第1讲 空间几何体的截面图形(解析版)

合集下载

2015高考数学(文)二轮专题复习课件:专题五_第一讲 空间几何体

2015高考数学(文)二轮专题复习课件:专题五_第一讲 空间几何体

栏 目 链 接
主干考 点梳理
考点2
多面体与旋转体的表面积与体积的计算
1.多面体的表面积.
面积之和. 多面体的表面积为各个面的________
2.旋转体的表面积.
(1)圆柱的表面积S=________ 2πr(r+L; )
栏 目 链 接
(2)圆锥的表面积S=________ (2)πr(r+; L)
(3)圆台的表面积S=π(r′2+r2+r′L+rL); 4πR2 . (4)球的表面积S=________
主干考 点梳理 3.体积公式. Sh (1)柱体的体积V=________ . 1 Sh . (2)锥体的体积V=________ 3
1 (S′+ S′ S+S)h (3)台体的体积V=________ . 3
球的半径为 R,球心为 O,正四棱锥底面中心为 E,则 OE 垂直棱锥底面, OE= 4- R,所以 (4- R)2+ ( 2)2= 81π 9 R2,解得 R= ,所以球的表面积 S=4πR2= . 4 4
栏 目 链 接
主干考 点梳理
4.若某空间几何体的三视图如图所示,则该
几何体的体积是( B )
栏 目 链 接
主干考 点梳理
考点2
三视图
1.空间几何体的三视图包括___________ 正(主)视图 、 ________ ______. 侧 (左)视图和俯视图 2.在三视图中,正(主)侧(左)一样________ , 高 长 宽 正(主)俯一样________ ,侧(左)俯一样________ .
栏 目 链 接
高考热 点突破 规律方法 (1)解答此类问题,首先由三视图想象出几何 体的形状,并由相关数据得出几何体中的量,进而 求得表面积或体积. (2)掌握三视图是正确解决这类问题的关键,同 时也体现了知识间的内在联系,是高考的新动向.

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

第一讲+空间几何体的结构特征和直观图课件-2025届高三数学一轮复习

第一讲+空间几何体的结构特征和直观图课件-2025届高三数学一轮复习

【题后反思】 (1)画几何体的直观图一般采用斜二测画法,其规则可以用 “斜”(两坐标轴成 45°或 135°)和“二测”(平行于 y 轴的线段 长度减半,平行于 x 轴和 z 轴的线段长度不变)来掌握. (2)按照斜二测画法得到的平面图形的直观图,其面积与原图 形的面积的关系:S = 直观图 42S 原图形.
答案:C
⊙立体图形的展开图 [例 3]已知圆锥的母线长为 1,其侧面展开图是一个圆心角为 120°的扇形.过该圆锥的轴作截面,截面的面积为( )
25 A. 9
22 B. 9
5 C. 9
2 D. 9
解析:因为圆锥的母线长为 1,其侧面展开图是一个圆心角为 120°的扇形,所以圆锥的底面周长为 2π×1×132600°°=23π,所以底面 半径为13,圆锥的高为 12-132=2 3 2,所以轴截面的面积为12× 23×2 3 2=2 9 2.故选 B.
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
解析:①不一定,只有当这两点的连线平行于轴时才是母线; ②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的
面所围成的几何体不是圆锥,如图 6-1-3 所示,它是由两个同底圆 锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平 行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.
第六章 立体几何
第一讲 空间几何体的结构 特征和直观图
2025年高考一轮总复习
1.多面体的结构特征
名称
棱柱
图形
棱锥
棱台
(续表) 名称 底面
侧棱
侧面 形状
棱柱
棱锥
互相平行且全等

