左手定则和右手定则的区别及使用方法

合集下载

物理用手的几大定则

物理用手的几大定则

物理用手的几大定则
物理学中有很多用手来实现的实验或说明,这些实验或说明是依据
一些定律或规律来完成的。

以下是几个常见的用手实现的物理定律:1. 右手定则
右手定则是判断电磁场中磁场方向的一种方法。

将右手伸出,让拇指、食指和中指成直角,其中食指指向磁场方向,中指指向电流方向,则
拇指所指的方向即为磁场方向。

2. 左手定则
左手定则是判断电磁场中电场方向的一种方法。

将左手伸出,让拇指、食指和中指成直角,其中食指指向磁场方向,中指指向电流方向,则
拇指所指的方向即为电场方向。

3. 绞线定则
绞线定则是解释为什么绞在一起的两股导线之间没有相互作用力的一
种规律。

将两股导线缠绕在一起后,如果这两股导线的电流方向相同,则导线之间不会有作用力;而如果电流方向相反,则导线之间会有吸
引力。

4. 螺旋定则
螺旋定则是用于描述磁场中带电粒子的运动轨迹的一种规律。

当带电粒子在磁场中运动时,如果磁场方向和粒子速度方向垂直,则该粒子会沿着一个螺旋线运动。

总的来说,这些用手实现的定律或规律在物理学的研究中有着重要作用,能够帮助人们更好地理解和应用物理学知识。

物理左手右手定则总结

物理左手右手定则总结

安培定则、左手定则、右手定则、楞次定律的综合应用(1) 安培定则、左手定则、右手定则、楞次定律应用于不同的现象:(2)右手定则与左手定则区别:抓住“因果关系”分析才能无误.“因电而动”——用左手,“力”字的最后一笔向左钩,可以联想到左手定则用来判断安培力!“因动而电”——用右手;“电”字的最后一笔向向右钩,可以联想到右手定则用来判断感应电流方向,(3)楞次定律中的因果关联楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键.(4)运用楞次定律处理问题的思路***判断感应电流方向类问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:①明确原磁场:弄清原磁场的方向及磁通量的变化情况.②确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向:原磁通量增加,则感应磁场与原磁场方向相反;原磁通量减少,则感应磁场与原磁场方向相同——“增反减同”.③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(见例1) ***判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动. 对其运动趋势的分析判断可有两种思路: ①常规法:据原磁场(B 原方向及ΔΦ情况)确定感应磁场(B 感方向)−−−−→−安培定则判断感应电流(I 感方向)−−−−→−左手定则导体受力及运动趋势.②效果法由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势做出判断,更简捷、迅速.***判断自感电动势的方向类问题 基本现象 应用的定则或定律 运动电荷、电流产生的磁场 安培定则 磁场对运动电荷、电流的作用(安培力) 左手定则 电磁感应 部分导体做切割磁感线运动 右手定则 闭合电路磁通量变化 楞次定律感应电流的效果总是阻碍原电流变化(自感现象)——当自感线圈的电流增大时,感应电流阻碍“原电流”的增大,所以感应电流与原电流的方向相反;当自感线圈的电流减小时,感应电流阻碍“原电流”的减小,则感应电流与原电流的方向相同! 判断感应电动势的思路为:据原电流(I 原方向及I 原的变化情况)确定感应电流I 感的方向(“增反减同”) −−−−−−−−−−−→−出电流从电动势的正极流判断感应电动势的方向。

左手定则、右手定则、安培定则

左手定则、右手定则、安培定则

左手定则可称“电动机定则”,是判断通电导线在磁场中的受力方向的法则,其内容是:将左手放入磁场中,使四个手指的方向与导线中的电流方向一致,那么大拇指所指的方向就是受力方向。

右手定则:
伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从手心进入,并使拇指指向导线运动方向,这时四指所指的方向就是感应电流的方向。

