《大学物理》(第三版)第16章习题及答案
大学物理学(第三版)课后习题答案解析

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 mv=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm,问击第二次时能击入多深,假定铁锤两次打击解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122mm khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p=,场点到偶极子中心O 点的距离为r ,矢量r与l 的夹角为θ,(见题8-5图),且l r >>.试证P点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PEd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE+++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εq S E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E )(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场dπ4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='EOO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E O P PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)外球壳上的电荷分(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF 、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε=3R r >时 302π4r r Q E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向? 解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rI B πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB产生 01=B CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理 第16章量子力学基本原理-例题及练习题

∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0
大学物理第三版十六章

+ + + + + + + + + + + +
— — — — — — — — — — — — —
极板上电量从 0 —Q 作的总功为
A dA 0
Q
+
q (t ) Q2 dq C 2C
Q2 W A 2C
Q CU
A
B
1 1 2 CU QU 2 2
E
E0
r
介质中电场减弱了,如何产生的?
§15.2 电介质的极化
介质在电场中出现附加电荷称极化 一. 电介质分子可分为有极和无极两类
1. 无极分子
p0
无固有电偶 分子电荷的正、负“重心”重合, 极矩。如:He,Ne, CH4 …
2. 有极分子
p ql
有固有电偶 分子电荷的正、负“重心”分开,
+
+
+ 束缚电荷´
E E0 E '
-
+ + + + + + +
-
+ + + + + + +
自由电荷
E E0 E '
由实验:
极化电荷
U
演示实验图示
r E0 E r
U0
电介质的击穿
外电场不太强时,它只引起电介质的极化, 不破坏其绝缘性能。
外电强很强时,电介质分子中的正负电荷 可能被拉开而成为自由移动的电荷,使电 介质的绝缘性遭到破坏而变成导体。 —— 电介质的击穿 击穿强度(介电强度):某种电介质材料 所能承受的不被击穿的最大电场 强度。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版 北京邮电大学出版社)习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =-② 222a m g m T =-③联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α= 由①、②式消去t ,得 220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=j i v ϖϖϖ(2)m 874134)167(21)4832122(21)21(220j i j i j t a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk e v )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 答: (1)∵ t v m kv a d d =-= 分离变量,得m t k v v d d -=即 ⎰⎰-=v v t m t k vv 00d d mkt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===t t t m k m k e k mv t e v t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k mv t e v x t m k (4)当t=k m时,其速度为 e v e v ev v k m m k 0100===-⋅-即速度减至0v 的e 1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下(2) 2m 对地加速度为 22g a a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a ϖϖϖ+='∴g g g a a a 25422221=+=+'= a a '=arctan θo6.2621arctan ==,左偏上. 2-6一质量为m 的质点以与地的仰角θ=30°的初速0v ϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o 30,则动量的增量为 0v m v m p ϖϖϖ-=∆ 由矢量图知,动量增量大小为0v m ϖ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p ϖϖϖ-=∆方向竖直向上, 大小mg mv mv p =--=∆)(12ϖ碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 作用在质量为10 kg 的物体上的力为i t F ϖ)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j ϖ6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t ϖϖϖϖ10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向, i p I i m p v ϖϖϖϖϖϖ111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则 ⎰⎰+-=+-=-=t t t F v m t m F v m p v m p 000000d )d (,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ, 同理, 12v v ϖϖ∆=∆,12I I ϖϖ= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去) 2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为 j t b i t a r ϖϖϖωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为 )cos sin (j t b i t a m v m p ϖϖϖϖωωω+-== 将0=t 和ωπ2=t 分别代入上式,得 j b m p ϖϖω=1,i a m p ϖϖω-=2,则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t = (2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b a t =代入,得 b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k m m k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv +=③联立①、③解得 12)1(kv v k v -+=④将④代入②,并整理得21)(2v v km T -=于是有km T v v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 km T v v m kT v v 2,221-=+=证毕. 2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F ϖ为恒力, ∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合 J 452421-=--=(2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s k y ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212k mv A A =∆== ③即 222122k k ky =-所以,22=y 于是钉子第二次能进入的深度为 cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n P r k r E /)(=, 试求质点所受保守力的大小和方向.解: 1d )(d )(+-==n r nk r r E r F 方向与位矢r ϖ的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM G r mM G -=地月经整理,得R M M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M Gr M G E P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。
大学物理下册第三版课后答案16电磁感应

习题16GG 上传16-1.如图所示,金属圆环半径为R ,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。
当圆环以恒定速度v在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。
解:(1)由法拉第电磁感应定律i d dtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=; (2)利用:()aab bv B dl ε=⨯⋅⎰,有:22ab Bv R Bv R ε=⋅=。
【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。
不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。
首先用0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 则矩形线圈内的磁通量为:00ln22x axI I l x al dr r xμμππ++Φ=⋅=⎰, 由i d Nd t εΦ=-,有:011()2i N I l d xx a x dtμεπ=--⋅+ ∴当x d =时,有:041.92102()i N I l a v V d a μεπ-==⨯+。
解法二:利用动生电动势公式解决。
由0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=,则:12εεε=-=00411() 1.921022()N I N I al v l v V d d a d d a μμππ--==⨯++。
16-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。
大学物理课后题答案16

