2019年成都中考数学一诊20,27,28(含答案)
2019年四川省成都市青羊区中考数学一诊试卷(解析版)

2019年四川省成都市青羊区中考数学一诊试卷一、选择题(本大属共10个小,每小题3分,共30分)1.﹣5的相反数是()A.B.C.5D.﹣52.观察下列几何体,主视图、左视图和俯视图都是矩形的是()A.B.C.D.3.在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos B的值为()A.B.C.D.4.关于x的一元二次方程x2+2x+3m=0有两个不相等的实数根,则m的取值范围是()A.m<B.m≤C.m>﹣D.m≤5.如图,在▱ABCD中,E为BC中点,连接AE交对角线BD于F,BF=2,则FD等于()A.2B.3C.4D.66.如图,在△ABC所在平面上任意取一点O(与A,B,C不重合),连接OA,OB,OC,分别取OA、OB、OC的中点A1、B1、C1,再连接A1B1、A1C1、B1C1得到△A1B1C1,则下列说法不正确的是()A.△ABC与△A1B1C1是位似图形B.△ABC与△A1B1C1是相似图形C.△ABC与△A1B1C1的周长比为1:2D.△ABC与△A1B1C1的面积比为1:27.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°8.小敏的讲义夹里放了大小相同的试卷共12页,其中语文2页、数学4页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.9.已知点A(a,2)与点B(b,3)都在反比例函数y=的图象上,则a与b的大小关系是()A.a<b B.a>b C.a=b D.不能确定10.下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.顺次连接菱形各边中点所得的四边形是矩形D.一组对边平行,另一组对边相等的四边形是平行四边形二、填空题(本大题共4个小题,每小题4分,共16分)11.计算tan45°=.12.在函数y=中,自变量x的取值范围是.13.如图,等腰△ABC内接于圆⊙O,AB=AC,∠ACB=70°,则∠COB的度数是.14.如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=16,BD=12,DH垂直BC于H,则sin∠DCH=.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算﹣(﹣1)2019+(π﹣2018)0﹣sin60°+()﹣1(2)解方程:2x2﹣3x﹣2=016.(6分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(8分)庆祝改革开放40周年暨我爱我家•美丽青羊群众文艺展演圆满落幕,某学习小组对文艺展演中的A舞蹈《不忘初心》,B独舞《梨园一生》,C舞蹈《炫动的玫瑰》,D朝鲜组歌舞《阿里郎+atep》这四个节目开展“我最喜爱的舞蹈节目”调查,随机调查了部分观众(每位观众必选且只能选这四个节目中的一个)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名观众;并将条形统计图补充完整;(2)学习小组准备从4个节目中随机选取两个节目的录像带回学校给同学们观看,请用树状图或者列表的方法求恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率.18.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学樱顶D的仰角为20°,教学楼底部B的俯角为30°,量得实验楼与教学楼之间的距离AB=30m.(结果精确到0.lm.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,≈l.73)(1)求∠BCD的度数.(2)求教学楼的高BD.19.(10分)如图,在平面直角坐标系xOy中,B(3,﹣1)是反比函数y=图象上的一点,过B 点的一次函数y=﹣x+b与反比例函数交于另一点A.(1)求一次函数和反比例函数的表达式;(2)求△AOB面积;(3)在A点左边的反比例函数图象上求点P,使得S△POA :S△AOB=3:2.20.(10分)如图,AB是⊙O的直径,C,D为圆上位于直径AB两侧的点,连接AC、AD、CD、BD,且AD<BD.(1)如图1,若∠C=15°,求∠BAD的度数;(2)如图2,若BD=6,AD=3,CD平分∠ADB,求CD长度;(3)如图3,将(2)中的CD延长与过点A的切线交于点E,连接BE,设tan∠ABD=x,tan ∠ABE=y,用含x的代数式表示y.四、填空题(每小题4分,共20分)21.已知x1,x2是一元二次方程x2+6x+1=0的两实数根,则2x1﹣x1x2+2x2的值为.22.考察反比例函数y=的图象,当y≤1时,x的取值范围是.23.从﹣4、﹣3、﹣1、﹣、0、1这6个数中随机抽取一个数a,则关于x的分式方程﹣=的解为整数,且二次函数y=ax2+3x﹣1的图象顶点在第一象限的概率是.24.如图,在直角△ABC中,∠BAC=90°,AB=4,将△ABC绕点A逆时针旋转得到△AB1C1,B1C1交BC于点D,AB1交BC于点E,连接AD,当AE平分∠BAD时,AE=3,则BD=.25.