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

第1讲 空间几何体概念与结构-简单难度-讲义

第1讲 空间几何体概念与结构-简单难度-讲义

空间几何体概念与结构知识讲解一、棱柱、棱锥与棱台1.棱柱: 教师内容:以运动的观点来看:棱柱可以理解为由一个平面多边形沿某一确定方向平移形成的空间几何体.特殊直棱柱:底面是正多边形的直棱柱叫正棱柱. 特殊的四棱柱:底面是平行四边形底面是正方形底面为长方形底面是平行四边形长方体直平行六面体平行六面体高侧棱对角面侧面底面教师内容:祖暅原理:幂势既同,则积不容异. 夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.2.棱锥:以运动的观点来看:棱锥可以理解为当棱柱的一个底面收缩为一个点时,得到的几何体.正棱锥的各个侧面都是全等的等腰三角形,它们底边上的高都相等,称为正棱锥的斜高.正四面体:各棱长都相等的正三棱锥.(本讲最后有正多面体的剪纸,老师可以引导学生自己动手折)教师内容: 正棱锥的性质很多,要特别注意的是:⑴平行于底面的截面的性质:如果一个棱锥被平行于底面的一个平面所截,那么:①棱锥的侧棱和高被这个平面分成的线段成比例.②所得的截面和底面是对应边互相平行的相似正多边形. ③截面面积和底面面积的比,等于从顶点到截面和从顶点到底面的距离平方的比,即等于截得的棱锥与已知棱锥的高的平方比. ⑵有关正棱锥的计算问题,要抓住四个直角三角形:正棱锥的高、侧棱及其在底面的射影、斜高及其在底面的射影、底面边长的一半可组成四个直角三角形,即右图Rt SOH △,Rt SOC △,Rt SHC △,Rt OHC △,这是解决正棱锥计算问题的基本依据,必须牢固掌握.教师内容:棱锥的体积公式的理解:任何一个棱锥都可以分成一些三棱锥,从而只需考虑三棱锥的体积即可,任何一个三棱锥S ABC -,我们都可以选定其中一条棱,把底面沿着该棱平移形成一个棱柱.如图,三棱锥S ABC -可以得到三棱柱SDE ABC -, 而在三棱柱中连接DC ,侧面底面ABCDE对角面SAC高侧棱HSEABCDSCBA S HO A BC DEDSCBA可知此时棱柱被分为了三个三棱锥S ABC -,S BCD -,S CDE -. 而通过转换顶点和底面,可知:S ABC C SAB C SDB S BCD S ECD V V V V V -----====, 即分成的三个三棱锥体积相同,从而可知三棱锥的体积为等底面积等高的棱柱体积的三分之一.从而对于底面积和高都相等的棱锥和棱柱,有13V V =棱锥棱柱.3.棱台:正棱台:由正棱锥截得的棱台.正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高. 右图为一个正三棱台,记为棱台ABC A B C '''-,侧棱AA ',BB ',CC '延长后必交于一点.O O ',为上下底面的中心,它们的连线O O '是棱台的高,H H '是棱台的斜高.教师内容:有关正棱台的计算问题,应抓住三个直角梯形、两个直角三角形: 即正棱台的两底面中心的连线、相应的边心距、相应的外接圆半径,侧棱,斜高,两底面边长的一半,组成三个直角梯形(梯形OO H H '',OO C C '',HH B B '')和两个直角三角形(O H B '''△,OHB △).二、圆柱、圆锥和圆台O'OH'HABCA'B'C'侧面侧棱高下底面上底面表中l 、h 分别表示母线长、高,r 表示圆柱、圆锥的底面半径,1r 、2r 分别表示圆台上、下底面半径.三、球与球面:教师内容:球面也可看做空间中到一个定点的距离等于定长的点的集合,球体可以看成到空间中一个定点的距离小于等于定长的点的集合.⑴纬线与纬度:赤道是一个大圆,它是0︒纬线,其它纬线是由与赤道面平行的平面截球所得到的小圆,某地的纬度就是经过该点的球半径与该半径在赤道面上的正投影所成的角的度数. 如图:圆O 是赤道面,圆O '是纬线圈,P 点的纬度就等于POA ∠的度数,也等于OPO '∠的度数.⑵经线与经度:经线是地球表面上从北极到南极的半个大圆,在同一条经线上的点的经度都相等,如图P 点的经度与A 点的经度相等,在地球上确立了一条经线为本初子午线(0︒经线).任意点P 的经度就定义为经过它的经线与本初子午线在同一个纬线圈上的交点与该纬线圈的圆心连线所成的角.(以后能证明,这样的角必然相等,定义是合理的)如图,如果经过B 的经线是本初子午线,则P 点的经度就等于PO C '∠的度数,也等于AOB ∠的度数.【注意】⑴球面与球体是两个不同的概念,要注意它们的区别与联系. ⑵球面的概念可以用集合的观点来描述.球面是由点组成的,球面上的点有什么共同的特点呢?与定点的距离等于定长的所有点的集合(轨迹)叫球面.如果点到球心的距离小于球的半径,这样的点在球的内部,否则在外部. ⑶地球上的经线的分布从本初子午线开始,往东往西分别是东经与西经,本初子午线既是东经0︒线,又是西经0︒线,转半圈后的东经180︒与西经180︒又重合成一条经线,与本初子午线合成一个大圆. ⑷如果球面上两点的连线不是直径,则经过这两点有且只有一个大圆,如果恰为直径,则可以作无数个大圆.球的表面积和体积公式:24πS R =表,34π3V R =. 教师内容:⑴球的体积的推导方法.由上图可知,截到的每一个圆片的面积为()222ππr R h =-,每一个圆环的面积为22ππR h -,由祖暅原理可知半球的体积22312πππ33V R R R R R =⋅-⋅⋅=,从而球的体积为34π3V R =.⑵球的表面积公式推导把球面任意分割为一些“小球面片”,它们的面积分别用1S △,2S △,…,i S △,…表示,则球的表面积为12i S S S S =++++L L △△△, 以这些“小球面片”为底,球心为顶点的“小锥体”的体积的和等于球的体积.而“小锥体”的高i h ,近似等于球半径R ,底面积近似等于“小球面片”的面积,所以1133i i i i V h S R S ≈≈△△,而球的体积()121133i V R S S S RS =++++=L L △△△,所以341π33R RS =,从而24πS R =.RhRr hRr hRhhr hR典例精讲一.选择题(共13小题)1.(2018春•武清区期中)下列说法不正确的是()A.三棱锥是四面体B.三棱台是五面体C.正方体是四棱柱D.四棱柱是长方体【分析】利用棱柱、棱锥、棱台的定义,判断选项即可.【解答】解:三棱锥是四面体,三棱台是五面体,正方体是四棱柱,正确;四棱柱只有底面是矩形的直棱柱才是长方体,所以四棱柱是长方体不正确;故选:D.2.(2018春•江西期中)侧棱长都相等的四棱锥P﹣ABCD中,下列结论正确的有()个①P﹣ABCD为正四棱锥;②各侧棱与底面所成角都相等;③各侧面与底面夹角都相等;④四边形ABCD可能为直角梯形.A.1B.2C.3D.4【分析】①,侧棱长都相等的四棱锥P﹣ABCD,不一定是正四棱锥;②,各侧棱在底面的射影相等,与底面所成的角都相等;③,各侧面与底面的夹角不一定都相等;④,底面四边形ABCD不可能为直角梯形.【解答】解:对于①,侧棱长都相等的四棱锥P﹣ABCD,不一定是正四棱锥,底面也可以是矩形,∴①错误;对于②,各侧棱在底面的射影相等,高相同,∴各侧棱与底面所成的角都相等,②正确;对于③,各侧面与底面的夹角不一定都相等,如底面四边形为矩形时,相邻的两侧面与底面夹角不等,③错误;对于④,底面四边形ABCD不可能为直角梯形,底面四边形为直角梯形时,各侧棱在底面的射影不都相等,∴各条侧棱不都相等,④错误;综上,正确的命题序号是②.故选:A.3.(2018春•孝感期末)下列关于棱台的说法,正确的个数为()①所有的侧棱交于一点②只有两个面互相平行③上下两个底面全等④所有的侧面不存在两个面互相平行A.1B.2C.3D.4【分析】利用棱台的定义与性质判断选项的正误即可.【解答】解:由棱台的定义可知:①所有的侧棱交于一点,正确;②只有两个面互相平行,就是上、下底面平行,正确;③上下两个底面全等,不正确;④所有的侧面不存在两个面互相平行,正确;故选:C.4.(2018春•百色期末)将一个直角三角形绕斜边所在的直线旋转一周,所得的几何体包括()A.一个圆台B.一个圆锥C.一个圆柱D.两个圆锥【分析】根据圆锥的几何特征,可得答案.