习 题 十 六16-1 圆形的平行板电容器,如图所示,极板半径为R ,沿极板轴线的长直导线内通有交变电流,设电荷在极板上均匀分布,且t ωσσsin 0=,忽略边缘效应,求:(1)极板间的位移电流密度;(2)电容器内外距轴线均为 r 的点b 和点a 处的磁感应强度的大小(r <R )。
[解] (1)由位移电流密度公式t ∂∂=D j d 得 t E t ∂∂=∂∂=0d εD j ()t t t t ωωσωσσεεcos sin 10000=∂∂=∂∂= (2)由⎰⎰⎰⋅⎪⎭⎫ ⎝⎛+∂∂=⋅S L d t d S j D l H 得 a 点处,在极板外侧0=∂∂t D ,i d S=⋅⎰⎰S j ()⋅=⋅==22d d d d R R t t q i πσπt ωωσcos 0 所以 t R i r B ωωσπμμπcos 20200⋅⋅==⋅因此 t rR B ωωσμcos 2020= b 点处,在极板之间0=j 200000cos d cos d d r t S t tS L πωωσμωωσμμ⋅=⋅=⋅∂∂=⋅⎰⎰⎰⎰S D l B 所以 t r r t r B ωωσμπωωσμπcos 2cos 2100200=⋅=16-2 上题中,设R =10cm ,充电时极板间电场强度的变化率为12100.5d d ⨯=t E ()s m V ⋅,求:(1)两极板间的位移电流; (2)极板边缘处的磁感应强度。
[解] (1) 20d d d d d R tE I S πε=⋅=⎰⎰S j A 4.11.014.3100.5109.821212=⨯⨯⨯⨯⨯=-(2)极板边缘处应用安培环路定理d 00d d I tS L μμ=⋅∂∂=⋅⎰⎰⎰S D l B d 02I R B μπ=⋅T 108.24.01.02104267d 0--⨯=⨯⨯⨯==πππμI R B16-3 一电容为C 的平行板电容器,两极板间的距离为d ,极板面积为A ,外加交变电压t U u ωsin 0=,求通过电容器两极板之间的位移电流强度。
大学物理下第16章习题详解

