电压跟随器的作用
电源反馈端加电压跟随器的作用

电源反馈端加电压跟随器的作用电压跟随器输入阻抗很大,输出阻抗很小,这样可以把采样电阻从反馈环路参数中分离出去.< Q3>今天听同学的答辩,发现自己最基本的跟随器、同相放大、反向放大都要分不清了,总结一下。
一、反相比例运算电路反相比例运算电路如图所示。
输入电压通过电阻R作用于集成运放的反相输入端,故输出电压与反相;电阻跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈;同相输入端通过电阻接地,为补偿电阻,以保证集成运放输入级差分放大电路的对称性,其值为=0时反相输入端总等效。
电阻,即=R//Rf根据理想运放在线性区“虚短路”和“虚断路”的特点有:=0(p、n电压虚短)ip=in=0 (p、n电流虚短)集成运放两个输入端的电位均为零,但由于它们并没有接地,故称之为“虚地”。
节点N的电流方程为由于N点虚地(=0),整理得出与成比例关系,比例系数为,负号表示与反相。
该电路的闭环电路放大倍数为:/=若,则1,即,这时电路为倒相器。
二、同相比例运算电路将反相比例运算电路中的输入端和接地端互换,就得到同相比例运算电路,如图所示。
电路引入电压串联负反馈,故运放工作在线性区。
根据“虚短”和“虚断”的概念,集成运放的净输入电压为零。
即说明集成运放有共模输入电压。
净输入电流为零(即),因而,即表明与同相且大于。
同相比例运算电路具有高输入电阻、低输出电阻的优点,但有共模输入,所以为了提高运算精度,应当选用高共模抑制比的集成运放。
三、电压跟随器如图所示,若将输出电压的全部反馈到反相输入端,就构成电压跟随器。
电路引入了电压串联负反馈,其反馈系数为1。
由于,故输出电压与输入电压的关系为Uo=Ui理想运放的开环差模增益为无穷大,因而电压跟随器具有比射极输出器(共集接法的电路,信号从基极输入、射极输出,特点是高输入阻抗、低输出阻抗、输入输出信号同相位)好得多的跟随特性。
综上所述,对于单一信号作用的运算电路,在分析运算系关时,应首先列出关键节点的电流方程,所谓关键节点是指那些与输入电压和输出电压产生关系的节点,如N点和P点;然后根据“虚短”和“虚断”的原则,进行整理,即可得输出电压和输入电压的运算关系。
电压跟随器的作用与特点

电压跟随器的作用与特点1.作用(1)缓冲放大作用:电压跟随器可以将输入信号的电压进行放大,同时可以保持输出电压与输入电压一致,避免由于负载电流而导致输出电压的波动。
(2)消除输入信号源对输出电压的影响:当输入信号源的电阻较大时,电压跟随器可以消除因负载电流变化而引起的输出电压波动,确保输出电压的稳定性。
(3)提供恒定的电阻特性:电压跟随器可以提供一个恒定的输出电阻,使得它的输出和输入信号源连接的负载之间的电压不受电阻的变化影响,从而保证输出电压的稳定性。
(4)提供高输入电阻:电压跟随器通常具有较高的输入电阻,可以有效地减小输入信号源的电流负载,避免对输入信号源产生影响。
2.特点(1)高输入阻抗:电压跟随器的输入阻抗一般比较高,能够有效地避免对输入信号源造成电流负载,提高输入信号源与电压跟随器之间的匹配性。
(2)恒定的输出电压:电压跟随器能够保持输出电压与输入电压一致,不受负载电流变化的影响。
即使负载变化很大,输出电压仍然能够保持在一个恒定的水平上。
(3)低输出阻抗:电压跟随器的输出阻抗一般比较低,能够提供稳定的输出电流,有效地减小输出电压的波动,使其更适合驱动负载。
(4)宽带特性:电压跟随器具有很宽的频带特性,能够有效地传递高频信号,适用于需要处理高频信号的应用。
(5)低失真:电压跟随器通常具有较低的非线性失真和有限的相位延迟,能够保证输入信号和输出信号之间的准确性和一致性。
总之,电压跟随器是一种常用的电子元件,主要用于信号放大和电压稳定等应用。
它具有高输入阻抗、恒定的输出电压、低输出阻抗、宽带特性和低失真等独特的特点。
在实际应用中,根据具体的要求和条件选择适合的电压跟随器,可以有效地改善信号质量、提高电路性能和稳定性。
电压跟随器的结构

电压跟随器的结构
电压跟随器是一种常用的电路,它的主要作用是在输入电压发生变化时,输出电压也跟随变化,保持相同的变化趋势。