【解答】解:将一个直角三角形绕斜边所在的直线旋转一周,所得的几何体是两个底面重合的圆锥,故选:D.5.(2018春•安顺期末)将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.一个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥【分析】画出等腰梯形,考虑较长的底边,旋转可得形状.【解答】解:设等腰梯形ABCD,较长的底边为CD,则绕着底边CD旋转一周可得一个圆柱和两个圆锥,(如右轴截面图)故选:D.6.(2018春•思明区校级月考)截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆台B.圆柱C.圆锥D.球【分析】由各个截面都是圆知是球体.【解答】解:∵各个截面都是圆,圆台的截面可以是等腰梯形,圆柱的截面可以是矩形,圆锥的截面可以是三角形,∴这个几何体一定是球体,故选:D.7.(2017秋•南雄市校级期末)圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A.120°B.150°C.180°D.240°【分析】设圆锥底面半径为r,母线长为l,侧面展开图扇形的圆心角为θ,根据条件得πrl+πr2=3πr2,从而l=2r,再由扇形面积公式能求出该圆锥的侧面展开图扇形的圆心角.【解答】解:设圆锥底面半径为r,母线长为l,侧面展开图扇形的圆心角为θ,根据条件得:πrl+πr2=3πr2,即l=2r,根据扇形面积公式得:θπl2 360°=πrl,即θ=r⋅360°l=r⋅360°2r=180°.故选:C.8.(2018春•广安期末)在Rt△ABC中,∠ABC=π2,AB=4,BC=3.将△ABC绕BC所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.60πB.36πC.20πD.16π【分析】根据题意画出图形,结合图形求出将△ABC绕BC所在的直线旋转一周所围成几何体为圆锥,代入体积公式,可得答案.【解答】解:如图所示,Rt△ABC中,∠ABC=π2,AB=4,BC=3;将△ABC绕BC所在的直线旋转一周,围成几何体是圆锥,其底面半径r=4,高h=3,故体积V=13πr2⋅ℎ=16π,故选:D.9.(2018春•武清区期中)圆锥的轴与其母线的夹角为30°,若圆锥的底面半径为1,则该圆锥的表面积为()A.3πB.2πC.√3πD.√3 3π【分析】根据题意求出母线长,计算圆锥的表面积即可.【解答】解:如图所示,圆锥的轴VO与其母线VB的夹角为∠OVB=30°,若圆锥的底面半径为OB=1,母线长VB=2,则该圆锥的表面积为S=π•12+π•1•2=3π.故选:A.10.(2018春•滦南县期末)若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体可能是()A.圆柱B.三棱柱C.圆锥D.球体【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可.【解答】解:一个几何体的正视图和侧视图都是等腰三角形,几何体可能是三棱柱,有可能是圆锥,从俯视图是圆,说明几何体是圆锥,故选:C.11.(2017春•涵江区校级期中)圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是()A.√3cm B.2 cm C.3 cm D.4 cm【分析】根据体积公式列方程解出球的r即可.【解答】解:设球的半径为r,则V水=8πr2,V球=4πr3,加入小球后,液面高度为6r,∴πr2•6r=8πr2+4πr3,解得r=4.故选:D.12.(2018•辽宁模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是()A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面【分析】对不同的放置情况分别判断,得出结论.【解答】解:当圆柱筒竖直放置时,液面形状为圆形;当圆柱筒水平放置时,液面为矩形;当圆柱筒倾斜放置时,若液面经过底面,则液面为椭圆的一部分,若液面不经过底面,则液面为椭圆.故选:C.13.(2017秋•定远县期末)如图所示为一个简单几何体的三视图,则其对应的几何体是()A.B.C.D.【分析】根据题意,B、D两项的视图中都应该有对角线为虚线的矩形,故不符合题意;C项的正视图矩形的对角线方向不符合,也不符合题意,而A项符合题意,得到本题答案.【解答】解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A.二.填空题(共5小题)14.(2017秋•七里河区校级期末)已知圆锥的侧面展开图是半径为3,圆心角为120°的扇形,则这个圆锥的高为2√2.【分析】根据圆锥侧面展开图与圆锥的对应关系列方程解出圆锥的底面半径和母线长,计算出圆锥的高.【解答】解:设圆锥的底面半径为r,母线长为l,则{l=32πr=2π3×3,解得l=1,r=1.∴圆锥的高h=√l2−r2=√9−1=2√2.故答案为:2√2.15.(2018•亭湖区校级模拟)用半径为2cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为√3cm.【分析】先求半圆的弧长,就是圆锥的底面周长,求出底面圆的半径,然后利用勾股定理求出圆锥的高.【解答】解:半径为2的半圆弧长为2π,圆锥的底面圆的周长为2π,其轴截面为等腰三角形如图:圆锥的底面半径为:1∴圆锥的高h=√22−12=√3.故答案是√3.16.(2018•盐湖区校级二模)三棱锥A ﹣BCD 的两条棱AB=CD=6,其余各棱长均为5,则三棱锥的内切球半径 3√78. 【分析】由题意画出图形,结合图形设球心O 到各面的距离为R ,利用等积法求出三棱锥内切球的半径R .【解答】解:由题意画出图形,如图所示;设球心O 到各面的距离为R ,取CD 的中点E ,连接AE 、BE ,则4×13S △BCD ×R=V A ﹣BCD , ∵S △BCD =12CD•BE=12×6×4=12, ∴V A ﹣BCD =2V C ﹣ABE=2•13S △ABE •EC =2×13×12×3×√42−32×3 =6√7;∴4×13×12R=6√7. 解得三棱锥内切球的半径为R=3√78. 故答案为:3√78.17.(2017秋•耒阳市校级期末)已知圆柱OO 1及其侧面展开图如图所示,则该圆柱的体积为 4π .【分析】根据圆柱OO 1及其侧面展开图,得出圆柱的高和底面圆的周长,求得底面圆半径,从而求出圆柱的体积.【解答】解:根据圆柱OO 1及其侧面展开图知,该圆柱的高为h=4,底面圆的周长为2πr=2π,r=1;∴圆柱的体积为V=πr 2h=π•12•4=4π.故答案为:4π.18.(2018秋•城北区校级月考)若圆锥的侧面展开图是圆心角为120°的扇形,则这个圆锥的表面积与侧面积的比是 43. 【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此能求出这个圆锥的表面积与侧面积的比.【解答】解:圆锥的侧面积=π×l 2×120°360°=l 23π, 圆锥的底面半径=2π×l ×120°360°÷2π=13l , 圆锥的底面积=π×(13l )2=l 29π, 圆锥的表面积=侧面积+底面积=3l 29π, ∴这个圆锥的表面积与侧面积的比=4l 29πl 23π=43.故答案为:43.三.解答题(共1小题)19.(2018秋•城北区校级月考)如图所示.已知直角梯形ABCD ,BC ∥AD ,∠ABC=90°AB=5cm ,BC=16cm ,AD=4cm ,求以AB 所在直线为轴旋转一周所得几何体的表面积.【分析】根据题意知由直角梯形绕其直腰所得的几何体是圆台,根据题意求出圆台的两底面的半径和母线长,再代入表面积公式求解.【解答】解:由题意知,将此梯形以AB所在直线为轴旋转一周,所得几何体是圆台,则圆台的上底圆的半径是4cm,下底圆的半径是16cm,高是5cm,则母线长是13cm,∴此圆台的表面积是16π+256π+π(4+16)×13=532πcm2.。

