认识一元二次方程优秀教案

合集下载

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。

元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。

本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。

教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。

还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。

同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。

因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

认识一元二次方程教案

认识一元二次方程教案

认识一元二次方程教案【篇一:2015届九年级数学上册 2.1 认识一元二次方程(第一课时)教学设计 (新版)北师大版】1.认识一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2、会识别一元二次方程及各部分名称。

从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。

三、教学过程分析本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。

第一环节:自主探究问题一活动内容:出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?活动目的:提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。

教学要求与效果:教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的矩形地面、条形区域和地毯区域吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。

一元二次方程数学教案

一元二次方程数学教案

一元二次方程数学教案一元二次方程数学教案1第1教时教学内容: 12.1 用公式解一元二次方程(一)教学目标:知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.情感与态度目标:由知识________于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

教学重、难点与关键:重点:一元二次方程的意义及一般形式.难点:正确识别一般式中的“项”及“系数”。

教辅工具:教学程序设计:程序1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了__的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.学生看投影并思考问题通过章前引例和节前引例,使学生真正认识到知识________于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在__中处于非常重要的地位.探究新知11.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.练习:指出下列方程,哪些是一元二次方程?(1)x(5x-2)=x(x+1)+4x2;(2)7x2+6=2x(3x+1);(3)(4)6x2=x;(5)2x2=5y;(6)-x2=04.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.讨论后回答学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,独立完成加深理解学生试解问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫反馈训练应用提高练习1:教材P.5中1,2.练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.小结提高(四)总结、扩展引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?1.将实际问题用设未知数列方程转化为数学问题,体会知识________于实际以及转化为方程的思想方法.2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.学生讨论回答布置作业1.教材P.6 练习2.2.思考题:1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).反思一元二次方程数学教案2【教学目标】(1)理解一元二次方程的概念(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

认识一元二次方程教学设计

认识一元二次方程教学设计

认识一元二次方程教学设计第一篇:认识一元二次方程教学设计认识一元二次方程教学设计教学目标【知识与技能】探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.【过程与方法】在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.【情感态度】通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【教学重点】一元二次方程的概念.【教学难点】如何把实际问题转化为数学方程.教学过程一、情景导入,初步认知问题1:已知一矩形的长为200cm,宽150cm.在它的中间挖一个圆,使剩余部分的面积为原矩形面积的34,求挖去的圆的半径xcm应满足的方程.(π取3)问题2:据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆,求该市两年来汽车拥有量的年平均增长率x 应满足的方程.你能列出相应的方程吗?【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.二、思考探究,获取新知1.对于问题1:找等量关系:矩形的面积—圆的面积=矩形的面积×3/4 列出方程:200×150-3x2=200×150×3/4 ① 对于问题2:等量关系:两年后的汽车拥有量=前年的汽车拥有量×(1+年平均增长率)2 列出方程:75(1+x)2=1082②2.能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:①化简,整理得x2-2500=0 ③ ②化简,整理得25x2+50x-11=0 ④3.讨论:方程③、④中的未知数的个数和次数各是多少?【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2次.【归纳结论】如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是常数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项.4.让学生指出方程③,④中的二次项系数、一次项系数和常数项.【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.三、例题讲解[例1]判断下列方程是否为一元二次方程?(1)3x+2=5y-3(2)x²=4(3)(x-2)/(x+1)=x²(4)x²-4 =(x+2)²[例2]将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)6y²=y(2)-(x-2)(x+3)=82(3)(23+x)(23-x)=(x-3)[例3]方程(2a-4)x2-2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?四、课堂练习下列方程是否为一元二次方程?若是,指出其中的二次项系数、一次项系数和常数项(1)4x 2 =49(2)5x 2-2=3x(3)0.01t²=2t(4)(9y-1)(2y+3)=18y²+1(5)(2x-3)(3x+2)=-6x²五、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.1”中第1、2、6题.第二篇:认识一元二次方程教学设计认识一元二次方程教案一、教学目标知识与能力1、使了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;2、应用一元二次方程概念解决一些简单题目.过程与方法.通过探究实际问题来发现新知,培养学生的观察能力和思维能力。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案•相关推荐一元二次方程优秀教案(通用11篇)作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么大家知道正规的教案是怎么写的吗?以下是小编整理的一元二次方程优秀教案,仅供参考,大家一起来看看吧。

一元二次方程优秀教案篇1教学目标1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1.教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

优质课 精品教案 (省一等奖)《一元二次方程》公开课教案

优质课 精品教案 (省一等奖)《一元二次方程》公开课教案

21.1 一元二次方程教学过程设计[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。

本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。

由于剪的方法不同,展开图的形状也可能是不同的。

学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。

通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。

24.1 圆 (第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入〔学生活动〕请同学们口答下面两个问题.O BAC1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角.〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如下图的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如下图的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC 的一边BC 是⊙O 的直径,如下图 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=12∠AOC 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程.老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:OBACD半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD三、稳固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin c C =2R ,即sinA=2aR,sinB=2b R ,sinC=2c R,因此,十清楚显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC =2R∴sin a A =sin b B =sin cC=2R五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业1.教材P95 综合运用9、10、 [教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】

