雷尼绍激光干涉仪测试原理

合集下载

激光干涉仪的原理

激光干涉仪的原理

激光干涉仪的原理
激光干涉仪的工作原理主要基于试验光线和参考光线间的相干干涉现象。

通过干涉方式,可以直接或间接地测定物质的光学性质和几何参数,如折射率、厚度、温度、压力、振动、应力等。

首先,由激光源发出的激光经过分光器被分成两束。

一束作为参考光定向传播,另一束作为试验光无规则传播。

由于试验光经过物质介质后,其相位会发生改变,而参考光的相位则保持不变。

当参考光和试验光在相干条件下汇聚到一点时,两束光波的相位差就会在图像中形成干涉暗纹和亮纹。

干涉图案由于光波的干扰而产生。

当两束光的光程差为整数倍的波长时,干涉图案呈现亮纹。

当光程差为半整数倍的波长时,干涉图案呈现暗纹。

通过观察和分析这些干涉纹,可以精确地测定物质的光学性质和几何参数。

激光干涉仪的优点在于其测量的精度和灵敏度都非常高。

可以实现纳米级甚至皮米级的测量精度,广泛适用于国防科技、生命科学、物理化学、微电子制造等各个科技领域。

要点: 1) 激光干涉仪通过激光干涉的原理来测定物质的光学性质和几何参数;2) 激光干涉仪的测量精度和灵敏度都非常高,可达到纳米级甚至皮米级。

雷尼绍干涉仪使用方法ML-80.

雷尼绍干涉仪使用方法ML-80.

一、本次我们主要研究:如何检测机床的螺距误差。

因此我们主要的任务在于:1. 应该使用什么仪器进行测量2. 怎么使用测量仪器3. 怎么进行数据分析4. 怎么将测量所得的数据输入对应的数控系统二、根据第一点的要求,我们选择的仪器为:Renishaw 激光器测量系统, 此仪器检测的范围包括:1. 线性测量2. 角度测量3. 平面度测量4. 直线度测量5. 垂直度测量6. 平行度测量线性测量:是激光器最常见的一种测量。

激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。

三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。

因此,我们此次使用的检测方法——线性测量。

总结以上我们的核心在于:如何操作 Renishaw 激光器测量系统结合线性测量的方法进行检测, 之后将检测得到的数据进行分析, 最后将分析得到的数据存放到数控系统中。

这样做的目的在于——提高机床的精度。

- 1 -第二章、基础知识2.1 什么是螺距误差?开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。

但丝杠总有一定螺距误差, 因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知:螺距误差是指由螺距累积误差引起的常值系统性定位误差。

2.2 为什么要检测螺距误差?根据 2.1节, 检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差, 即提高机床的精度。

2.3 怎么检测螺距误差?(1安装高精度位移检测装置。

(2编制简单的程序,在整个行程中顺序定位于一些位置点上。

所选点的数目及距离则受数控系统的限制。

(3记录运动到这些点的实际精确位置。

(4将各点处的误差标出,形成不同指令位置处的误差表。

(5多次测量,取平均值。

(6将该表输入数控系统,数控系统将按此表进行补偿。

2.4 什么是增量型误差、绝对型误差?①增量型误差增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5 螺距误差补偿的原理是什么?螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较, 计算出在数控加工全行程上的误差分布曲线, 再将误差以表格的形式输入数控系统中。

激光干涉仪实验报告

激光干涉仪实验报告

基于激光干涉仪的CA6140机床精度测量实验学院:姓名:学号:成绩:一、实验目的与要求1.了解雷尼绍XL-80激光干涉仪的工作原理;2.掌握雷尼绍XL-80激光干涉仪的的使用方法;3.掌握普通机床Z轴定位精度、重复定位精度的测量方法;4.掌握普通机床定位误差数据的处理方法。