高考数学复习考点题型专题讲解18 几何体的截面或交线

高考数学复习考点题型专题讲解18 几何体的截面或交线

高考数学复习考点题型专题讲解专题18 几何体的截面或交线1.空间几何体截面的作图主要原理:两个基本事实及两个性质.两个基本事实为:(1)如果两个不重合的平面有一个公共点,那么它们相交于过此点的一条直线;(2)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 两个性质为:(1)如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线就和交线平行;(2)如果两个平面平行,第三个平面和它们相交,那么两条交线平行.2.立体几何中的截面类型(1)平面截球:圆面(见专题17).(2)平面截正方体:三角形、四边形、五边形、六边形.(3)平面截圆柱曲面:圆、椭圆、矩形.(4)平面截圆锥曲面:椭圆、双曲线、抛物线.类型一截面的作法空间几何体的截面作图主要作法:(1)直接法;(2)平行线法;(3)延长法;(4)辅助平面法.例1 已知正方体A1B1C1D1-ABCD,E,F,H分别是A1B1,B1C1,AD的中点,试过三点E,F,H作截面.解如图,连接EF,并且延长,与D1A1,D1C1的延长线分别交于N,R两点,连接NH并延长分别交AA1和D1D的延长线于S,T,连接TR分别交CD,CC1于M,G,顺次连接点E,F,G,M,H,S,E,则六边形EFGMHS就是所作截面.训练1 如图,在正方体ABCD-A1B1C1D1中,E,F,G分别在AB,BC,DD1上,求作过E,F,G三点的截面.解作法:①在底面AC内,过E,F作直线EF,分别与DA,DC的延长线交于L,M.②在侧面A1D内,连接LG交AA1于K.③在侧面D1C内,连接GM交CC1于H.④连接KE,FH,则五边形EFHGK即为所求的截面.类型二截面形状的判断首先根据条件作出相应的截面图形,再结合线面的位置关系的判定与性质加以分析,得到截面图形所满足的特征性质,确定其形状.例2 如图,在正方体ABCD-A1B1C1D1中,点E,F分别是棱B1B,B1C1的中点,点G是棱C 1C的中点,则过线段AG且平行于平面A1EF的截面图形为( )A.矩形B.三角形C.正方形D.等腰梯形答案 D解析取BC的中点H,连接AH,GH,AD1,D1G,由题意得GH∥EF,AH∥A1F,又GH⊄平面A1EF,EF⊂平面A1EF,所以GH∥平面A1EF,同理AH∥平面A1EF,又GH∩AH=H,GH,AH⊂平面AHGD1,所以平面AHGD1∥平面A1EF.故过线段AG 且与平面A 1EF 平行的截面图形为四边形AHGD 1,显然为等腰梯形. 训练2(多选)(2022·苏北四市调研)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点E ,F ,G 分别为棱AB ,AA 1,C 1D 1的中点.下列结论中正确是( )A.过E ,F ,G 三点作正方体的截面,所得截面为正六边形B.B 1D 1∥平面EFGC.BD 1⊥平面ACB 1D.异面直线EF 与BD 1所成角的正切值为22答案 ACD解析 对于A ,因为E ,F ,G 为棱AB ,AA 1,C 1D 1的中点,设A 1D 1的中点为M ,BC 的中点为N ,CC 1的中点为P ,连接点M ,F ,E ,N ,P ,G 可得截面为正六边形,所以A 正确; 对于B ,通过以DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,求出B 1D 1→,平面EFG 法向量n 1,可推出B 1D 1→·n 1≠0,故B 1D 1与平面EFG 不平行,所以B 错误; 对于C ,同上建系,求出BD 1→,平面ACB 1的法向量n 2,可推得BD 1→=λn 2,所以BD 1⊥平面ACB 1,所以C 正确;对于D ,同上建系,求出EF →,BD 1→,设夹角为θ, 则cos θ=|EF →·BD 1→||EF →|·|BD 1→|,由sin 2θ+cos 2θ=1,tan θ=sin θcos θ,得tan θ=22,所以D 正确.类型三截面图形面积或周长的计算求截面图形的面积的前提是确定截面的形状,转化为平面图形求解.例3 (1)(2022·济南模拟)已知正四面体ABCD的棱长为2,平面α与棱AB,CD均平行,则α截此正四面体所得截面面积的最大值为( )A.1B.2C.3D.2(2)在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC.则截面的周长为________.答案(1)A (2)8解析(1)如图,设E为棱BC上任一点,且BE→=λBC→,λ∈(0,1),过E作EF∥AB交AC于F,作EN∥CD交BD于N,过F作FM∥CD交AD于M,连接MN,则四边形EFMN即平面α截四面体ABCD所得的截面,所以EFAB=ECBC=1-λ,所以EF=2(1-λ),同理可得EN=2λ. 又四面体ABCD为正四面体,所以AB⊥CD,所以EF⊥EN,截面EFMN为矩形,且EN+EF=2,则矩形EFMN 的面积S =EF ·EN ≤⎝⎛⎭⎪⎫EF +EN 22=1, 当且仅当EF =EN =1,即λ=12时,“=”成立,故选A.(2)过点G 作EF ∥AC 分别交PA ,PC 于点E ,F ,过E ,F 分别作EN ∥PB ,FM ∥PB ,分别交AB ,BC 于点N ,M ,连接MN ,∴四边形EFMN 是平行四边形,∴EF 3=23,即EF =MN =2, FM PB =FM 6=13,即FM =EN =2, ∴截面的周长为2×4=8.训练3 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1D 1,A 1B 1的中点,过直线BD 的平面α∥平面AMN ,则平面α截该正方体所得截面的面积为( )A.2B.98C.3D.62答案 B解析 如图1,分别取B 1C 1,C 1D 1的中点E ,F ,连接EF ,BE ,DF ,B 1D 1,ME , 易知EF ∥B 1D 1∥BD ∥MN ,AB ∥ME ,AB =EM , 所以四边形ABEM 为平行四边形, 则AM ∥BE ,又BD 和BE 为平面BDFE 内的两条相交直线,所以平面AMN ∥平面BDFE ,即平面BDFE 为平面α,BD =2,EF =12B 1D 1=22,得四边形BDFE 为等腰梯形,DF =BE =52,在等腰梯形BDFE (如图2)中,过E ,F 作BD 的垂线,垂足分别为G ,H ,则四边形EFGH 为矩形, ∴其高FG =DF 2-DG 2=54-18=324, 故所得截面的面积为12×⎝ ⎛⎭⎪⎫22+2×324=98.一、基本技能练1.过一个圆锥的侧面一点(不是母线的端点)作圆锥的截面,则截面与该圆锥侧面的交线可以是图形①圆;②椭圆;③抛物线的一部分;④双曲线的一部分中的( )A.①②③④B.①③④C.①②D.①②④答案 A解析根据截面与圆锥的位置关系,所得的图形如图所示,故截面与该圆锥侧面的交线可以是图形①圆;②椭圆;③抛物线的一部分;④双曲线的一部分.2.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是( )答案 D解析对于A,PS∥QR,故P,Q,R,S四点共面;同理,B、C图中四点也共面;D中四点不共面.3.如图,长方体ABCD-A′B′C′D′中被截去一小部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱答案 C解析∵EH∥A′D′,EH∥平面BCC′B′,∴EH∥GF,又平面ABB′A′∥平面DCC′D′,∴EF∥GH,四边形EFGH为平行四边形.故剩下的几何体为五棱柱.4.在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=13DD1,NB=13BB1,那么正方体的过M,N,C1的截面图形是( )A.三角形B.四边形C.五边形D.六边形答案 C解析正方体ABCD-A1B1C1D1中,M、N分别是棱DD1和BB1上的点,MD=13DD1,NB=13BB1,延长C1M交CD的延长线于P,延长C1N交CB的延长线于Q,连接PQ交AD于E,AB于F,连接NF,ME,则正方体的过M,N,C1的截面图形是五边形.故选C.5.在棱长为a的正方体ABCD-A1B1C1D1中,点E,F,G分别为棱AB,CC1,C1D1的中点,则该正方体被过E,F,G三点的平面截得的截面面积为( )A.34a2B.32a2C.334a2D.332a2答案 C解析作出过E,F,G三点的截面,如图,由图可知,截面为正六边形,且边长为22a,所以截面面积S=6×12×32×⎝⎛⎭⎪⎫22a2=334a2,故选C.6.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条答案 C解析如图所示,平面α即平面EFGH,则四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH.所以与平面α(平面EFGH)平行的棱有2条.7.(2022·重庆诊断)在棱长为4的正方体ABCD-A1B1C1D1中,点M为B1C1的中点,过点D 作平面α使α⊥BM,则平面α截正方体所得截面的面积为( )A.42B.4 5C.85D.16 2答案 C解析分别取AA1,BB1的中点E,N,连接DE,CN,EN,则EN∥DC,EN=DC,所以四边形ENCD是平行四边形,由于△B1BM≌△BCN,所以∠MBB1+∠BNC=90°,所以BM⊥CN,又因为DC⊥BM,DC∩CN=C,所以BM⊥平面ENCD,所以平面ENCD即为平面α,又CN=25,所以截面的面积为25×4=8 5.8.