安培定则:
●用右手握螺线管,让四指弯向螺线管中电流方向,大拇指所指的那端就是螺线管的N
极。

●直线电流的磁场的话,大拇指指向电流方向,另外四指弯曲指的方向为磁感线的方向。

左手定则、右手定则以及右手螺旋定则辨析

左手定则、右手定则以及右手螺旋定则辨析

左手定则、右手定则以及右手螺旋定则辨析高中物理教学中,左手定则、右手定则以及右手螺旋定则是为数不多的“手语”。

由于定则本身所涉及内容容易混淆,对初学者来讲,反而成了困惑。

下面,我将从定则内容的基础出发,细致地剖析出该类定则所体现出的异同。

首先,区分好左、右手,是使用这些定则的前提;其次,就是要判断应用环境是在用电还是发电;再有,就是区分好拇指、四指、掌心所对应的不同物理量。

一、左手定则1.应用环境:处于磁场中的通电导体棒(用电);在磁场中运动的带电粒子。

2.涉及的物理量:①四指:电流、正电荷的运动方向、负电荷运动的相反方向;②掌心:磁场;③拇指:安培力、洛伦兹力。

二、右手定则1.应用环境:切割磁感线的导体棒(发电)。

2.涉及的物理量:①四指:电流;②掌心:磁场;③拇指:导体棒切割磁感线的(有效)速度方向。

小结:比较一下左、右手定则。

其共同点在于:“四指”与“掌心”所对应的物理量是一样的。

而不同点在于“拇指”,对应了不同的物理量。

所以,牢记“拇指”的属性是区分它们的好办法。

并且,左手定则对应的是导体棒的用电过程,因电生力;右手定则对应导体棒的发电过程,因动生电;而在一些典型的动生起电过程中,导体棒既要发电又要用电,所以往往是先用右手,再使左手。

三、右手螺旋定则(安培定则)1.应用于用电过程(1)通电直导线①拇指:电流;②四指:环形磁场。

(2)通电环形导线或螺旋管①拇指:环内磁场;②四指:环形电流。

小结:通电直导线与通电环形导线中,四指与拇指所对应的物理量刚好对调了。

这一点在教学中易被忽略。

另外,右手螺旋定则还经常与楞次定律结合,应用于发电过程。

考虑到发电过程常常是在闭合回路中,与右手螺旋定则对应起来,即是用右手“拇指”表示感应电流所形成的磁场,而“四指”表示回路中的感应电流。

这与上述“(2)通电环形导线或螺旋管”中的方式一致。

具体应用时,不是由磁找电就是由电找磁。

2.应用于发电过程(1)结合楞次定律寻找感应电流的方向或感应电动势的正负小结:楞次定律本身并不寻找感应电流方向,而是旨在阐明每个闭合回路或线圈都有一种固执的“脾气”,好比是一种“电磁惯性”。