这种电路通常由一个差动放大器和一个输出级组成。
差动放大器通常由两个晶体管或运算放大器组成。
其中一个晶体管或运算放大器被连接到输入信号,另一个被连接到反馈回路。
这样做的目的是使输出信号与输入信号之间存在差异,从而产生放大效果。
输出级通常由一个晶体管或功率放大器组成。
该晶体管或功率放大器的基极或控制端被连接到差动放大器的输出端,而其集电极或负载端则被连接到负载上。
这样做的目的是将差动放大器产生的小信号转换为能够驱动负载的大信号。
为了保持稳定性和减少噪声干扰,电压跟随器通常还包括滤波电容和稳压二极管等元件。
滤波电容用于去除高频噪声,稳压二极管则用于保持输出电压稳定不变。
总之,电压跟随器的结构包括差动放大器、输出级、滤波电容和稳压二极管等元件。
这种电路可以广泛应用于自动控制、信号处理和测量等领域。
电压跟随器的作用(共10篇)

电压跟随器的作用(共10篇)电压跟随器的作用(一): 电压跟随器的作用是什么,主要原理是什么1、电压跟随器的输入电压与输出电压大小和相位一样.电压跟随器的输入阻抗很大,输出阻抗很小,可以看成是一个阻抗转换的电路(低频),这样可以提高原来电路带负载的能力,(不知道这样讲能不能理解).也就是,假如原来的电路输出阻抗比较大,而所加载的电阻小(负载大,电流大),压降也会比较大.这是加电压跟随器,就可以解决这个问题.2、原理.电压跟随器有三极管放大电路,也有运放构成,各自的原理有所不一样,可以自己查阅一下相关模电教材和运放的教材.还有什么不理解,再回答.电压跟随器的作用(二): lm339 做电压跟随器的电路是怎样的LM339是电压比较器,不适合做电压跟随器,适合做电压跟随器的是运放,如LM324,LM358.最简单的电压跟随器电路:电压跟随器的作用(三): 电压跟随器外面的反馈电阻一般有多大啊怎么计算的输入端的电压最大只有36V.应该是远远大于吧?电压跟随器的反馈电阻不用于确定增益,从这一点上说可以任意,只要远小于运放输入阻抗就行.如果是很精密的直流放大,还需要考虑2个输入端的阻抗平衡,也就是应该等于+输入端的等效阻抗.是“远远小于”,否则就不会“跟随”了.电压跟随器的作用(四): 射极跟随器的电压放大倍数接近1,为什么接上射极跟随器后,电路的总电压放大倍数比三极管按共集方式连接.就是基极与发射极共地,基极输入信号,发射极输出.动态电压放大倍数小于1并接近1,但是具有电流放大作用,所以有功率放大作用.它的输入阻抗高,对前级电路影响小,可以作为多级放大器的第一级;输出阻抗低,带负载能力强,可以作为多级放大器的输出级;由于它的输入阻抗高输出阻抗低,可以在多级放大器里做缓冲级.射极跟随器(射极跟随器的放大倍数为1)主要是降低输出阻抗,以便能带动低阻抗的后级负载.实现阻抗匹配.电压跟随器的作用(五): 请问怎么消除电阻分压(没有电压跟随器)带来的误差我没分压的时候电压误差小于10利用补偿法解决具体解决需要看你的电路结构.电压跟随器的作用(六): 为了减小从电压信号源索取的电流并增大带负载的能力,应引入什么负反馈,为什么【电压跟随器的作用】减小从电压信号源索取的电流并增大带负载的能力的主要方法就是降低输出阻抗,这样信号源输出的信号是接在功放上的,功放的输入阻抗比较大,因此信号源输出的电流很小;而功放的输出电阻很小,也就增大了带负载能力而功放主要使用的是电压跟随器,引入的是深度电压串联负反馈,电压跟随器具有输出阻抗很小,输入阻抗极大,负载效应微弱的优点;同时深度负反馈引入时输入电压与反馈电压基本相等,放大倍数为“1”而这与运放内部参数无关,因而工作精度较高且较为稳定.它无放大作用,只用来做阻抗转换或信号隔离,常在工控和仪表自动化等领域的电子线路中用做缓冲放大器、隔离和阻抗匹配用电压跟随器的作用(七): 压电式传感器的前置放大器的作用是什么电压式与电荷式前置放大器各有何特点压电式传感器的作用是将输出电压放大,并与输入电压或输入电流成正比. 电压放大器将压电式传感器的高输出阻抗经放大器变换为低阻抗输出,并将微弱的电压信号进行适当放大,但其所接配的压电式传感器的电压灵敏度将随电缆分布电容及传感器自身电容的变化而变化,而且电缆的的更换得引起重新标定的麻烦.