(2022·南通调研)已知正方体ABCD-A1B1C1D1的棱长为2,M为CC1的中点,若AM⊥平面α,且B∈平面α,则平面α截正方体所得截面的周长为( )A.32+25B.4+4 2C.22+25D.6 2答案 A解析正方体ABCD-A1B1C1D1中,BD⊥AC,所以BD⊥AM(三垂线定理),如图,取BB1中点N,A1B1中点E,连接MN,AN,BE,可知BE⊥AN,所以BE⊥AM(三垂线定理),所以AM⊥平面DBE,取A1D1中点F,则α即为截面BEFD,易求周长为32+2 5.9.(多选)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交棱AA1于点E,交棱CC1于点F,得四边形BFD1E,在以下结论中,正确的是( )A.四边形BFD1E有可能是梯形B.四边形BFD1E在底面ABCD内的投影一定是正方形C.四边形BFD1E有可能垂直于平面BB1D1DD.四边形BFD1E面积的最小值为6 2答案BCD解析对于选项A,过BD1,作平面与正方体ABCD-A1B1C1D1的截面为四边形BFD1E,如图所示,因为平面ABB1A1∥平面DCC1D1,且平面BFD1E∩平面ABB1A1=BE,平面BFD1E∩平面DCC1D1=D1F,所以BE∥D1F,同理D1E∥BF.故四边形BFD1E为平行四边形,因此A错误;对于选项B,四边形BFD1E在底面ABCD内的投影一定是正方形ABCD,因此B正确;对于选项C,当点E,F分别为AA1,CC1的中点时,EF⊥平面BB1D1D,又EF⊂平面BFD1E,则平面BFD1E⊥平面BB1D1D,因此C正确;对于选项D,当F点到线段BD1的距离最小时,平行四边形BFD1E的面积最小,此时点E,F分别为AA1,CC1的中点,此时最小值为12×2×3=62,因此D 正确.故选BCD.10.(多选)(2022·石家庄模拟)在正方体ABCD -A 1B 1C 1D 1中,P 是面对角线BD 上的动点,Q 是棱C 1D 1的中点,用过A 1,P ,Q 三点的平面截正方体ABCD -A 1B 1C 1D 1,则所得截面多边形可能是( )A.三角形B.四边形C.五边形D.六边形 答案 ABC解析 如图①,当点P 与点D 重合时,截面多边形是三角形,选项A 满足题意;图①图②如图②,取棱CD 的中点Q 1,连接QQ 1和AQ 1, 因为Q 是棱C 1D 1的中点,所以QQ1∥DD1∥AA1,将点P移动到平面AA1QQ1与BD交点处,此时截面多边形是四边形,选项B满足题意;图③如图③,令点P距离点B较近,此时截面多边形是五边形,选项C满足题意;易知点P无论如何移动,截面与平面ABCD的交线都平行于A1Q,所以这条交线只能与正方形ABCD的边AB,AD之一有交点(顶点A除外),则截面不可能与正方形ABB1A1和正方形ADD1A1都有交线(棱AA1除外),所以截面不可能与正方体的六个面都有交线,则截面多边形不能是六边形,所以选项D不满足题意.故选ABC.11.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.12.(2022·衡水模拟)在棱长为1的正方体ABCD-A1B1C1D1中,E为棱CD的中点,过B,E,D的截面与棱A1B1交于F,则截面BED1F分别在平面A1B1C1D1和平面ABB1A1上的正投影1的面积之和为________.答案 1解析因为平面BED1F∩平面ABCD=BE,平面BED1F∩平面A1B1C1D1=D1F,平面A1B1C1D1∥平面ABCD,所以BE∥D1F,同理D1E∥BF,所以截面BED1F是平行四边形,所以BE=D1F,所以A1F=CE,从而B1F=DE,截面BED1F在平面A1B1C1D1上的正投影是以B1F为底,该底对应的高为1的平行四边形,在平面ABB1A1上的正投影是以A1F为底,该底上的高为1的平行四边形,因此两个投影的面积和S=(CE+DE)×1=1为定值.二、创新拓展练13.(2022·浙江五校联考)如图,正三棱柱ABC-A1B1C1的高为4,底面边长为43,D是B1C1的中点,P是线段A1D上的动点,过BC作截面α⊥AP于点E,则三棱锥P-BCE体积的最小值为( )A.3B.2 3C.43D.12答案 C解析如图,取BC的中点F,连接FD,FA,FE,FP,过点E作EH⊥AF于点H,则BC⊥平面AFDA1,所以BC⊥EH,AF∩BC=F,所以EH⊥平面ABC.因为AF=6,且V P-ABC=13×123×4=163=V P-EBC+V E-ABC,所以当三棱锥E-ABC体积最大时,三棱锥P-BCE体积最小.因为AE⊥EF,所以AE2+EF2=AF2=36≥2AE·EF,所以AE·EF≤18.设三棱锥E-ABC的高为h,由AE·EF=AF·h,得h=AE·EFAF≤3,因为V E-ABC=13×S△ABC×h=43h,所以(V E-ABC)max=123,所以(V P-EBC)min=43,故选C.14.(多选)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题中正确的是( )A.当0<CQ<12时,S为四边形B.当CQ=12时,S为等腰梯形C.当CQ=34时,S与C1D1的交点R满足C1R=13D.当34<CQ<1时,S为六边形答案ABC解析如图1,当Q为CC1的中点,即CQ=12时,PQ∥BC1且PQ=12BC1,图1 又AD1綊BC1,故PQ ∥AD 1且PQ =12AD 1,PA =D 1Q ,故截面APQD 1为等腰梯形,故B 正确;当0<CQ <12时,只需在DD 1上取点M 使PQ ∥AM ,即可得截面APQM 为四边形,故A 正确;当CQ =34时,延长AP ,DC 交于M ,连接QM ,直线QM 与C 1D 1交于点R ,如图2,因CQ =34,则C 1Q =14,CS =1,又C 1R CM =C 1Q QC ,故C 1R =13,选项C 正确;图2当34<CQ <1时,S 为五边形,D 错误. 15.(多选)(2022·烟台调研)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于点N ,则下列说法正确的是( )A.截面α可能为五边形B.存在点N ,使得BN ⊥截面αC.若截面α为平行四边形,则1≤CN ≤2D.当点N与点C重合时,截面面积为36 4答案ACD解析选项A,设P为CC1的中点,当N在PC1之间时,截面α为平行四边形NQMB1,当N在PC之间时,截面α为五边形N1Q1GMB1,其中NQ∥B1M,N1Q1∥B1M,故选项A,C正确;若BN⊥截面α,则BN⊥B1M,这显然是不成立的,因为如果成立,可以推出B1M⊥平面BB1C1C,显然错误,故选项B错误;当点N与点C重合时,截面为梯形CGMB1,易知G为AD的中点.易求CG=GM=52,MC=3,MB1=2,B1C=5,所以CM⊥B1M,△CGM为等腰三角形,故S=S△CGM+S△CMB1=12×3×22+12×3×2=364,故选项D正确.故选ACD.16.(多选)(2022·南京师大附中模拟)如图,圆柱的底面半径和高均为1,线段AB是圆柱下底面的直径,点O是下底面的圆心.线段EF是圆柱的一条母线,且EO⊥AB.已知平面α经过A,B,F三点,将平面α截这个圆柱所得到的较小部分称为“马蹄体”.记平面α与圆柱侧面的交线为曲线C,则( )A.曲线C是椭圆的一部分B.曲线C是抛物线的一部分C.二面角F-AB-E的大小为π4D.马蹄体的体积为V满足13<V<π4答案ACD解析将相同的圆柱按如图方式拼接在一起,将两个球放入圆柱内,使每一个球既与圆柱相切,又与曲线C所在平面相切,球与曲线C的切点为Q,R,取曲线C上一点P,过P点的圆柱母线与两球交于M,N两点,由于PM,PR同是下面球的切线,PN,PQ同是上面球的切线,可得PM=PR,PN=RQ,则PR+PQ=PM+PN=MN>QR,由椭圆定义知:曲线C是椭圆的一部分,A正确;B错误;连接OF,由EO⊥AB,EF⊥AB,知AB⊥平面EOF,故OF⊥AB,则∠FOE为二面角F-AB-E的平面角,又OE=EF=1,则∠FOE=π4,C正确;由补成的几何体知马蹄体的体积为V小于圆柱体的14,即为V<π4,又V F-AEB=13×12×2×1×1=13,所以V>13,所以13<V<π4,D正确.故选ACD.17.(2022·广州模拟)四棱锥P-ABCD各顶点都在球心为O的球面上,且PA⊥平面ABCD,底面ABCD为矩形,PA=AB=2,AD=4,设E,F分别是PB,BC的中点,则球O被平面AEF所截得的截面面积为________.答案14π3解析由题可知PC的中点即为球心O,故球的半径R=12+12+22=6,设球心O到平面AEF的距离为d,截面圆的半径为r.由题意可知球心O到平面AEF的距离等于点B到平面AEF的距离,在三棱锥B-AEF中,由等体积法可得d=23 3,故r2=R2-d2=143,故截面面积S=πr2=14π3.18.(2022·武汉三模)已知正方体ABCD-A1B1C1D1的棱长为1,点P在线段CB1上,若平面α经过点A,C1,P,则它截正方体ABCD-A1B1C1D1所得的截面的周长最小值为________.答案2 5解析当点P靠近点C或与点C重合时,A,C1,P三点确定的平面α如图①所示,图①因为平面ADD1A1∥BCC1B1,所以AE∥QC1,同理AQ∥EC1,所以四边形AEC1Q是平行四边形,即为所求的截面,设D1E=x(0≤x≤1),则A1E=1-x,所以AQ=EC1=x2+1,QC1=AE=(1-x)2+1,AQ+AE=x2+1+(1-x)2+1=(x-0)2+(0-1)2+(x-1)2+(0-1)2,可以看作R(x,0)到M(0,1)和N(1,1)距离之和的最小值,M(0,1)关于x轴的对称点为M′(0,-1),连接M′N,其长度即AQ+AE的最小值,由勾股定理得|M′N|=5,所以周长的最小值为2 5.图②当点P靠近点B1或与点B1重合时,A,C,P三点确定的平面α如图②所示,因为平面ADD1A1∥BCC1B1,1所以AE∥QC1,同理AQ∥EC1,所以四边形AEC1Q是平行四边形,即为所求的截面,同理,所求周长的最小值为2 5.综上所述,周长的最小值为2 5.。