如图,等腰△ABC中,AC=BC=2.∠ACB=120°,以AB为直径在△ABC另一侧作半圆,圆心为O,点D为半圆上的动点,将半圆沿AD所在直线翻叠,翻折后的弧AD与直径AB交点为F,当弧AD与BC边相切时,AF的长为.五、解答题(本大题共3个小题,共30分)26.(8分)某商店经营一种小商品,进价为3元,经过一段时间的销售,统计了售价x(元)与每天销售件数y(件)的部分数据如下:售价x(元)1010.51111.512销售量y(件)5250484644(1)请你根据上表数据,在三个函数模型,①y=kx+b,(k,b为常数,k≠0);②y=(k 为常数,k≠0);③y=ax2+bx+c(a,b,c为常数,a≠0)中,选取一个合适的函数模型,求出的y关于x的函数关系式(不需要写出x取值范围);(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入﹣购进成本)27.(10分)在矩形ABCD中,AB=3,AD=4,点P为AB边上的动点(P与A、B不重合),将△BCP沿CP翻折,点B的对应点B1在矩形外,PB1交AD于E,CB1交AD于点F.(1)如图1,求证:△APE∽△DFC;(2)如图1,如果EF=PE,求BP的长;(3)如图2,连接BB′交AD于点Q,EQ:QF=8:5,求tan∠PCB.28.(12分)如图,抛物线y=﹣+bx+c与x轴交于A(﹣4,0),B(1,0)两点,与y轴交于点C,点D为直线AC上方抛物线上的动点,DE⊥线段AC于点E.(1)求抛物线解析式;(2)如图1,求线段DE的最大值;(3)如图2,连接CD、BC,当△BOC与以C、D、E为顶点的三角形相似时,求点D的横坐标.2019年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大属共10个小,每小题3分,共30分)1.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数作答.【解答】解:根据相反数的定义得:﹣5的相反数为5.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.【点评】本题重点考查了三视图的定义考查学生的空间想象能力.3.【分析】先根据勾股定理求出AB的值,再根据直角三角形中锐角三角函数的定义解答.【解答】解:∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,cos B==.故选:B.【点评】此题主要考查学生对锐角三角函数的定义及勾股定理的综合运用.4.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m不等式,求出m的取值范围.【解答】解:∵a=1,b=2,c=3m,∴△=b2﹣4ac=22﹣4×1×3m=4﹣12m>0,解得m<.故选:A.【点评】考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.【分析】首先根据题意作图,然后由四边形ABCD是平行四边形,即可求得AD=BC,AD∥BC,根据相似三角形的判定和性质解答即可.【解答】解:∵在▱ABCD中,E为BC中点,∴AD=BC,AD∥BC,2BE=BC=AD,∴△BFE∽△DFA,∴,即,解得:FD=4,故选:C.【点评】此题考查了相似三角形的判定和性质与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.6.【分析】直接利用位似图形的性质分别分析得出答案.【解答】解:根据位似图形的性质可得:A、△ABC与△A1B1C1是位似图形,正确,不合题意;B、△ABC与△A1B1C1是相似图形,正确,不合题意;C、△ABC与△A1B1C1的周长比为1:2,正确,不合题意;D、△ABC与△A1B1C1的面积比为1:4,故此选项错误,符合题意.故选:D.【点评】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.7.【分析】根据直径AB⊥弦CD于点E,由垂径定理求出,CE=DE,即可得出答案.【解答】解:根据⊙O的直径AB⊥弦CD于点E∴CE=DE.故选:B.【点评】此题主要考查了垂径定理,熟练地应用垂径定理是解决问题的关键.8.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵相同的试卷共12页,其中语文2页、数学4页、英语6页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=;故选:D.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.【分析】根据点A(a,2)与点B(b,3)都在反比例函数y=的图象上,可以求得a、b的值,从而可以比较a、b的大小,本题得以解决.【解答】解:∵点A(a,2)与点B(b,3)都在反比例函数y=的图象上,∴2=,3=,解得,a=﹣3,b=﹣2,∵﹣3<﹣2,∴a<b,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【分析】根据矩形、菱形、平行四边形的判定定理、中点四边形的概念判断即可.