电荷放大器是一种具有深度电容负反馈的高增益运算放大器,其虽然允许使用很长的电缆,并且电容Ce变化不影响灵敏度,但它比电压放大器价格高,电路较复杂,调整也比较困难.电压跟随器的作用(八): 如何进一步提高射极跟随器的输入电阻【电压跟随器的作用】1)复合管射随器复合管射随器用复合管达林顿管提高射极跟随器的输入电阻2)自举式跟随器自举电路是提高偏置电路等效输入电阻的有效方法.采用自举来提高射随器的输入电阻,其原理是RB8下端电位随上端电位升高而升高,使RB8两端的交流压降为零,即对交流而言RBA相当于开路,从而避免了由于偏置电路的分流作用而降低输入电阻.3)互补式跟随器互补跟随器电路,它相当于有两对NPN与PNP管组成的复合管电路,其特点是由于相互补偿不会出现交叉失真,输入电阻很高,等效B很大,以致使该电路增益很接近于1.它的典型应用是高速取样保持电路的保持放大器的输出级.电压跟随器的作用(九): 射极输出器的一个重要特点是()。
电压跟随器作用都有哪些呢?

电压跟随器作用都有哪些呢?
电压与输出的电压是相同的话,电压就会随着电压跟随器放大。
那么我们在说完电压跟随器的定义之后,我们再来了解一下电压之间的影响。
3. 阻抗匹配、提高带载能力
这个作用简单地来说,就是在电阻中加入阻抗。
而阻抗我们通常解释为是电阻、电容抗以及电感抗在向量上的综合。
能够有效的提高带载能力。
电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。
而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。
那么以上就是关于电压跟随器作用以及定义相关讲解,如果觉得很有帮助。
可以动动小手分享给周围小伙伴。
mos管组成的电压跟随器运放电路

一、电压跟随器的概念与作用电压跟随器是一种常见的电子电路元件,它的作用是让输出电压跟随输入电压的变化而变化,从而实现电压的跟随和放大。
电压跟随器通常由运放、MOS管等组成,通过运放的放大和调节功能,使得输出电压能够尽可能地跟随输入电压的变化,起到放大和稳定的作用。
二、 MOS管组成的电压跟随器1. MOS管的基本原理MOS管是一种常见的场效应管,它由金属氧化物半导体构成,具有高输入电阻和低噪声的特点。
在电压跟随器中,MOS管起着放大和稳定电压的作用。
通过MOS管的控制电压和电流,可以使得输出电压跟随输入电压的变化而变化。
2. 电压跟随器的原理及运作方式电压跟随器由MOS管和运放等元件组成,通过MOS管的放大和调节作用,使得输出电压能够跟随输入电压的变化而变化。
在电路中,MOS管的导通与截止状态可以根据输入信号的变化而变化,从而实现对输出电压的跟随和调节。
3. 电压跟随器的优点和应用领域电压跟随器由于具有高输入电阻和稳定性等特点,被广泛应用于仪器仪表、通信设备、电源管理等领域。
在这些领域中,电压跟随器可以起到放大和稳定输入信号的作用,从而保证设备的正常工作和精准测量。
三、电压跟随器的设计与优化1. 电压跟随器的基本设计要素在设计电压跟随器时,需要考虑输入电压范围、输出电压范围、频率响应等要素。
通过合理选择MOS管和运放等元件的参数,可以实现电压跟随器的稳定和高效工作。
2. 电压跟随器的优化方法在实际应用中,为了提高电压跟随器的性能和稳定性,可以通过改进电路结构、优化元件参数等方式进行优化。
采用高性能的MOS管和运放,优化反馈网络和功率耗散等措施,可以提高电压跟随器的性能指标。
3. 电压跟随器的仿真与调试在设计和优化电压跟随器时,通常会进行电路仿真和实际调试。
通过仿真软件对电路进行分析和优化,可以提前发现潜在问题并进行改进。
在实际调试中,需要通过仪器设备对电压跟随器进行性能测试和参数调整,确保其正常工作和稳定性。
运放电压跟随器原理

运放电压跟随器原理
运放电压跟随器(Voltage Follower)是一种放大器电路,它
的输出电压与输入电压完全相同,只是具备较高的输出电流能力。
其主要原理是通过负反馈,将输入信号放大并复制到输出端,实现信号的驱动与隔离作用。