第1讲 空间几何体的结构、三视图和直观图

第1讲  空间几何体的结构、三视图和直观图

2.旋转体 . (1)圆柱:以 矩形 的一边所在的直线为旋转轴,其余三边旋转形成的面所 圆柱: 的一边所在的直线为旋转轴, 圆柱 围成的几何体叫做圆柱. 围成的几何体叫做圆柱. (2)圆锥:以 直角三角形的一条直角边 圆锥: 转形成的面所围成的几何体叫做圆锥. 转形成的面所围成的几何体叫做圆锥. (3)圆台:用一个 平行 于圆锥底面的平面去截 圆锥 ,底面与截面之间的部 圆台: 分,叫做圆台. 叫做圆台. (4)球:以 半圆 的直径所在的直线为旋转轴,半圆面旋转一周形成的几 球 的直径所在的直线为旋转轴, 何体叫做球体.简称球. 何体叫做球体.简称球. 所在直线为旋转轴, 所在直线为旋转轴,其余两边旋
1.多面体 . (1)棱柱:有两个面 互相平行 ,其余各面都是四边形,并且每相邻两个四边形 棱柱: 其余各面都是四边形, 棱柱 由这些面所围成的几何体叫棱柱. 的公共边都 互相平行,由这些面所围成的几何体叫棱柱. (2)棱锥:有一个面是多边形,而其余各面都是有一个公共顶点的 三角形 ,由这 (2)棱锥:有一个面是多边形, 棱锥 些面所围成的几何体叫棱锥. 些面所围成的几何体叫棱锥. (3)棱台: 于棱锥底面的平面去截棱锥,底面与截面之间的部分, (3)棱台:用一个 平行 于棱锥底面的平面去截棱锥,底面与截面之间的部分, 棱台 叫棱台. 叫棱台.
上海)如右图 上海 如右图,已知三棱锥的底面是直角三角形, 3.(2009·上海 如右图,已知三棱锥的底面是直角三角形,直 . 角边长分别为3和 ,过直角顶点的侧棱长为4, 角边长分别为 和4,过直角顶点的侧棱长为 ,且垂直于 底面,该三棱锥的主视图是 底面,该三棱锥的主视图是( )
解析:根据“长对正、高平齐、宽相等” 可得其主视图为选项 解析:根据“长对正、高平齐、宽相等”,可得其主视图为选项B. 答案: 答案:B