一元二次方程的相关教案【优秀3篇】元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。

因此一元二次方程便成为了方程中研究的重要内容。

一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。

因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。

再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。

初探新知中,我将学生们分成两组,分别对二次项系数为1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。

我在这些方程中安排了两个无理根方程。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:一元二次方程 第一课时教学目标:1、理解和掌握一元二次方程的概念及一般形式。

2.正确认识二次项系数、一次项系数及常数项.3.会根据题意列一元二次方程,体会方程的模型思想。

教学重点:一元二次方程的概念及一般形式。

教学难点:1.由实际问题向数学问题的转化过程。

2.正确识别一般式中的“项”及“系数”。

教法:1.创设以学生为中心,采用小组讨论,大组竞赛等多种形式,合作探究。

利用投影仪辅助教学,突破教学难点2、让学生自己去尝试发现问题,总结方法,而不是被动的回答老师的问题、接受老师的答案。

3、授课中通过一系列问题,给学生充分的时间尝试和思考,充分表达自己的想法,使学生自主学习真正成为可能,在此基础上解决问题并得出结论。

学法:本节课充分发挥学生的主观能动性。

学生通过解决实际问题的解决中发现新问题,引发认知冲突,进而通过独立思考、合作交流等方式,充分经历“观察——尝试——解决——归纳”的全过程,学生充分体验到研究问题,解决问题,最后得出一般结论的过程,加深学生对一元二次方程的认识及能力。

同时也促进了学生的思维能力的提高。

一、导入新课:数学之所以其乐无穷,是因为它能解决许多实际问题,数学家迪卡尔就曾经提出过一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为方程问题。

只要解决了方程,一切问题都将迎刃而解,现在就让我们一起走入方程大家庭,重温我们那些熟悉的小伙伴。

【设计意图】以一个伟大的设想,引起学生的学习兴趣.二、方程大家庭:①2x+3=0,② 2x+3y=0,③53x2=+ 这是我们学过的哪些方程?能够用元和次来描述的都是整式方程。

其中一元一次方程:只含有 个未知数,未知数的次数是 次的方程【设计意图】引导学生复习一元一次方程的概念,为后面学习一元二次方程的有关内容做好铺。

过渡语:下面让我们继续畅游在方程的大家庭中,不忘老朋友,结识新朋友。

一起走近生活、 探究新知、分享快乐。

三、走近生活 探究新知 分享快乐1、问题1 请列出方程:幼儿园活动教室矩形地面的长为8m ,宽为5m ,现准备在地面正中间铺设一块面积为182m 的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?如果设所求的宽度为xm,那么你能列出怎样的方程?则可列方程为: 整理化简得: .2、问题2 :如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,当梯子的顶端下滑1m 时,梯子的底端向外滑动多少米?设梯子的底端向外滑动xm, 那么你能列出怎样的方程?(1)把实际问题数学化,当看到直角三角形中斜边为10,直角边为8,会想到什么(另一直角边为6,大家对直角三角形的 三边的关系掌握得非常熟练)(2)大家继续观察在梯子滑动的过程中梯子的长度是否变化?梯子顶端下滑1m 后,变为7m,构造出一个新的直角三角形,由勾股定理可得方程 整理化简得: .【设计意图】通过问题串引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位3、合作探究解决问题:要求小组之间把上述问题相互讨论解决由学生观察归纳这3个方程的特征,给出名称并类比一元一次方程的定义,得出一元二次方程的定义.活动中教师应重点关注:(1) 引导学生观察所列出的2个方程的特点;(2) 让学生类比前面复习过的一元一次方程定义得到一元二次方程定义.(3) 强调定义中体现的3个特征:①整式;②一元;③2次.由学生以抢答的形式来完成此题,并让学生找出错误理由.4、你所列的方程 ①②有何特点?(类比前面的一元一次方程)一元二次方程的定义:两边都是 ,只含有 未知数,并且未知数的最高次数是 次,这样的方程叫做一元二次方程.【设计意图】:学生已熟练掌握了一元一次方程等概念,所以从未知数的个数及最高次数提问,引导学生自主观察、比较、归纳在概念教学中类比是帮助学生正确理解概念的有效方法。

4、一元二次方程的一般形式 其中二次项是 一次项是 常数项是二次项系数一次项系数常数项问题:说出2x 2-13x+11=0二次项是 一次项是 常数项是 注意符号想一想:为什么要限制a ≠0,b 、c 可以为零? x8 76m 101当b=0时方程为 当b ≠0 c=0时方程为 当b=0,c=0时方程为【强调】方程ax 2+bx+c=0只有当a ≠0时才叫一元二次方程,如果a=0,b ≠0时就是一元一次方程了。

所以在一般形式中,必须包含a ≠0这个条件。

此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.小结:学习了一元二次方程的定义、了解了一元二次方程的一般形式。