二、实验仪器与设备1.雷尼绍XL-80激光干涉仪一台;2.CA6140机床一台。

三、实验原理图1 线性定位精度测量原理图来自XL-80激光头的光束进入线性干涉镜,在此光束被分成两束。

一束光(称为参考光束)被引向装在分光镜上的反射镜,另一束光(测量光束)则穿过分光镜到达第二个反射镜。

然后,两束光都被反射回分光镜,在此它们重新组合并被导回到激光头,激光头内的探测器监测两束光之间的干涉。

一般在线性测量过程中,一个光学组件保持静止不动,另一个光学组件沿线性轴移动。

通过监测测量光束和参考光束之间的光路差异的变化,产生定位精度测量值(注意,它是两个光学组件之间的差异测量值,与XL激光头的位置无关)。

此测量值可以与理想位置比较,获得机床的精度误差。

四、实验步骤图2 定位精度测量示意图1.光路搭建(1)开动机床,在保证激光不被机床碰到的情况下,激光干涉仪应离机床越近越好(便于对光)。

(2)放好支架,大体判断镜子所需架设的高度,然后调整支架至合格位置。

各个活动部件都要锁死。

(3)将激光干涉仪安装至支架,激光干涉仪下有锁扣,扣死。

使用水平仪,通过调整支架使激光干涉仪达到水平状态。

(4)将激光干涉仪各个微调螺母调制中间位置(便于以后微调)。

(5)连接激光干涉仪电源、数据线、数据收集器、传感器、电脑等,打开激光干涉仪电源使激光干涉仪预热,等激光指示灯出现绿色后,表明激光已稳定(正常需5分钟)。

(6)架镜子:遵循干涉镜不动,反射镜随机床动a.将机床擦拭干净并将机床开到合适位置,被测量轴工作台需要开到极限位置(最靠近激光仪的一侧)。

b.先架干涉镜,将干涉镜用安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。

激光干涉仪原理及应用

激光干涉仪原理及应用

激光干涉仪原理及应用
激光干涉仪是一种利用激光光束干涉现象进行测量和检测的仪器。

它利用激光的单色性、相干性和定向性等特点,通过激光光束的干涉现象来测量光线的相位和波前差,从而达到测量目的。

激光干涉仪的原理和应用都具有重要的科学研究价值和实际应用意义。

激光干涉仪的原理可以简单描述为:两束激光光束通过分束器分开,分别在一边经过样品(或目标物)后再次合并在一起,然后通过干涉物后进入光电探测器进行信号采集。

当两束光经过样品后的相位有差异时,就会产生干涉,形成干涉条纹。

通过观察和分析干涉条纹的变化,可以得到样品的相关信息,如形状、厚度、折射率等。

激光干涉仪的原理中,常见的有两种干涉方式,即自由空间干涉和光纤干涉。

自由空间干涉指的是激光光束在空气中进行干涉,可用于测量样品的曲率、平面度、倾斜度等参数。

而光纤干涉则是将激光光束传输到光纤中进行干涉,可用于对光纤的插入损耗、光纤传输的延迟等进行测量。

激光干涉仪的应用非常广泛。

首先,在科学研究中,激光干涉仪可用于测量光学元件的表面形貌,如透镜、棱镜等,以及光学薄膜的厚度和折射率。

其次,激光干涉仪在工业领域中也得到广泛应用,如测量金属工件的平面度、光滑度等,以及检测半导体器件的曲率、形状等。

此外,激光干涉仪还可用于测量纳米颗粒、生物细胞和薄膜等微小尺度的物体,应用于生物医学领域,如细胞生长的监测、精确测量等。

总之,激光干涉仪作为一种精密测量和检测仪器,在科学研究和工业应用中具有重要意义。

其原理的理解和应用的熟练掌握可推动光学测量和微纳技术的发展,为实现精确测量和控制提供基础和技术支持。

雷尼绍XL80激光干涉仪操作手册

雷尼绍XL80激光干涉仪操作手册