第1讲空间几何体的结构及三视图

第1讲空间几何体的结构及三视图

第八章
立体几何初步
1.空间几何体的结构特征 (1)多面体的结构特征 多面体 棱柱 棱锥 棱台 结构特征 有两个面_________ 互相平行 ,其余各面都是四边形且每相 邻两个四边形的公共边都互相平行 有一个面是多边形,而其余各面都是有一个 公共顶点 的三角形 ___________
平行于 底面的平面所截,截面和底面之间 棱锥被_______
答案:D
栏目 导引
第八章
立体几何初步
关于棱柱的下列说法错误的是( A.棱柱的侧棱 D.棱柱的侧面是全等的平行四边形
)
解析:选 D.根据棱柱的结构特征可知选 D.
栏目 导引
第八章
立体几何初步
如图,长方体 ABCDA′B′C′D′中被截去一部分,其 中 EH∥A′D′,则剩下的几何体是( )
栏目 导引
第八章
立体几何初步
空间几何体的结构特征
[典例引领] (1)给出下列几个命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线 是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是 正棱柱;
栏目 导引
第八章
立体几何初步
③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( A.0 C.2 ) B.1 D.3
虚 宽;看不到的线画_______ 线.
栏目 导引
第八章
立体几何初步
3.直观图 (1)画法:常用斜二测画法. (2)规则:①原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,
45°(或135°) ,z′轴与 x′轴和 y′轴 x′轴,y′轴的夹角为_____________
所在平面垂直. ②原图形中平行于坐标轴的线段,直观图中仍平行于坐标 轴.平行于 x 轴和 z 轴的线段在直观图中保持原长度不变,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 空间几何体的截面图形一.选择题(共14小题)1.(2020•碑林区校级模拟)已知在一个棱长为12的正方体1111ABCD A B C D -中,1BB 和11C D 的中点分别为M ,N ,如图,则过A ,M ,N 三点的平面被正方体所截得的截面图形为( )A .六边形B .五边形C .四边形D .三角形【解析】解:在一个棱长为12的正方体1111ABCD A B C D -中,1BB 和11C D 的中点分别为M ,N ,如图, 在1DD 上取点E ,使139DE ED ==,连结AE 、NE , 1//AB D N ,1//BM D E ,ABBM B =,111D ND E D =,∴平面//ABM 平面1D NE ,又NE ⊂平面1D NE ,//NE ∴平面ABM ,1112D E D N BM AB ==,//NE AM ∴, 1//AE C M ,∴过A ,M ,N 三点的平面被正方体所截得的截面图形为五边形1AMC NE .故选:B .2.(2021春•凉山州期末)一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是()A .①②④B .②③C .①②D .②③④【解析】解:当截面不平行于任何侧面也不过对角线时得①, 当截面过正方体的体对角线时得②, 当截面平行于正方体的一个侧面时得④, 但无论如何都不能得到截面③. 故选:A .3.(2020•银川校级一模)对于棱长为1的正方体1AC ,有如下结论,其中错误的是( )A .以正方体的顶点为顶点的几何体可以是每个面都为直角三角形的四面体B .过点A 作平面1A BD 的垂线,垂足为点H ,则A 、H 、1C 三点共线C .过正方体中心的截面图形不可能是正六边形D .三棱锥11A B CD -与正方体的体积之比为1:3 【解析】解:如图,对于棱长为1的正方体1AC ,在A 中,四面体1A ADC -的每个面都为直角三角形,故A 正确; 在B 中,BD AC ⊥,1BD CC ⊥,1ACCC C =,BD ∴⊥平面11ACC A ,1BD AC ∴⊥,11tan tan C AC AAO ∠=∠=,11C AC AAO ∴∠=∠, 111190C AC AOA AAO AOA ∴∠+∠=∠+∠=︒,11AC AO ∴⊥, 1AC ∴⊥平面1A BD ,∴过A 作平面1A BD 的垂线为1AC ,A ∴、H 、1C 三点共线,故B 正确;在C 中,若P ,Q ,N ,M ,F ,E 为正方体1AC 所在棱的中点,连结后得到六边形PQNMFE 是正六边形,且此正六边形的中心过正方体1AC 的中心,故C 错误;在D 中,三棱锥11A B CD -的体积为11111141323A B CD V -=-⨯⨯⨯=,正方体1AC 的体积为1V =,∴三棱锥11A B CD -与正方体的体积之比为1:3,故D 正确.故选:C .4.(2021春•薛城区校级期中)如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的几何体,现用一个竖直的平面去截这个几何体,则截面图形可能是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5)【解析】解:当该平面过圆柱上、下底中心时截面图形为(1); 当不过上、下底的中心时,截面图形为(5). 所以只有(1)、(5)正确. 故选:D .5.(2020秋•开福区校级月考)在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体1111ABCD A B C D -中,点E 、F 分别是楼1B B 、1B C 中点,点G 是棱1CC 的中点,则过线段AG 且平行于平面1A EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形【解析】解:取BC 的中点H , 如图连接AH 、GH 、1D G 、1AD , 由题意得://GH EF ,1//AH A F , GHAH H =,1EFA F F =,∴平面1//AHGD 平面1A EF ,过线段AG 且平行于平面AEF 的截面图形为等腰梯形1AHGD . 故选:D .6.(2020秋•温州期末)平面α截圆柱,截面图不可能是( ) A .矩形B .圆C .椭圆D .抛物线【解析】解:由平面α截圆柱,知: 在A 中,轴截面是矩形,故A 正确; 在B 中,横截面是圆,故B 正确; 在C 中,斜截面是椭圆,故C 正确;在D 中,平面α截圆柱,截面图不可能是抛物线,故D 错误. 故选:D .7.(2021春•濮阳期末)一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是()A .①②B .②④C .①②③D .②③④【解析】解:当截面平行于正方体的一个侧面时得③ 当截面过正方体的体对角线时得②当截面不平行于任何侧面也不过体对角线时得① 但无论如何都不能截出④ 故选:C .8.(2020秋•临漳县校级月考)如图,球内切于正方体,B 、C 为所在棱的中点,过A ,B ,C 三点的截面图象为( )A .B .C .D .【解析】解:设下方体的棱长为:2,正方体中过A ,B ,C 三点的截面是一个菱形,,短对角线长为:长对角线长为: 过A ,B ,C 三点的截面经过球心,截球得到一个大圆,其半径为1, 对照选项,只有B 正确. 故选:B .9.(2020秋•万州区月考)已知在正方体1111ABCD A B C D -中,E ,F ,G 分别是AB ,1BB ,11B C 的中点,则过这三点的截面图的形状是( ) A .三角形B .四边形C .五边形D .六边形【解析】解:分别取11D C 、1D D 、AD 的中点H 、M 、N , 连结GH 、HM 、MN ,在正方体1111ABCD A B C D -中,E ,F ,G 分别是AB ,1BB ,11B C 的中点, //HG EN ∴,//HM EF ,//FG MN ,∴六边形EFGHMN 是过E ,F ,G 这三点的截面图, ∴过这三点的截面图的形状是六边形.故选:D.10.(2020•陕西校级模拟)用一个平面去截一个所有棱长均为1的五棱锥,其截面图形不可能是() A.钝角三角形B.等腰梯形C.平行四边形D.正五边形【解析】解:用一个平面去截一个所有棱长均为1的五棱锥,①若截面过棱PB、PE,则截面PBE∆是全等三角形,∆与ABE且108∠=︒,BAE∆是钝角三角形,如图1所示∴截面PBE②在平面PAB内作//CE AB,MN AB,交PA、PB于点M、N,连接CE,则//≠,∴,且MN CEMN CE//∴四边形CEMN是等腰梯形,如图2所示;③用平行于底面的平面截该棱锥,其截面图形是正五边形,如图3所示;综上,不可能的截面图形是平行四边形.故选:C.11.(2020秋•迁安市校级期末)已知正四面体ABCD及其内切球O,经过该四面体的棱AD及底面ABC上的高DH作截面,交BC于点E,则截面图形正确的是()A.B.C.D.【解析】解:画出图形,如图所示;正四面体ABCD及其内切球O,经过该四面体的棱AD及底面ABC上的高DH作截面,交BC于点E,则截面ADE所表示的图形是:故选:B .12.(2021春•鹤岗校级期末)在正方体1111ABCD A B C D -中,P ,Q ,E ,F 分别是AB ,AD ,11B C ,11C D 的中点,则正方体过P ,Q ,E ,F 的截面图形的形状是( ) A .正方形B .平行四边形C .正五边形D .正六边形【解析】解:如图所示,由//EF PQ ,可以确定一个平面,这个平面与正方体1111ABCD A B C D -的棱1BB 、1DD 分别交于M ,N , 由正方体的性质得//FN MP ,//NQ ME , 且EF FN NQ QP PM ME =====,∴正方体过P ,Q ,E ,F 的截面图形的形状是正六边形.故选:D .13.(2021春•道里区校级期末)正方体1111ABCD A B C D -中,M 、N 分别是棱1DD 和1BB 上的点,113MD DD =,113NB BB =,那么正方体的过M 、N 、1C 的截面图形是( )A .三角形B .四边形C .五边形D .