【解答】解:对角线相等的平行四边形是矩形,A是假命题;对角线互相垂直的平行四边形是菱形,B是假命题;顺次连接菱形各边中点所得的四边形是矩形,C是真命题;一组对边平行,另一组对边相等的四边形不一定是平行四边形,D是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(本大题共4个小题,每小题4分,共16分)11.【分析】根据特殊角的三角函数值计算.【解答】解:tan45°=1.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.12.【分析】因为二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.【点评】当函数表达式是二次根式时,被开方数为非负数.13.【分析】根据等腰三角形的性质、三角形内角和定理求出∠A,根据圆周角定理解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°×2=40°,由圆周角定理得,∠COB=2∠A=80°,故答案为:80°.【点评】本题考查的是圆周角定理、等腰三角形的性质,掌握圆周角定理是解题的关键.14.【分析】由菱形的性质可得AB=BC=CD=AD,AC⊥BD,AO=CO=8,BO=DO=6,由勾股定理可求BC=10,由三角形的面积公式可求DH的长,即可求sin∠DCH的值.【解答】解:∵四边形ABCD是菱形∴AB=BC=CD=AD,AC⊥BD,AO=CO=8,BO=DO=6,∴BC==10=BC×DH=BD×OC,∵S△BCD∴12×8=10×DH∴DH=9.6∴sin∠DCH==【点评】本题考查了菱形的性质,勾股定理,求DH的长度是本题的关键.三、解答题(本大题共6个小题,共54分)15.【分析】(1)先计算负整数指数幂,零指数幂,特殊角的三角函数值,然后计算加减法;(2)利用因式分解法解方程.【解答】解:(1)原式=﹣1+1﹣×+2=.(2)2x2﹣3x﹣2=0(2x+1)(x﹣2)=02x+1=0或x﹣2=0,解得x1=﹣,x2=2.【点评】考查了实数的运算和因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).16.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:(x﹣2﹣)÷=÷=•=x+4,当x=2﹣4时,原式=2﹣4+4=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【分析】(1)先由C节目的人数及其所占百分比可得总人数,再根据各类型节目的人数之和等于总人数求得B类型节目的人数即可补全图形;(2)利用树状图得出所有可能,进而求出概率.【解答】解:(1)本次调查的总人数为15÷30%=50(人),则B节目的人数为50﹣(16+15+7)=12(人),补全条形图如下:(2)如图所示:一共有12种可能,恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的有2种,故恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率为=.【点评】此题主要考查了扇形统计图与条形统计图的综合应用以及利用列表法求概率等知识,利用条形统计图与扇形统计图得出正确信息是解题关键.18.【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【解答】解:(1)过点C作CE⊥BD,则有∠DCE=20°,∠BCE=30°,∴∠BCD=∠DCE+∠BCE=20°+30°=50°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan30°≈17.32m,在Rt△CDE中,DE=CE•tan20°≈10.8m,∴教学楼的高BD=BE+DE=17.32+10.8≈28.1m,则教学楼的高约为28.1m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.19.【分析】(1)将B点坐标分别代入y=﹣x+b,y=,即可求出一次函数和反比例函数的表达式;(2)将一次函数和反比例函数的表达式联立组成方程组,求出A 点坐标,再求出直线y =﹣x +2与y 轴交点C 的坐标,然后根据S △AOB =S △AOC +S △COB ,列式计算即可;(3)过点A 作AM ⊥x 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据反比例函数比例系数k 的几何意义得出S △AOM =S △PON =.再推出S △POA =S 梯形AMNP ,由S △POA :S △AOB =3:2,得到S △POA =S △AOB =6.设P (x ,﹣),根据S 梯形AMNP =(NP +AM )•MN =6列出方程,求解即可.【解答】解:(1)∵一次函数y =﹣x +b 过B (3,﹣1),∴﹣3+b =﹣1,b =2,∴一次函数表达式为y =﹣x +2;∵B (3,﹣1)是反比函数y =图象上的一点,∴k =3×(﹣1)=﹣3,∴反比例函数的表达式为y =﹣;(2)由,解得或,∴A (﹣1,3).