们来看一下石英晶体的谐振现象。

石英晶体在特定的频率下会发生谐振现象,即在外界施加一个与其谐振频率相同的激励信号时,石英晶体会产生共振现象,这时它的振幅会达到最大值。

而当石英晶体受到质量变化时,其谐振频率会发生相应的变化,从而导致共振现象的特性发生改变。

通过测量石英晶体的谐振频率变化,就可以间接地测量出其受到的微量质量变化。

基于上述原理,QCM技术可以实现对微量质量的高灵敏度测量。

当待测物质吸附在石英晶体表面时,会导致石英晶体的质量发生微量变化,从而引起谐振频率的变化。

通过测量谐振频率的变化,就可以间接地测量出待测物质的质量变化。

由于石英晶体具有非常好的弹性性能和谐振特性,因此QCM技术具有非常高的灵敏度和稳定性,能够实现对微量质量变化的准确测量。

除了用于微量质量测量外,QCM技术还广泛应用于生物传感、化学分析、表面吸附等领域。

在生物传感领域,QCM技术可以实现对生物分子的特异性识别和测量,从而用于生物分子的检测和分析。

在化学分析领域,QCM技术可以实现对化学物质的吸附和反应动力学的研究,从而用于化学物质的分析和检测。

在表面吸附领域,QCM技术可以实现对表面吸附过程的实时监测和分析,从而用于表面吸附行为的研究和表征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量原理: 通过测量芯片的频率变化测量镀上材料的质量。

石英晶体的频率飘移与附加上的质量的关系:附加上的质量增加,振荡频率降低。

晶体振荡频率受下列条件影响:
沉积在芯片上的质量
芯片的温度变化
材料的应力
材料的附着性
质量可通过频率精确测量
质量= 密度X 面积X 厚度
密度的准确性是影响厚度计算误差的原因之一
密度条件:
镀膜速度
材料结构
合金比例
成膜温度
应力影响
温度影响:
晶片的最佳工作温度:25-60度
最重要的是保证镀膜过程中的温度稳定
目前世界主流的QCM仪器厂家:Q-SENSE(Omega auto, E1, E4, 最贵,用户也最多), SRS (QCM200, 第二受欢迎,仪器价格低很多),SII(QCM934, 日本人的,国内用的少,品质不会差),另外国产的是CHI(价格便宜,用户反馈一般).
做QCM仪器的最关键部件QCM芯片,因为各个仪器配套芯片不能通用,目前主要还是由各仪器厂家配套,国外专业的芯片厂家很少,国内的大概10年前起步,因为市场小,参与的企业不多,代工起家的深圳仁路晶体算是开始较早较专业的厂家。

主要应用:
Applications
Immunosensors
Sorption sensors
Moisture analyzers
Particulate monitors
Contamination monitors
Electrovalency measurements
Hydrogen absorption on metal films
Bubble formation
Redox and conductive polymer research
Double-layer characterization
Corrosion studies
Surface oxidation
DNA and RNA hybridization studies
Antigen-antibody reactions
Protein adsorption
Detection of virus capsids, bacteria, mammalian cells Biofouling and antifouling
Biomembranes and biomaterials
Protein-protein interactions
Self-assembled monolayers (SAMs)
Molecularly imprinted polymers (MIPs)
Langmuir/Langmuir-Blodgett films
Laser ablation, desorption and breakdown studies MEMS nanomaterials
Intelligent biomaterials.。

相关文档
最新文档