一元二次方程知识梳理
一元二次方程复习知识点梳理

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x+4)中,不能随便约去x +4。
初中数学一元二次方程知识点汇总,基础全面考前必掌握

初中数学一元二次方程知识点汇总,基础全面考前必掌握一、一元二次方程的定义及一般形式:只含有一个未知数x,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程。
一元二次方程的一般形式:ax^{2}+bx+c =0 (a≠0),其中a 为二次项系数,b为一次项系数,c为常数项。
因此,一元二次方程必须满足以下3个条件:① 方程两边都是关于未知数的等式② 只含有一个未知数③ 未知数的最高次数为2如: 2x^{2}-4x+3=0 , 3x^{2}=5 为一元二次方程,而像就不是一元二次方程。
二、一元二次方程的特殊形式(1)当b=0,c=0时,有: ax^{2} =0,∴ x^{2} =0,∴x=0(2)当b=0,0≠0时,有: ax^{2}+c=0 ,∵a≠0,此方程可转化为:①当a与c异号时, -\frac{c}{a}>0 ,根据平方根的定义可知,x=±\sqrt{-\frac{c}{a}} ,即当b=0,c≠0,且a与c 异号时,一元二次方程有两个不相等的实数根,这两个实数根互为相反数。
②当a与c同号时, -\frac{c}{a}<0 ,∵负数没有平方根,∴方程没有实数根。
(3)当b≠0,c=0时,有 ax^{2}+bx=0 ,此方程左边可以因式分解,使方程转化为x(ax+b)=0,即x=0或ax+b=0,所以x1=0,x2=-b/a。
由此可见,当b≠0,c=0时,一元二次方程 ax^{2}+bx=0 有两个不相等的实数根,且两实数根中必有一个为0。
三、一元二次方程解法:1.第一步:解一元二次方程时,如果没有给出一元二次方程的通式,先将其化为一元二次方程的通式,再确定求解的方法。
2. 解一元二次方程的常用方法:(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。
解法步骤:①把常数项移到等号右边, ax^{2}=-c ;②方程中每项都除以二次项系数, x^{2}=-\frac{c}{a} ;③开平方求出未知数的值:x=±\sqrt{-\frac{c}{a}}(2)因式分解法:将一元二次方程化为通式后,如果方程左边的多项式可以因式分解,就可以用这种方法求解。
一元二次方程的解法(知识梳理)

一元二次方程的解法
1、知识要点:一元二次方程和一元一次方程都是整式方程
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
2、方法
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±
.
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+
x=-
方程两边分别加上一次项系数的一半的平方:
x2+
x+(
)2=-
+(
)2方程左边成为一个完全平方式:(x+
)2=
当b2-4ac≥0时,x+
=±
∴x=
(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=
(b2-4ac≥0)就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
一元二次方程知识点

一元二次方程知识点归纳1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点: (1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0)3. (重点)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
练习:知识点1.只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
1、判别下列方程是不是一元二次方程,是的打“√”,不是的打“×”,并说明理由.(1)2x 2-x-3=0. (2)4y -y 2=0. (3) t 2=0. (4) x 3-x 2=1. (5) x 2-2y-1=0. (6) 21x-3=0.(7)x x 32 =2. (8)(x+2)(x-2)=(x+1)2. (9)3x 2-x 4+6=0. (10)3x 2=4x-3. 1、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是 ( ) (A )2(B )-2(C )0(D )不等于22、已知关于x 的方程()()03122=+-++p x n x m ,当 时,方程为一次方程;当 时,两根中有一个为零a 。
3、已知关于x 的方程()2220mm x x m --+-=:(1) m 为何值时方程为一元一次方程; (2) m 为何值时方程为一元二次方程。
第十七章_一元二次方程知识点