第16章习题解答【16-1】解:取固定坐标xOy ,坐标原点O 在水面上(图题16-1示)设货轮静止不动时,货轮上的B 点恰在水面上,则浮力的增量为S ρgy 。
该力与位移y 成正比,方向指向平衡位置,故货轮的自由振动是简谐振动,其运动方程为:0gy S dt yd M 22=+ρ0y MgS dt y d 22=+ρ 根据简谐振动的动力学方程,有:Mg S 2ρω=故s 35.6s 8.910102101022g S M 22T 3334=⨯⨯⨯⨯⨯===πρπωπ【16-2】解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:m 1.0ksin m g l 0==θ(1)(1)A 物体共受三力;重力mg ,支持力N ,张力T 。
不计滑轮质量时,有:kx T =列出A 在任一位置x 处的牛顿方程式:220dt xd m )x l (k sin mg T sin mg =+-=-θθ将①式代入上式,整理后得:0x mkdt x d 22== 故物体A 的运动是简谐振动,且s rad mk/7==ω 由初始条件⎩⎨⎧=-=0υl x ,求得:⎩⎨⎧===πϕml A 1.00,故物体A 的运动方程为:x=0.1cos(7t+π)m(2)当考虚滑轮质量时,两段绳子中张力数值不等,如图题16-2(c )所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221dtxd m T sin mg =-θ (2)对滑轮列出转动方程为:222r2r 1dt xd Mr21r a )Mr 21(J T T ===-β (3)式中,T 2=k(l 0+x) (4) 将③、④代入式②式,有:220dtxd )m 2M ()x l (k sin mg +=+-θ整理得:0x )m 2M (kdt x d 22=++ 可见,物体A 仍作简谐振动,此时圆频率为:s /ra d 7.5m 2Mk =+=ω由于初始条件:x 0=-l 0,υ0=0可知,A 、ϕ不变,故物体A 的运动方程为: x=0.1cos(5.7t+π)m由以上可知:弹簧在斜面上的运动,仍为谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题十六
16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的
m 29.0m μλ=,试求这些星球的表面温度.
解:将这些星球看成绝对黑体,则按维恩位移定律:
3- 红限)波长有多大?
解:(1)已知逸出功eV 2.4=A 据光电效应公式2
2
1m mv hv =A + 则光电子最大动能:
A hc A h mv E m -=-==
λ
υ2m ax k 21
eV
0.2J 1023.310
6.12.41020001031063.6191910
834=⨯=⨯⨯-⨯⨯⨯⨯=---- m 2
m ax k 2
1)2(mv E eU a =
=
∴遏止电势差 V 0.210
6.11023.319
19
=⨯⨯=--a U
此? 1秒钟落到2m 1地面上的光子数为
2
1198347
m s 1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯=
==hc E n λ 每秒进入人眼的光子数为
1
1462192
s 1042.14
/10314.31001.24
--⨯=⨯⨯⨯⨯==d n
N π
16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量. 解:电子的静止质量S J 1063.6,kg 1011.93431
0⋅⨯=⨯=--h m
当 2
0c m h =υ时, 则
p 或
? ε与∴
5)(00=-=-=
υ
υυ
υυυε
h h E k
已知
2.10=λλ
由2.10=∴=υ
υλυc 2.110=υυ则
52
.01
12.110==-=-υυυ
16-9 波长ο
0A 708.0=λ的X 射线在石腊上受到康普顿散射,求在2
π
和π方向上所散射的X 射线波长各是多大? 解:在2
π
ϕ=
方向上:
ο
831342004sin
1031011.91063.622
sin 2Δ⨯⨯⨯⨯⨯==
-=--π
ϕλλλc m h 在子的波长及散射角.
解:反冲电子的能量增量为
20202
202
0225.06.01c m c m c m c m mc E =--=
-=∆
由能量守恒定律,电子增加的能量等于光子损失的能量, 故有
200
25.0c m hc
hc
=-
λ
λ
散射光子波长
ο
12
10
83134
10
34000
A
043.0m 10
3.410
030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=
-=
------λλλc m h h 由康普顿散射公式
sin 0243.02sin 2220ϕϕλλλ∆⨯==
-=h
题16-13图
(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.
16-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?
解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则
]1
1[6.135.12,eV 6.13],111[
2
221n Rhc n
Rhc E E n -
==-=-即
得5.3=n ,只能取整数,
∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是
ο322ο222ο7
7
1221A 6563
36,511~:23A
121634,432111~:12A 1026m 10026.110
097.18989,9
83111~:13===⎤⎢⎡-=→===⎥⎦
⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦
⎤⎢⎣⎡-=→-R R n R R R n R R R n λυλυλυ从从从
ο19
83424ο
10
19834A
4872106.1)85.04.3(1031063.6A
6573m 10
65731060.1)51.14.3(10331063.6=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=
∴
∴-----E E hc βλ
基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λ
υhc
E E h =
-=14
Hz 1008.310
626.6106.1)85.06.13(15
34
1914⨯=⨯⨯⨯-=-=--h E E υ 16-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]1
1[6.1321=-
=-n
E E n 26
.1309.126.13n
=-
51.16
.1309.12.1366.132=
-=n , 3=n
∴
5
3110
0.71011.9⨯⨯⨯-mv 16-19 光子与电子的波长都是2.0ο
A ,它们的动量和总能量各为多少? 解:由德布罗意关系:2
mc E =,λ
h
mv p =
=波长相同它们的动量相等.
1-2410
34
s m kg 103.310
0.21063.6⋅⋅⨯=⨯⨯==---λh
p 光子的能量
eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯===
=--pc hc
h λ
υε
电子的总能量 2202)()(c m cp E +=
,eV 102.63⨯=cp
而 eV 100.51MeV 51.06
2
0⨯==c m ∴ cp c m >>2
0 ∴ MeV 51.0)()(202202==+=
c m c m cp E
粒,求该解:光子的能量 λ
υhc
h E =
=
由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ
∆=
∆2
hc
E
由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则
λ
λτ∆=∆=∆=c E h t 2
s 103.510
10103)104000(8
10
48210----⨯=⨯⨯⨯⨯= 16-23 一波长为3000ο
A 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.
解: 光子λ
h
p =
,λλ
λλ
∆=
∆-
=∆2
2
h
h
p
由测不准关系,光子位置的不准确量为
? 则21、∴ x ∆∴2(
a
a
a
a a a a a a
a 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ
16-27 粒子在一维无限深势阱中运动,其波函数为:
)sin(2)(a
x n a x n πψ=
)0(a x << 若粒子处于1=n 的状态,在0~a 4
1
区间发现粒子的概率是多少? 解:x a
x a x w d sin 2d d 22
πψ== ∴ 在4
~
0a
区间发现粒子的概率为:
归一化即∴几率密度]4cos 1[12sin 222
2
x a
a x a a w ππψ-==
= 令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x a
π, ,2,1,0,4==k k x a
ππ
∴ 4
a
k x =
又因a x <<0,4<k ,
∴当4a x =和a x 43=时w 有极大值, 当2
a x =时,0=w . ∴极大值的地方为4a ,a 4
3处 16-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是
个,L 在
题16-31图
磁场为Z 方向, l Z m L =,0=l m ,1±,2±,3±,4±.
∴ )4,3,2,1,0,1,2,3,4(----=Z L
16-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态. 解: (1)0=L (2)1=l , 2)11(1=
+=L (3)2=l 6)12(2=+=
L (4)3=l 12)13(3=+=L
16-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对
这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.
解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.
s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n
)2,3(3==l n d ,代入4.4)27.03(=⨯+
s 4低于d 3能级,所以先填入s 4壳层.。