镭射干涉仪操作手册手册内容一.RENISHAW 公司简介 1二.镭射干涉仪原理 2(1)波的速度 3(2)干涉量测原理 3(3)镭射干涉仪 4(4)镭射干涉仪一般量测项目 4三.注意事项 5四.镭射干涉仪防止误差及保养 5(1)镭射干涉仪防止误差 5(2)镭射干涉仪保养方法 6五.安全及注意事项 6六.镭射光原理及特性7七.镭射硬件介绍8八.镭射架设流程图15九.定位量测原理及操作16(1)线性定位量测原理16(2)量测方式17十.镭射易发生之人为架设误差20(1)死径误差20(2)余弦误差21(3)阿倍平移误差21 十一.镭射操作之步骤22(1)软件安装之步骤22(2)执行量测软件22(3)定位量测硬件架设之操作23(4)镜组架设前之注意事项24(5)镜组架设之步骤24 十二.定位量测之程序范例29 十三.定位量测之软件操作步骤30 热漂移量测38 快速功能键44 十四.动态软件量测之操作45(1)动态量测硬件之架设45(2)执行量测之软件46(3)位移与时间48(4)速度与时间49(5)加速度与时间50 十五.角度量设之操作52(1)注意事项52(2)镜组架设的种类53(3)镜组架测之步骤54(4)角度量测之软件操作步骤57 十六.RX10旋转轴之量测62(1)说明62(2)硬件配件之介绍62(3)硬件操作之步骤64(4)软件操作之步骤67 十七.直度量测之操作75(1)直度之分类75(2)直度量测之硬件架设75(3)镜组架设之步骤75(4)直度软件之操作步骤80 十八.Z轴直度镜组织架设方法85 十九.垂直度量测之操作89(1)垂直度镜组架设之步骤89(2)软件操作之步骤95 二十.平面度量测之原理与操作101(1)硬设备101(2)操作之原理102(3)镜组架设之步骤102(4)软件操作之步骤110RENISHAW 公司简介RENISHAW为一家英国公司,产品营销全世界,主要产品有三次元量床之测头、测针、BALLBAR循圆测试仪、镭射干涉仪・・・・・・・・等等及产品经NPL(英国国家标准)认证为ISO 9001之合格厂商RENISHAW公司为机器设备制造商提供量测检验系统的仪器,提供各种用于机器精度检定的量测设备进而改善机器的精度RENISHAW XL80 高性能镭射干涉仪是机床、三次元坐标量床及其它定位装置精度校准用的高性能仪器,由于最新电子技术的应用,使其镭射波长非常稳定并保持了低成本高效率的工作流程RENISHAW 产品介绍:镭射干涉仪量测系统循圆测试仪器(BALLBAR)量测系统三次元测头测针系列黏贴式光学尺系列镭射干涉仪量测原理MICHELSON E0 干涉原理两个频率振幅波长相同的镭射光波因相位变化而发生不同程度的干涉a.相长干涉(建设性干涉)b.相消干涉(破坏性干涉)相长干涉相消干涉1.波的速度V=fλ 若f,λ const . 则V const2.干涉量测原理3.镭射干涉仪:一般镭射干涉仪均为氦氖镭射,其镭射光为红色波长0.6329μm长期稳定误差0.05ppm以下(10个波长相差0.5个波)其优点:a.测量范围大b.简化以往光学仪器结构c.测量速度快缺点:易受大气环境影响因波长常会随温度、气压、湿度而变化(因镭射光以空气为传递介质)4.镭射干涉仪一般量测项目:(一)定位精度、距离量测、重复性(二)速度、加速度、动态量测(三)角度量测:a.垂直方向角度(pitch)b.水平方向角度(yaw)(四)真直度量测:a.垂直方向b.水平方向(五)直角度量测(六)平面度量测(七)平行度量测(八)旋转角度量测注意事项:(1)三脚架置于待测物适当位置,地基稳固不可摇晃及避免人员和机器碰触的地方(2)三脚架之水平气泡调至中央位置固定(3)信号线之插头,红点表示向上,各线接头缺口部份确实吻合方可插入(4)各电源线、信号线连接或拔除时,各仪器需均在OFF状态,否则会对仪器造成伤害(5)给予稳定独立电源,确实不漏电环境中使用(6)短距离量测(50mm内)亦产生余弦误差,先校直度再作定位(6)对焦时避免反射回来的镭射光打在镭射光射出口处(7)镭射先热机稳定后,再做镭射量测(8)操作中确认XC80(环境补偿系统)是监控中,每7秒各侦测一项,以42秒为一次循环(9)镭射干涉仪设备存放地点尽量保持干燥镭射干涉仪防止误差及保养1﹒镭射干涉仪防止误差(1)量测周围环境应尽量避免太阳光直接照射或突然流动的风产生扰流现象(2)装设干涉镜及反射镜在被测机台上时,必须牢固,否则机台移动会造成不可预期的量测误差(3)环境侦测感应器与材料温度感应器是否作动,