运放电压跟随器由一个运算放大器(Operational Amplifier)和几个电阻组成。
运放是一个高增益的放大器,由于采用了差模输入,其输出电压可以根据输入电压的差异进行调整。
在电压跟随器电路中,输入信号通过一个电阻连接到运放的非反相输入端,同时也连接到运放的反相输入端。
运放的输出端通过一个电阻与非反相输入端相连,形成一个负反馈回路。
当输入电压发生变化时,运放的差模电压放大器将输出电压进行调整,使得非反相输入端电压等于输入电压。
由于负反馈的作用,运放将提供所需的电流来保持输入输出电压的一致性。
因此,输出电压与输入电压相同,但具备更大的电流能力。
运放电压跟随器的主要作用是实现输入输出的隔离与驱动功能。
输入信号经过运放的放大作用后,输出可以驱动更大的负载,而不会引起信号失真。
同时,由于输入输出电压相同,输入信号与输出信号可以完全隔离,避免信号互相干扰。
运放电压跟随器广泛应用于信号放大、缓冲、隔离以及输出电流要求较大的场合。
通过使用适当的电阻和运放,可以实现不同的增益和输出能力。
电压跟随器的原理

电压跟随器的原理
电压跟随器是一种电路,其主要功能是输入信号电压变化时,输出电压能够跟随输入电压变化而相应变化。
电压跟随器的原理是利用放大器的特性,通过负反馈来实现。
负反馈是指将部分输出信号经过一个反馈回路再输入到放大器的输入端,从而调节放大器的增益,使得输出信号能够跟随输入信号变化。
在电压跟随器中,一般使用运算放大器作为放大器的核心元件。
运算放大器有两个输入端,一个是非反向输入端(+),一个
是反向输入端(-),还有一个输出端。
当输入电压在非反向
输入端变化时,输出电压会以相同的变化方式跟随。
具体原理如下:当输入电压在非反向输入端变高时,输出电压也会变高;当输入电压在非反向输入端变低时,输出电压也会变低。
这是因为在负反馈的作用下,输出信号会通过反馈回路回到放大器的反向输入端,与输入信号相位相反,从而抵消部分输入信号,使得输出信号能够跟随输入信号变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压跟随器的作用电压跟随器是用一个三极管构成的共集电路,它的电压增益是一,所以叫做电压跟随器。
那么电压跟随有什么作用呢?共集电路是输入高阻抗,输出低阻抗,这就使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。
你可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路,当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。
一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。
所以,电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时也称之为缓冲级。
基本原理还是利用它的输入阻抗高和输出阻抗低之特点,在电路中起阻抗匹配的作用。
举一个应用的例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。
很多电吉他效果器的输入部分设计都用到了这个电路。
电压跟随器电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。
电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI-(高保真),电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。
但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。
但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
在这里,电压跟随器的作用正好达到应用,把电路置于前级和功放之间,可以切断呀扬声器的反电动势对前级的干扰作用,使音质的清晰度得到大幅度提高。