高中左右手定则总结

高中左右手定则总结

高中物理中的左右手定则:全面总结与解析在高中物理的学习过程中,我们会遇到各种各样的定律和规则。

其中,左右手定则是电磁学中的两个重要工具,用于判断电流、磁场以及运动电荷之间的相互作用关系。

下面,我们将对这两个定则进行全面的总结和解析。

一、右手螺旋法则(安培定则)右手螺旋法则是用来判断电流产生的磁场方向的。

具体步骤如下:1. 手心向上握住导线,让拇指指向电流的方向。

2. 其余四指环绕导线弯曲,其指向就是由该电流产生的磁场方向。

需要注意的是,这个定则仅适用于直导线周围的磁场方向,对于非直线电流或复杂的电流分布,需要通过积分计算得出。

二、左手定则(电动机定则)左手定则是用来判断载流导线在磁场中受力方向的。

具体步骤如下:1. 左手平伸,大拇指与其他四指垂直且处于同一平面。

2. 让四指弯曲,以表示磁场的方向,即磁感线的方向。

3. 使大拇指指向电流的方向,那么大拇指所指的方向就是载流导线在磁场中受力的方向。

三、右手定则(发电机定则)右手定则是用来判断闭合电路中的感应电动势方向的。

具体步骤如下:1. 右手平伸,大拇指与其他四指垂直且处于同一平面。

2. 让四指弯曲,以表示导体切割磁感线的运动方向。

3. 使大拇指指向磁场的方向,那么大拇指所指的方向就是闭合电路中的感应电动势方向。

需要注意的是,这个定则仅适用于导体切割磁感线产生感应电动势的情况,对于其他情况,需要通过法拉第电磁感应定律进行分析。

总结来说,左右手定则是高中物理学习中非常重要的知识点,它们能够帮助我们理解和解决许多实际问题。

然而,要想熟练运用这些定则,还需要大量的练习和实践。

希望这篇文章能对你有所帮助,祝你在物理学习的道路上越走越远!。

左手定则与右手定则的区分、巧记与应用

左手定则与右手定则的区分、巧记与应用

左手定则与右手定则的区分、巧记与应用
在电磁学中,在应用左手定则与右手定则时,非常容易记混。

特别在考试中更容易因一时紧张而混淆,导致错误。

应该怎样区分和使用?这就要求必须搞清楚,左手定则应用的物理现象是什么现象,右手定则应用的物理现象又是什么,这才是问题的关键。

简单来说,一句话概括就是——左手力、右手电。

左手定则可称“电动机定则”,是判断通电导线在磁场中的受力方向的法则,说的是磁场对电流的作用力,或者是磁场对运动电荷的作用力。

其内容是:将左手放入磁场中,使四个手指的方向与导线中的电流方向一致,那么大拇指所指的方向就是受力方向。

无论是直流发电机还是交流发电机,它们的工作原理都是相同的,区别是直流发电机有换向器,而交流发电机则没有换向器。

适用于电流方向与磁场方向垂直的情况。

右手定则可称“发电机定则”,是判断通电导线周围的磁感线方向或螺线管的南北极的法则,磁场方向,切割磁感线运动,电动势方向,就是感应电流的方向。

其内容是:用右手握住导线,大拇指指向电流的方向,那么四指的环绕方向就是磁感线的方向。

用右手握住螺线管,让四指弯向螺线管中的电流方向,那么大拇指所指的那端就是螺线管的北极。

只适于判断闭合电路中部分导体做切割磁感线运动。

左右手定则的区别和使用方法

左右手定则的区别和使用方法

左右手定则的区别和使用方法
左右手定则是在电磁学和磁学中常用的两个规则,用于描述磁场力和电流之间的关系。

左手定则是用于描述磁力的规则。

当电流流经一条导线时,磁场的方向可以通过左手握住导线,使得大拇指所指的方向与电流方向垂直,其他手指的弯曲方向即表示磁场的方向。

这个定则可以用于解释电磁铁产生的磁场方向,以及导线受到的磁力的方向。

右手定则是用于描述电磁感应的规则。

当导体在磁场中运动时,可以通过右手握住导体,使得大拇指指向导体运动的方向,其他手指的弯曲方向即表示感应产生的电流方向。

这个定则可以用于解释磁感应现象,如发电机中的导体感应电动势。

使用左右手定则时,需要根据具体情况确定电流或导体的运动方向,并使用手指或握住物体的方式来确定磁场的方向或感应电流的方向。

这两个定则是常用的简便方法,在电磁学和磁学中有广泛的应用。

左手定则和右手定则的概念区别

左手定则和右手定则的概念区别

左手定则和右手定则的概念区别
————————————————————————————————作者:————————————————————————————————日期:
左手定则和右手定则的概念区别
左手定则的概念与应用
“左手定则”又叫电动机定则,用它来确定载流导体在磁场中的受力方向。

左手定则规定:伸平左手使姆指与四指垂直,手心向着磁场的N极,四指的方向与导体中电流的方向一致,姆指所指的方向即为导体在磁场中受力的方向。

(洛伦兹力和安培力都是用左手定则来判定的)
使用左手定则的时候,我们不能死板,不能认为左手定则就是判定力的。

比如带电粒子在匀强磁场中偏转时,我们知道B和偏转方向,还可以反过来判断带电粒子带点的正负性。

右手定则的概念和应用
“右手定则”又叫发电机定则,用它来确定在磁场中运动的导体感应电动势的方向。

右手定则规定:伸平右手使姆指与四指垂直,手心向着磁场的N极,姆指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。

在生产实践中,左、右手定则的应用是较为广泛的。

例如,发电机的感应电动势方向是用右手定则确定的;电动机的旋转方向是用左手定则来确定的;我们还用这些定则来分析一些电路中的电磁感应现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左手定则和右手定则的区别及使用方法
左手定则和右手定则的概念与区别是什幺?“力”字朝左边撇,所以左手
判定力的;“电”字朝右边,所以右手判定电的。

具体使用方法如下:
1左手定则的概念与应用“左手定则”又叫电动机定则,用它来确定载流导
体在磁场中的受力方向。

左手定则规定:伸平左手使姆指与四指垂直,手心向着磁场的N极,四指的方向与导体中电流的方向一致,姆指所指的方向即为导体在磁场中受力的方向。

(洛伦兹力和安培力都是用左手定则来判定的)
使用左手定则的时候,我们不能死板,不能认为左手定则就是判定力的。

比如带电粒子在匀强磁场中偏转时,我们知道B和偏转方向,还可以反过来判断带电粒子带点的正负性。

1右手定则的概念和应用“右手定则”又叫发电机定则,用它来确定在磁场
中运动的导体感应电动势的方向。

右手定则规定:伸平右手使姆指与四指垂直,手心向着磁场的N极,姆指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。

在生产实践中,左、右手定则的应用是较为广泛的。

例如,发电机的感应电动势方向是用右手定则确定的;电动机的旋转方向是用左手定则来确定的;我们还用这些定则来分析一些电路中的电磁感应现象。

1右手定则概述电磁学中,右手定则判断的主要是与力无关的方向。

如果
是和力有关的则全依靠左手定则。

即,关于力的用左手,其他的(一般用于。

相关文档
最新文档