第十七章 一元二次方程知识点第一节 一元二次方程的概念一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.三个条件:(1)是整式方程(2)含有一个未知数(3)未知数的最高次数是2,三个条件缺一不可。
一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.把一元二次方程化成一元二次方程的一般形式时,常要利用去括号、移项、合并同类项等步骤,同时注意项与项的系数。
一元二次方程的解叫做一元二次方程的根第二节 一元二次方程的解法知识点1 特殊的一元二次方程的解法直接开平方法运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.由应用直接开平方法解形如x 2=p (p ≥0),那么x=±mx+n )2=p(p ≥0),那么mx+n=±因式分解法知识点2 一般的一元二次方程的解法1. 配方法:解方程ax 2+bx+c=0 (a ≠0)的一般步骤是:2.一元二次方程的求根公式问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1=2b a -,x 2=由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子x=2b a -就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.3 .一元二次方程根的判别式求根公式:b 2-4ac>0以一元一次方程的x 1=2b a -x 1=2b a-,即有两个不相等的实根.当b 2-4ac=0时,•,所以x 1=x 2=2b a-,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(结论)(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=2b a -,x 2=2b a -.(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=2b a.(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.第三节一元二次方程的应用知识点1二次三项式的因式分解1、二次三项式形如ax2+bx+c(a≠0)的多项式叫做x的二次三项式2、二次三项式因式分解的公式如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1、x2,则.从而得到二次三项式因式分解公式:ax2+bx+c=a(x-x1)(x-x2)(a≠0)条件对于二次三项式当△=b2-4ac≥0时,能分解因式;当△=b2-4ac<0时,不能分解因式.3、用公式法分解二次三项式的步骤(1)求二次三项式ax2+bx+c所对应的一元二次方程ax2+bx+c=0的两根x1、x2.(2)将求得的x1、x2的值代入因式分解的公式ax2+bx+c=a(x-x1)(x-x2)即可.说明:(1)在二次三项式的因式分解时,注意不要丢掉公式中的二次项系数a.(2)要注意公式中x1、x2前面的符号和x1、x2本身的符号不要混淆.(3)把x1、x2的值代入公式后,能化简整理的可以化简整理.1、二次三项式的因式分解例1、;(2)-4y2+8y-1.分析:这两个二次三项式都需要用公式法分解因式.解:(1)方程的根是(2)方程-4y2+8y-1=0的两根是点拨:(1)解方程时,如果二次项系数是负数,一般可将其化为正数再解,这样可提高解方程的准确性,如解-4y2+8y-1=0可化为4x2-8y+1=0再解;(2)写出二次三项式的分解因式时,不要漏掉第一个因数“-4”.(3)把4分解为2×2,两个2分别乘到每个括号内恰好能去掉两个括号内的分母,从而使分解式得到简化,要注意学习这种变形的技巧和变形过程中符号改变.2、形如Ax2+Bxy+Cy2的因式分解例2、分解因式5x2-2xy-y2分析:形如Ax2+Bxy+Cy2的多项式叫做关于x,y的二元二次多项式,我们可以选择其中一个变元作为未知数,另一个就看作已知数,这样一来,就可将多项式Ax2+Bxy+Cy2看作二次三项式来分解,如本题可看作关于x的二次三项式,其中a=5,b=-2y,c=-y2.解:关于x的方程5x2-2xy-y2=0的根是..点拨:本题将y视为常数,是利用公式法分解因式的需要,即把x视为主元,称为“主元法”,这样便于用公式解题.例3、分解因式3x2y2-10xy+4;分析:将3x2y2-10xy+4转化为关于xy为元的二次三项式,实际上是利用换元法进行因式分解.解:关于xy的方程3(xy)2-10xy+4=0的根是,.3、二次三项式因式分解的灵活运用例4、二次三项式3x2-4x+2k,当k取何值时,(1)在实数范围内能分解;(2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?分析:(1)二次三项式在实数范围内能因式分解的条件是方程有实数根,即△=b2-4ac≥0;(2)不能分解的条件是△<0;(3)△=0时,二次三项式是完全平方式.解:△=(-4)2-4×3×2k=16-24k(1)当△≥0时,即16-24k≥0,时,二次三项式3x2-4x+2k在实数范围内能分解因式;(2)当△<0时,即16-24k<0,时,3x2-4x+2k不能分解因式;(3)当△=0时,即16-24k=0,时,3x2-4x+2k是一个完全平方式.当时,例5、已知二次三项式9x2-(m+6)x+m-2是一个完全平方式,试求m的值.分析:若二次三项式为一个完全平方式,则其判别式△=0.解:对于二次三项式9x2-(m+6)x+m-2,其中a=9,b=-(m+6),c=m-2,∴△=b2-4ac=[-(m+6)]2-4×9×(m-2)=m2-24m+108.∵原二次三项式是一个完全平方式,∴△=0,即m2-24m+108=0,解得m1=6,m2=18.故当m=6或m=18时,二次三项式9x2-(m+6)x+m-2是一个完全平方式.点悟:解题规律是:若b2-4ac=0,则二次三项式ax2+bx+c(a≠0)是完全平方式;反之,若ax2+bx +c(a≠0)是完全平方式,则b2-4ac=0.知识点2 实际应用。
一元二次方程知识点整理