电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。
80后在校大学生完成电子设计全过程(TINA7opa4131 opa228TL082)技术分类:模拟设计| 2009-01-07作者:billyevans: EDN China一、前言作为一名在读本科生,自己不能奢望从课堂上学到太多实践的知识。
但我还是看到身边有很多热衷于电子设计的同学,虽然自己在电子线路设计的学习过程中一路磕磕绊绊,但一直有很多热心的学长老师帮助,在这个过程中自己也总结了一些学习方法,希望能给热爱电子线路设计的同学们一点点启发。
二、完成一项电子设计作品07年的暑假,我观看了学长参加全国大学生电子设计竞赛的全过程,当时的A题“音频信号分析”给我留下了很深刻的印象。
经过一年的学习自己的知识也差不多可已完成这个任务了,于是开始着手设计和制作。
下面将详细介绍自己制作的全过程。
2.1 任务分析题目的任务是计、制作一个可分析音频信号频率成分,并可测量正弦信号失真度的仪器。
模拟部分的要求是:(1)输入阻抗:50Ω(2)输入信号电压范围(峰-峰值):100mV~5V;(3)输入信号包含的频率成分范围:200Hz~10kHz。
数字部分的要求是:(1)20Hz分辨力的频谱分析;(2)信号各分量功率测量;(3)信号失真度测量。
经过分析,模拟部分需要制作一个AGC(自动增益控制)放大器电路,而数字部分主要是进行FFT(快速傅里叶变换)算法和功率、失真度算法的实现。
对于数字部分,由于作者手上有eZ DSP2812的开发板,所以作者决定采用TI公司的DSP TMS320F2812作为整机运算控制核心。
对于模拟部分,经过分析他只要由一下几部分构成:点击看原图由于TMS320F2812的片上ADC动态输入范围为0~3V,而题目要求的输入范围为100mV~5V交流信号,因此需要对输入信号峰值进行检测,然后根据结果对判断信号进行放大或衰减,并将信号电平由0V提升到1.5V。
为了防止高频信号被采样,在ADC前增加滤波器,考虑到频谱分析的缘故,应采用具有带内最大平坦度的巴特沃思滤波器。
经过以上分析,已经可以得到如下放大电路的整体框图。
点击看原图细心的朋友可能会问,为什么峰值检测放在程放之后呢,是否可以直接接在信号输入端。
这个问题作者在方案确定时经过了一番细致考虑,理论上两种方法都可以,但是要注意到,峰值检测电路对毫伏级的输入信号检测精度很有限,实测误差会大于10%,而经过放大后再进行峰值检测有利于提高峰值检测精度,从而更有效的选择程放的放大倍数。
2.2 借助TI网上选型工具确定各部分方案记得TI模拟器械技术部首席科学家Tim·Kalthoff先生在武汉大学的湖北省电赛颁奖典礼上说过:“TI的网站是一所很好的模拟大学。
”确实如此,TI的网站有许多帮助设计人员完成选型、方案设计、方案验证的工具和向导,这对于想作者一样的初学者是很有帮助的。
2.2.1 程控增益放大器作者决定从程控增益放大器部分开始确定设计方案,对于本部分,和很多人一样,作者一开始想到两种方案:1.OPA + 模拟多路复用器;2.集成程控增益放大器。
怀着这两种方案,作者像往常一样,先登陆TI中国的官方网站/cn/tihome/docs/homepage.tsp,然后下载了应用指南《音频指南》并仔细阅读,作者最先发现的是一款集成程放PGA2310非常适合我的设计,增益范围+31.5dB to ?95.5dB,供电电压最大为±15V ,输入输出范围接近供电电压。
于是我很兴奋地登陆TI中国样片中心的网站开始申请教育样片(TI公司有大学合作计划)。
令人感到沮丧的是,样片缺货。
于是,作者选择了第一种方案,这种方案的优点是OPA较容易获得,另外作者手上有MAXIM公司的一款性能很不错的多路复用器MAX308。
2.2.2 电平提升电路对于这部分,作者也想到了两种方案:1.直流电平取自电源电压。
这种方法优点是无需增加额外电路,缺点是电源纹波会影响频谱分析的精度。
2.通过电压基准源+电压加法器。
这种方法的优点是噪声纹波小,缺点是需要增加电路复杂度。