必须于量测前确实检查,以免造成不必要的误差(4)要获得最佳精度并减少误差,建议遵守下列规定:a﹒在校验环境条件中执行量测b﹒激光束需作确实校直c﹒需注意量测时的周围条件d﹒牢固地装设镜组(3)在量测执行中不可因其它因素而中断,量测必须一次完成检验,若发生量测中断情形,必须重新执行检验2﹒镭射干涉仪保养方法(1)使用时应防止碰撞及震动(2)工作完毕应循操作方法反顺序逐一拆卸并且擦拭干净置回仪器盒内(3)金属平台在使用完后应擦拭干净(4)干涉镜及反射镜片应使用光学镜片专用擦拭纸做圆形回转擦拭(注意严禁使用酒精或具有挥化性及腐蚀性之清洁液擦拭,请干擦,因镜面有镀一层蓝色薄墨,而激光束是靠此薄墨产生折射与反射,如果使用具有挥化性或腐蚀性之清洁液会将此薄墨破坏,如果镜面没有薄墨折射率既减弱而影响光强,且无法再镀上此薄墨,请注意小心使用)(5)应小心搬运尤其对镜片类应有适当防护与防震,暂不用时以干净东西覆盖安全注意事项1.镭射光属二级镭射,建议勿长时间直视镭射光2.镭射预热时可将镭射光闸暂时关闭,镜组对焦时再予以打开3.对焦时尽量避免反射之镭射光打在镭射头的镭射发射出口处,以免镭射造成不良影响4.架设镜组前,先将机器欲测轴全行程来回移动,观察机器移动空间并决定镜组架设位置,当镜组架设至机台后,使用手动慢速移动机器确定移动空间无其它干涉物后,机器才可改为自动移动5.架设或操作镭射干涉仪时,闲杂人等避免靠近,以免拌到电源线或传输线6.确认电压伏特是否正确,并且所使用的电力来源尽量能够独立,并加稳压器.镭射光原理及特性1.光的相关原理光为一种无质量的微粒子(牛顿)光为一种电磁波(马克士威尔)光具有粒子与波动的性质2.光的特性方向性直线性波动性3.波的基本物理量频率f、周期T、振幅A、波长λ、其中波长是长度单位4.何谓镭射光对某种元素施予能量,使其原来稳定的基态(低能阶)变为不稳定的激态(高能阶),元素会由激态(高能阶)释放出能量后变回原来的基态(低能阶) 再释放能量的过程中会产生一种光,我们谓之镭射光5.镭射光之特性A.高单频性:光的频率即是色,高纯频率即是高单色,一般可见光包含红、澄、黄、绿、蓝、靛、紫、频率纯度较低B.高方向性:镭射光配合聚光镜的发散角度非常小,而一般光线其扩散角度都非常大C.高亮度性:其光线亮度比一般光线亮度大数倍(视镭射而定)硬件介绍XL80 镭射头XC80 环境补偿系统8XC80 环境补偿系统插槽示意图夹持器组线性定位量测镜组角度量测镜组Z轴直度量测镜组及附件垂直度量测镜平坦度量测镜组旋转轴量测系统镭射头微调平台重负荷三脚架镭射架设联机流程图1﹒镭射架设及量测流程表15定位量测原理及操作1﹒线性定位量测原理:(一)架设方式:干涉镜不动,移动反射镜反射镜不动,移动干涉镜(二)何谓线性定位精度:CNC机器执行时,程序之坐标点未必是机器的坐标点,程序坐标点为理想值,机器坐标点为实际值,两者之间差为机器的定位精度(三)线性定位误差原因:误差原因可能是导程误差、控制器误差、机器几何误差及震动等原因(四)线性定位量测的目的:量测出机台可能因零件和组装所造成的误差,可利用机器参数补偿或重新组装改进机器加工机精度,确保机器加工的质量(五)镭射干涉仪定位量测发生误差的原因:a﹒空气、温度、湿度、气压等影响b﹒待测物之热膨胀系数c﹒电子误差d﹒死径误差(图一)e﹒阿倍(ABBE)误差(图二)f﹒余弦(COS)误差(图三)g﹒震动误差h﹒镜组热膨胀飘移镭射干涉仪量测数据是以数值方式显示,并没有一般量测时有人为读值判定所产生的误差162﹒量测方式a﹒线性(linear)方式---单向---2次b﹒线性(linear)方式---双向---2次17C﹒朝圣(pilgrim)方式---单向---2次d﹒朝圣(pilgrim)方式---双向---2次18e﹒钟摆(pendulum)方式---单向---2次f﹒钟摆(pendulum)方式---单向---2次镭射架设易发生之误差1﹒死径误差(如图一所示)˙死径误差是一种与使用XC80 自动补偿的线性量测过程中的环境因子变化有关的误差。