六边形【解析】解:正方体1111ABCD A B C D -中,M 、N 分别是棱1DD 和1BB 上的点,113MD DD =,113NB BB =,延长1C M 交CD 于P ,延长1C N 交CB 于Q ,连结PQ 交AD 于E ,AB 于F ,连结NF ,ME ,则正方体的过M 、N 、1C 的截面图形是五边形. 故选:C .14.在正方体1111ABCD A B C D -中,作截面EFGH (如图所示)交11C D ,11A B ,AB ,CD 分别于点E ,F ,G ,H ,则四边形EFGH 的形状是( )A .平行四边形B .菱形C .矩形D .梯形【解析】解:根据平面平行的性质定理可得四边形EFGH 中, //EF HG ,且//EH FG ,故四边形EFGH 是平行四边形, 故选:A . 二.多选题(共1小题)15.(2021•福田区校级二模)已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是( )A .直线AB 与平面α所成角的正弦值范围为2B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点【解析】解:对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点(2A ,0,0)、(2B ,2,0), 设点(0M ,2,)(02)a a ,AM ⊥平面α,则AM 为平面α的一个法向量,且(2,2,)AM a =-,(0,2,0)AB =,|||cos ,|||||2AB AM AB AM AB AM ⋅<>===⋅⨯,所以,直线AB 与平面α所成角的正弦值范围为,A 选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,1BD CC ∴⊥,四边形ABCD 是正方形,则BD AC ⊥,1CC AC C =,BD ∴⊥平面1ACC ,1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A DBD D =,1AC ∴⊥平面1A BD ,易知△1A BD 是边长为其面积为12A BDS==3= 设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH //EFQNGH 平面1A BD ,正六边形EFQNGH 的周长为26= 则△1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(E b ,0,2),点(0M ,2,1),(2,2,1)AM =-,AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,(1E ∴,0,2),所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点, 则(2F ,1,2),(1,1,0)EF =,而(2,2,0)DB =,∴12EF DB =,//EF DB ∴且EF DB ≠,由空间中两点间的距离公式可得DE BF ,DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,∴2MC AC DN AD ===,1122MC CC =≠,所以,点M 不是棱1CC 的中点,D 选项错误.故选:AC .三.填空题(共8小题)16.(2020秋•迎泽区校级月考)在正方体1111ABCDA B C D 中,M ,N 分别是棱1DD 和1BB 上的点,113MD DD =,113NB BB =,那么正方体过点M ,N ,1C 的截面图形是 五 边形.【解析】解:延长1C M 交CD 于点P ,延长1C N 交CB 于点Q , 连接PQ 交AD 于点E ,交AB 于点F ,则正方体过点M ,N ,1C 的截面图形是五边形1C MEFN , 故答案为:五边形.17.(2020秋•河南期末)平面α以任意角度截正方体,所截得的截面图形可以是①②④⑥⑦(填上所有你认为正确的序号)①正三边形②正四边形③正五边形④正六边形⑤钝角三角形⑥等腰梯形⑦非矩形的平行四边形【解析】解:画出截面图形如图:可以画出三边形,但不能画出直角三角形和钝角三角形,故①正确,⑤错误;可以画出正四边形,故②正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故③错误;.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故④正确;可以画出梯形但不是直角梯形,故⑥正确.可以画出非矩形的平行四边形,故⑦.故平面α以任意角度截正方体,所截得的截面图形可以是:正三边形,正四边形,正六边形,等腰梯形,非矩形的平行四边形.故答案为:①②④⑥⑦.18.(2020秋•渭城区校级期末)如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别为棱1DD ,AB 上的点,下列说法正确的是 ②③④ .(填上所有正确命题的序号) ①1AC ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线; ③△1B EF 在侧面11BCC B 上的正投影是面积为定值的三角形;④当E ,F 为中点时,平面1B EF 截该正方体所得的截面图形是五边形.【解析】解:对于①1A C ⊥平面1B EF ,不一定成立,因为1A C ⊥平面1AC D ,而两个平面1B EF 与面1AC D 不一定平行.对于②在平面1111A B C D 内总存在与平面1B EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;对于③△1B EF 在侧面11BCC B 上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱1BB ,而E 点在面上的投影到此棱1BB 的距离是定值,故正确;对于④,当E ,F 为中点时平面1B EF 截该正方体所得的截面图形是五边形1B QEPF , 故答案为:②③④19.(2015•池州二模)如图,点E ,F 分别在正方体1111ABCD A B C D -的棱1DD 、AB 上,下列命题:①11AC B E ⊥; ②在平面1111A B C D 内总存在于平面1B EF 平行的直线; ③△1B EF 在侧面11BCC B 上的正投影是面积为定值的三角形;④当E 、F 为中点时,平面1B EF 截该正方体所得的截面图形是五边形; ⑤若点P 为线段EF 的中点,则其轨迹为一个矩形的四周. 其中所有真命题的序号是 ②③④ .【解析】解:对于①11AC B E ⊥,不一定成立,因为1A C ⊥平面1AC D ,而两个平面1B EF 与面1AC D 不一定平行.对于②,在平面1111A B C D 内总存在与平面1B EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,故②正确;对于③△1B EF 在侧面11BCC B 上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱1BB ,而E 点在面上的投影到此棱1BB 的距离是定值,故正确;对于④当E ,F 为中点时,平面1B EF 截该正方体所得的截面图形是五边形1B QEPF ,故④正确; 对于⑤若点P 为线段EF 的中点,则其轨迹为一个矩形的面;故⑤错误; 故答案为:②③④.20.(2021•芜湖模拟)如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别为棱1DD 和AB 上的点,则下列说法正确的是 ②③④⑤ .(填上所有正确命题的序号) ①1A C ⊥平面1B CF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线; ③△1B EF 在侧面11BCC B 上的正投影是面积为定值的三角形;④当E ,F 为中点时,平面1B EF 截该正方体所得的截面图形是五边形; ⑤当E ,F 为中点时,平面1B EF 与棱AD 交于点P ,则23AP =.【解析】解:对于①,1A C ⊥平面1B EF ,不一定成立, 因为1A C 与1B F 不一定垂直.故①错误;对于②,在平面1111A B C D 内总存在与平面1B EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面, 故②正确;对于③,△1B EF 在侧面11BCC B 上 的正投影是面积为定值的三角形, 此是一个正确的结论,因为其投影三角形的一边是棱1BB , 而E 点在面上的投影到此棱1BB 的距离是定值,故③正确; 对于④当E ,F 为中点时,平面1B EF 截该正方体所得的截面图形是五边形1B QEPF ,故④正确; 对于⑤由面面平行的性质定理可得1//EQ B F , 故114D Q =,1//B Q PF ,故23AP =,故⑤正确.故正确的命题有:②③④⑤.故答案为:②③④⑤.21.(2021•兴化市校级模拟)正方体1111ABCD A B C D 中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是 正六边形 . 【解析】解:延长QP ,CB 交于V ,连接RV ,交1BB 于S .作//RT PQ ,交11C D 于M .延长PQ ,CD 交于T ,连接TM ,交1DD 于N . 如图所示:正方体过P 、Q 、R 的截面图形是六边形,且是边长是正方体棱长的2倍的正六边形. 答案:正六边形.22.在正四面体ABCD中,P,Q,R分别为所在棱的中点,则四面体过P,Q,R三点的截面图形为等边三角形或菱形.【解析】解:在正四面体ABCD中,①若P,Q,R均为侧棱的中点时,如图所示:此时截面图形为等边三角形,②若P,Q,R有两个为侧棱的中点时,如图所示:此时截面图形为菱形,③若P,Q,R有一个为侧棱的中点时,此时截面图形仍为等边三角形或菱形, 故答案为:等边三角形或菱形23.在正方体1111ABCD A B C D -中,点Q 是棱1DD 上的动点,则过A 、Q 、1B 三点的截面图形的形状为 梯形、平行四边形或三角形 .【解析】解:由于1//AB 平面1C D ,点Q 是棱1DD 上的动点,∴过A 、Q 、1B 三点的截面图形的形状为梯形、平行四边形或三角形.故答案为:梯形、平行四边形或三角形.。

相关文档
最新文档