四、精讲点拨:要求: 1、先自已独立做,再小组合作解决问题。

2、小组内成员要积极发言,并推选中心发言人。

【设计意图】这组题训练学生解题过程的严密性,故采取学生亲自动手做,及时巩固所学知识。

学生活动:由学生独立完成是为了培养学生的解方程的速度和能力,及时发现问题,及时解决。

例1下列方程是一元二次方程的是( )(1)3x+2=5-3y (2) 42=x (3)x x x =-+-112(4)22)2(4+=-x x 慧眼找错:判断下列方程是否为一元二次方程:③ 10x 2=9 ( ) ②x 2= x 2-4x ( )③2xy-7=0 ( ) ④ 0112=-x x( ) ⑤ a x 2 + b x + c=0 自己编一个一元二次方程(说出二次项、一次项、常数项)3、例2:把下列方程化成一般形式,并写出它的二次项系数,一次项系数和常数项.【设计意图】 通过例2的学习,一是使学生进一步掌握一元二次方程的一般形式,并注意强调二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号;二是使学生进一步了解方程的变形过程。

注意:1.要先化成 ax ²+bx+c=0 (a ≠0)的形式。

2.若方程中含有整式乘法,要先利用法则展开再进行等式变形。

3.在写一元二次方程一般式时,通常按未知数次数从高到低排列,即先写二次项,再写一次项,最后是常数项。

写系数时,要带上前面的符号。

4、一般情况下,二次项系数应化为正数。

4、抢答:2(1)954x x =-2(2)3123y y +=2(3)45x =【设计意图】:此问题采取抢答的形式,提高学生学习数学的兴趣和积极性。

其目的是为了及时巩固一元二次方程的概念,同时让学生知道判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断。

过渡语:我们掌握了一元二次方程的定义,化成一般形式后能找到二次项、一次项、常数项,那能不能根据定义确定字母系数的值呢?在学习的过程中,你不是孤单的,总有热心的小伙伴与你一起前行,下面大家就充分利用集体的智慧来解决问题。

五.比一比,哪个小组合作最佳?1、已知关于x的方程(k2-1)x2 +2(k-1)x+3=0,(1)你能写出一个k的值,使原方程为一元二次方程吗?这样的K值有多少个?K可以取任意实数吗?若不是,K要受到什么条件的限制?(2)你能写出一个K的值,使原方程为一元一次方程吗?这样的K值唯一吗?【设计意图】:此题仍涉及字母系数问题,难度加大,通过小组合作以达到让学生掌握本节课重难点的目的.过渡语:通过这个题反映出大家对定义掌握的很好,其实只我们牢固掌握所学的基本知识,就能解决遇到的问题。

下面我们通过例3来再次规范过程。

2、例3:方程(a—2)x|a|—bx+3=0, a,b为何值,此方程为一元二次方程?此方程为一元一次方程?六、【体会分享畅谈收获】,你的收获,感悟,困惑及预测方向1、a≠0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。

2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。

3、实际问题数学问题方程思想的应用【设计意图】:引导学生回顾本节课的学习内容,加强知识的形成。

结束语:同学们非常棒,已经用自己的实际行动验证了数学家迪卡尔先生的话,学会了用方程思想解决生活中的实际问题,这也说明大家都具有成为数学家的潜质,但想成为真正的数学家还需要不断的努力、探索。

剩下的时间,让我们静下心来把今天学到的知识在脑子中梳理一遍,对照着老师给的堂清自测,来检验一下本堂课学习成果。

七、堂清检测1、请问下列方程哪些是一元二次方程?若是,指出各项的系数(1)2x 2-5xy +6y =0 (2)2x 2- x31-1 =0 (3)02y 2(4)x 2+2x -3=1+x 2 2、你能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?设五个连续整数中第一个数为x, 则后面四个数依次为_____、_____ _____、______。

根据题意可得方程为:3.把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:4、选做:方程(m-2)x |m|+3mx+1=0是关于x 的一元二次方程,则 m=【设计意图】通过检测反馈,发现学生存在的问题,进一步巩固本节课的知识点八、板书设计:一元二次方程1.概念 3、根据定义确定字母系数的值(8-2x)(5-2x)=0 例3要素:1、整式2、一元3、二次2、一般形式:a x 2 +b x + c=0(a ≠0, a,b,c 为常数)注意:1、2、【设计意图】板书是教学的聚焦点,在教学中起着画龙点睛的作用,更能展示教学思路,引导思方 程 一般形式 二次项系数 一次项系数 常数项3x 2=5x-1(x+2)(x -2)=64x-x 2=0维的方法,九、作业布置:必做题:配套练习册P60-62 选做题:5作业目的:1、进一步巩固一元二次方程的定义及一般形式。

2、一元二次方程的实际应用。

作业要求:(1)独立用心完成,保证准确率。

(2)书写要正规、认真。

作业指导:先巩固课本上学习的内容再准确作业。

【设计意图】分层次布置作业,尊重学生的个体差异,激发学生学习积极性。

结束语:给我最大快乐的,不是已懂的知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。

希望同学们可以在学数学、用数学这条路上一直快乐前行。

相关文档
最新文档