[物理]激光干涉仪原理介绍

[物理]激光干涉仪原理介绍
5/10/2020 Slide 17
apply innovation
直线度测量
5/10/2020 Slide 18
apply innovation
直线度测量
5/10/2020 Slide 19
apply innovation
直线度测量
Wollaston 棱镜
5/10/2020 Slide 20
apply innovation
线性测量原理
5/10/2020 Slide 11
激光干涉仪通过接收到的激光的明暗条 纹变化,再通过电子细分,从而知道距 离的细微和准确变化。
+
+
+
-
=
=
apply innovation
线性测量
5/10/2020 Slide 12
apply innovation
激光干涉仪测量与国际标准
• The detection unit detects these changes and converts them to a reading that is proportional to the change in relative path length.
角度测量
安装方式
5/10/2020 Slide 14
apply innovation
角度测量
激光头
5/10/2020 Slide 15
固定干涉镜
移动反射镜
apply innovation
角度测量
激光头
5/10/2020 Slide 16
固定干涉镜
移动反射镜
apply innovation
角度测量
• As the reflector is moved upwards, Beam path 1 gets longer and Beam path 2 gets shorter

激光干涉仪实验报告

激光干涉仪实验报告

基于激光干涉仪的CA6140机床精度测量实验一、实验目的与要求1.了解雷尼绍XL-80激光干涉仪的工作原理;2.掌握雷尼绍XL-80激光干涉仪的的使用方法;3.掌握普通机床Z轴定位精度、重复定位精度的测量方法;4.掌握普通机床定位误差数据的处理方法。