考虑到采用电阻分压的方法会在信号中引入电源的纹波,影响频谱分析精度,所以作者选择了第二种方案,并决定采用手上的低噪声电压基准源AD780提供3V直流电平,并通过OPA228衰减0.5倍得到1.5V直流电平。
2.2.3 峰值检测电路作者记得模电课上老师说过峰值检测电路(PKD)的大致结构,由二极管和低漏电容组成。
在实际应用中,PKD输入输出需要加缓冲,作者这部分的设计参考了AD公司OP177和TI公司OPA128的数据手册中提供的电路图:点击看原图点击看原图这两种方案本质上是一样的思路,输入为理想二极管接法,输出为电压跟随器,特别的地方是采用场效应管或晶体管代替二极管,这样的好处是方向漏电流小,因为他们的方向漏电流都在pA级别,而二极管方向漏电流是nA级的。
另外,电容的选择也尤为重要,低漏电流是首要考虑,作者手上有低漏的CBB电容,故选择CBB作为储存电荷的电容器。
输出的运放最好选用偏置电流小的运放,FET输入型的是首选。
总体而言,TI的方案是AD方案的改进型,场效应管前的二极管可以进一步防止方向漏电流。
由于经验不足,作者当时决定留到仿真时才决定二者中选择哪一种。
2.2.4 抗混叠滤波器对于滤波器的设计,作者一直采用查表法设计,这一次决定尝试使用TI网上推荐的FilterPro滤波器设计软件。
作者很快从网上获得了免费的设计软件,并在自己的电脑安装了软件。
点击看原图但让我感到很遗憾的是,软件在作者的电脑上运行不一会儿就弹出警告窗口报错,于是作者到TI网上下载了该软件的应用报告《FilterProTM MFB及Sallen-Key低通滤波器设计程序》,可是按照文章的方法操作还是无法让软件工作。
直到现在为止还不知道为什么,可能是因为个人水平问题,希望有用过该软件的朋友交流交流。
最后,作者使用常规方法,查表得出了截止频率为17kHz(足够的余量)的四阶巴特沃思低通滤波器的电容电阻参数。
三、使用TINA-TI 7.0进行方案验证到此为止,本题的模拟电路部分方案设计已经初步完成了。
下面的工作就是仿真验证了。
作者采用了TI公司免费提供的仿真软件TINA TI对设计方案进行仿真验证,作者选择TINA的原因是,它比PSPICE更适合初学者,并且TI的官方网站有大量的文档使用该软件进行仿真测试。
作者首先对个单元电路进行仿真,通过对峰值检测部分的仿真,作者发现两种方案的精度都足够满足本题要求。
于是作者选择了ADI公司的电路图并对其进行了一些修改,作者将晶体管和二极管统一换成二极管1N4148,放大器采用TI公司经典FET输入运放TL082。
使用TINA 7.0仿真后发现结果还是很令人满意,经过参数微调后决定了一下电路。
点击看原图接着作者采用相同的方法完成了各部分电路及总体电路的仿真测试,期间发现了一些错误和修改了一些参数,如加法器误采用了同相加法器。
最后得到整体电路图和幅频响应特性:点击看原图点击看原图四、动手制作电路板考虑到PCB制作周期较长,而学校快放假了,作者决定手工焊接,于是在学校实验室里过了一晚,第二天早上终于全部测试通过。
下面是作者手工焊接的电路板:点击看原图点击看原图五、测试仪器及测试数据5.1 测试仪器从上至下是:泰克TDS 1002B、新联EE1643C函数信号发生器、FLUKE 五位半台式万用表、新联EE1461 DDS信号发生器(没有使用)、MATRIX 实验室用直流稳压电源。
5.2 部分测试数据5.2.1 幅频特性测试-3dB点,输入信号峰峰值为1V,16.95kHz。
点击看原图从结果看,测试结果和TINA的仿真结果相当接近。
5.2.2 峰值检测误差测试峰值检测电路整体误差小于10%,信号幅值在1V以上时有较高的精度。
如果将输入信号放大到该区间,则可进一步提高峰值检测精度。
点击看原图输入信号幅值256mV、10.10kHz,峰值检测结果244mV。
点击看原图六、心得总结借这次TI的博客比赛,希望能分享一些自己平时学习模拟电路设计的心得。
在自己的学习过程中,得到了TI公司大学计划非常多的帮助,通过TI举办的湖北省大学生电子设计竞赛和TI网上丰富的资源,自己学到了很多模拟方面的应用知识,学习的过程是很快乐的,也是很艰辛的,虽然自己懂得还很少很少,但通过以后的学习和交流,初学者还是会慢慢的入门、逐步深入理解模拟电路设计的奥妙的。