一元二次方程一、本节学习指导本节中我们要注意一元二次方程成立的条件,填空题最青睐这简单而又易忽视的知识。
其次就是根与系数的关系(韦达定理)、判别式,求根公式,这些需要我们重点记忆。
本节有配套学习视频。
二、知识要点1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:ax2+bx+c=0 (a≠0)其中:ax2叫做二次项,bx叫做一次项,c叫做常数项a是二次项系数,b是一次项系数2、一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac△=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2△=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2△=b2-4ac<0 <====> 方程没有实数根。
注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<03、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。
ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有:因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。
注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。
5、一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。
三、经验之谈:对于韦达定理的文字描述希望同学们能理解,试着把二次项系数化1来观察一下。
求根公式也要牢记于心,使用很广泛。
《一元二次方程》知识梳理及经典例题

《一元二次方程》知识梳理及经典例题【知识梳理】考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:ax2+bx+c=0(a≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:x2=m(m≥0),⇒x=±√m对于(x+a)2=m,(ax+m)2=(bx+n)2等形式均适用直接开方法类型二、因式分解法:(x−x1)(x−x2)=0⇒x=x1,或x=x2方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如(ax+m)2=(bx+n)2,(x+a)(x+b)=(x+a)(x+c),x2+2ax+a2=0类型三、配方法ax2+bx+c=0(a≠0)⇒(x+b2a )2=b2−4ac4a2在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
类型四、公式法⑴条件:(a≠0,且b2−4ac≥0)⑵公式:x=−b±√b2−4ac2a,(a≠0,且b2−4ac≥0)类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。
.考点四、根的判别式b2−4ac根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
考点五、应用解答题⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题考点六、根与系数的关系⑴前提:对于ax2+bx+c=0而言,当满足①a≠0、②Δ≥0时,才能用韦达定理。
⑵主要内容:x1+x2=−ba ,x1x2=ca⑶应用:整体代入求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“一元二次方程”知识梳理
1一元二次方程
(1)概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
(2)一般形式:
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.
3一元二次方程根的判别式
式子b²-4ac 叫做一元二次方程ax²+bx+c=0根的判别式,通常用希腊字母Δ表示,即Δ=b²-4ac.
(1)概念:如果x²=4,则
即x=±2,像这种根据平方根的意义直接开方求一元二次方程解的方法叫做直接开方法.
(2)直接开方法解一元二次方程的一般步骤:
①将方程转化为x²=p或(mx+n)²=p(p≥0)的形式(即平方项的系数化为1);
②分情况求解:
当p=0 时,x₁=x₂=0;mx+n=0(再进一步求出x的值);
当p<0 时,方程无实数根.
(1)概念:通过配成完全平方形式来解一元二次方程的方法.
(2)配方法解一元二次方程的一般步骤:
6公式法解一元二次方程
(1)概念:解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法.
(2)求根公式:当Δ≥0时,方程ax²+bx+c=0(a≠0)的实数根可写为
的形式,这个式子叫做一元二次方程ax²+bx+c=0的求根公式.
(3)公式法解一元二次方程的一般步骤:
①将方程化为一般形式,并确定a,b,c 的值;
②求出判别式Δ=b²-4ac 的值,判断根的情况;
③当Δ≥0时,把a、b、c 的值代入求根公式
(4)一元二次方程求根公式的推导过程
一元二次方程的求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax²+bx+c=0(a≠0)的过程.
具体过程如下:
(1)概念:先因式分解,使方程化为两个一次因式的乘积等于0的形式,再使这两个一次因式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法.
(2)因式分解法解一元二次方程的一般步骤:
用文字表述为:一元二次方程两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.。