二、实验仪器与设备1.雷尼绍XL-80激光干涉仪一台;2.CA6140机床一台。

三、实验原理图1 线性定位精度测量原理图来自XL-80激光头的光束进入线性干涉镜,在此光束被分成两束。

一束光(称为参考光束)被引向装在分光镜上的反射镜,另一束光(测量光束)则穿过分光镜到达第二个反射镜。

然后,两束光都被反射回分光镜,在此它们重新组合并被导回到激光头,激光头内的探测器监测两束光之间的干涉。

一般在线性测量过程中,一个光学组件保持静止不动,另一个光学组件沿线性轴移动。

通过监测测量光束和参考光束之间的光路差异的变化,产生定位精度测量值(注意,它是两个光学组件之间的差异测量值,与XL激光头的位置无关)。

此测量值可以与理想位置比较,获得机床的精度误差。

四、实验步骤图2 定位精度测量示意图1.光路搭建(1)开动机床,在保证激光不被机床碰到的情况下,激光干涉仪应离机床越近越好(便于对光)。

(2)放好支架,大体判断镜子所需架设的高度,然后调整支架至合格位置。

各个活动部件都要锁死。

(3)将激光干涉仪安装至支架,激光干涉仪下有锁扣,扣死。

使用水平仪,通过调整支架使激光干涉仪达到水平状态。

(4)将激光干涉仪各个微调螺母调制中间位置(便于以后微调)。

(5)连接激光干涉仪电源、数据线、数据收集器、传感器、电脑等,打开激光干涉仪电源使激光干涉仪预热,等激光指示灯出现绿色后,表明激光已稳定(正常需5分钟)。

(6)架镜子:遵循干涉镜不动,反射镜随机床动a.将机床擦拭干净并将机床开到合适位置,被测量轴工作台需要开到极限位置(最靠近激光仪的一侧)。

b.先架干涉镜,将干涉镜用安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。

激光干涉仪原理

激光干涉仪原理

激光干涉仪原理激光干涉仪是一种利用激光干涉现象来测量物体表面形状、薄膜厚度、折射率等参数的精密光学仪器。

其原理基于激光的相干性和干涉现象,通过激光光束的分束、干涉和合束,实现对被测物体的精密测量。

激光干涉仪的原理主要包括干涉、分束、合束和干涉图样的形成。

首先,激光干涉仪利用激光的相干性,使得两束光线相互叠加形成干涉条纹。

当两束相干光线相遇时,由于光波的叠加效应,形成明暗交替的干涉条纹,通过测量干涉条纹的位置和形态,可以得到被测物体的形状和参数信息。

其次,激光干涉仪通过分束器将激光光束分为两束,分别照射到被测物体表面,然后再利用合束器将两束光线重新合成一束,使得两束光线相互干涉,形成干涉条纹。

通过测量干涉条纹的位置和形态变化,可以得到被测物体表面的形状信息。

激光干涉仪的干涉图样是由两束相干光线相互叠加形成的,其形态和位置的变化与被测物体的形状和参数密切相关。

通过对干涉图样的分析和处理,可以得到被测物体的形状、薄膜厚度、折射率等参数信息。

总的来说,激光干涉仪利用激光的相干性和干涉现象,通过分束、干涉和合束的过程,实现对被测物体的精密测量。

其原理简单而又精密,广泛应用于工业制造、科学研究、医学诊断等领域,为精密测量提供了重要的技术手段。

激光干涉仪的应用非常广泛,包括但不限于工业制造中的零件测量、表面质量检测、薄膜厚度测量;科学研究中的光学实验、材料表征、精密测量;医学诊断中的眼底成像、生物组织测量等。

随着激光技术的不断发展和完善,激光干涉仪的应用领域将会更加广阔,为各行各业的精密测量提供更加可靠、精准的技术支持。

综上所述,激光干涉仪利用激光的相干性和干涉现象,通过分束、干涉和合束的过程,实现对被测物体的精密测量。

其原理简单而又精密,应用广泛,为精密测量提供了重要的技术手段。

随着激光技术的不断发展,激光干涉仪的应用领域将会更加广阔,为各行各业的精密测量提供更加可靠、精准的技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷尼绍激光干涉仪测试原理
雷尼绍激光干涉仪是一种高精度的测试仪器,广泛应用于各个领域。

其原理是利用两束激光在被测物体表面产生干涉,通过对干涉条纹的分析计算出被测物体表面的形态信息。

具体来说,雷尼绍激光干涉仪的测试原理是将一束平行光通过分束器分成两束,其中一束通过反射镜反射后与另一束光相遇,产生干涉现象。

干涉后的光线被聚焦在探测器上,形成干涉条纹,条纹的形态和间距与被测物体表面的形态有关。

通过对条纹的分析和计算,可以得到被测物体表面的形态信息,如表面高度、表面形状等。

雷尼绍激光干涉仪具有高精度、非接触式、高效率等优点,可以用于测量各种形状的物体表面形态,如平面、球面、非球面等。

在制造业、航空航天、车辆制造等领域都有广泛的应用。

- 1 -。

相关文档
最新文档