如图,设直线y =﹣x +2与y 轴交于点C ,则C (0,2),∴S △AOB =S △AOC +S △COB =×2×1+×2×3=1+3=4;(3)如图,过点A 作AM ⊥x 轴于点M ,过点P 作PN ⊥x 轴于点N ,则S △AOM =S △PON =. ∵S △POA +S △PON =S 梯形AMNP +S △AOM ,∴S △POA =S 梯形AMNP ,∵S △POA :S △AOB =3:2,∴S △POA =S △AOB =×4=6.设P(x,﹣),而A(﹣1,3),∴S=(NP+AM)•MN=6,梯形AMNP∴(﹣+3)•(﹣1﹣x)=6,整理,得x2+4x﹣1=0,解得x=﹣2±,∵点P在A点左边,∴x<﹣1,∴x=﹣2﹣,∴P(﹣2﹣,3﹣6).【点评】本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式,反比例函数比例系数k的几何意义,三角形的面积,难度适中.20.【分析】(1)由题意,可得∠ADB=90°,∠B=∠C=15°,即可得出∠BAD的度数;(2)延长DB至K,使BK=AD=3,连接BC,KC,证明△CBK≌△CAD,可得CK=CD,∠KCD=90°,因为KD=9,即可得出CD的长;(3)在BD上截取DM=DA,连接AM,证明△AMB∽△EDA,可得,设BD=a,则AD =MD=ax,BM=a﹣ax,进而得出y=tan∠ABE=.【解答】解:(1)∵AB是⊙O直径,∴∠ADB=90°∵∠B=∠C=15°∴∠BAD=90°﹣∠B=75°,(2)如图2,延长DB至K,使BK=AD=3,连接BC,KC,∵CD平分∠ADB,∠ADB=90°,∴∠CAB=∠CDB=45°,∠CBA=∠CDA=45°,∴∠ACB=90°,CA=CB,∵∠CBK=180°﹣∠DBC=∠CAD,∴△CBK≌△CAD(SAS),∴CK=CD,∠K=∠CDA=45°,∴∠KCD=90°,∵BD=6,∴KD=KB+BD=9,∴CD=,(3)如图3,在BD上截取DM=DA,连接AM,∵∠ADM=90°,∴∠AMD=∠MAD=45°,∴∠AMB=135°,∵AE与⊙O相切于点A,AB为直径,∴∠BAE=90°,∴∠BAM+∠DAE=45°,∵∠AED+∠DAE=∠ADC=45°,∴∠BAM=∠AED,∵∠AMB=∠EDA=135°,∴△AMB∽△EDA,∴,∵tan∠ABD=x,设BD=a,则AD=MD=ax,∴y=tan∠ABE=.【点评】本题考查圆的切线的性质,相似三角形的判定和性质,圆周角定理及其推论,锐角三角函数的定义.解决(3)问的关键是构造相似三角形进行比的转换.四、填空题(每小题4分,共20分)21.【分析】根据根与系数的关系解答.【解答】解:依题意得:x1+x2=﹣6,x1•x2=1,所以2x1﹣x1x2+2x2=2(x1+x2)﹣x1x2=2×(﹣6)﹣1=﹣13.故答案是:﹣13.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.22.【分析】首先根据反比例函数的比例系数确定其增减性,然后根据函数值的取值范围确定自变量的取值范围即可.【解答】解:∵k=﹣2<0,∴当x<0时,y随着x的增大而增大,∵当y=1时,x=﹣2,当x>0时,y<0∴当y≤1时x≤﹣2或x>0,故答案为:x≤﹣2或x>0.【点评】本题考查了反比例函数的性质及反比例函数的图象的知识,解题的关键是根据反比例函数的比例式确定其增减性,难度不大.23.【分析】先解分式方程,求出满足分式方程的解的a的值为﹣3、﹣1、1,再利用二次函数的性质得到a=﹣1,然后根据概率公式求解.【解答】解:对于分式方程﹣=,去分母:(a+2)x=3,所以x=,当a=﹣3、﹣1、1时,x为整数,因为x≠2,即≠2,解得a≠﹣,二次函数y=ax2+3x﹣1的图象顶点坐标为(﹣,),则﹣>0且>0,解得﹣<a<0,则a=﹣1,所以满足条件的a的值为﹣1,所以随机抽取一个数a,满足条件的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了分式方程的解、二次函数的性质.24.【分析】证△B1DE∽△B1AD,可求得DB1=2,再证明△B1DE∽△BAE,可求得DE,BE的长,进而得出DB的长.【解答】解:∵AE平分∠BAD,∴∠BAE=∠DAE,∵∠B1=∠B,∠BEA=∠B1ED,∴∠B1DE=∠BAE,∴∠B1DE=∠DAE,∵∠B1=∠B1,∴△B1DE∽△B1AD,∴,∵AB1=AB=4,AE=3,∴B1E=1,∴,∴DB1=2,∵∠B1=∠B,∠BEA=∠B1ED,∴△B1DE∽△BAE,∴,∴DE=,EB=2,∴DB=DE+BE=3.5.故答案为:3.5.【点评】本题考查旋转的性质和相似三角形的判定和性质,熟练掌握上述性质并能灵活运用于解题是解决本题的关键.25.【分析】作点O关于AD的对称点O′,连接O′A,延长BC交⊙O于点E,设⊙O′与BC 相切于点G,证明四边形O′AEG为平行四边形,得AO′∥BE,即∠O′AB=∠ABC=30°,作O′M⊥AF于M,在Rt△O′AM中,O′A=3,∠O′AB=30°,可求得AM的长,进而得出AF的长.【解答】解:如图,作点O关于AD的对称点O′,连接O′A,∵AC=BC=2.∠ACB=120°,∴AB=6,∴O′A=OA=3,延长BC交⊙O于点E,∵AB是⊙O的直径,∴∠E=90°,设⊙O′与BC相切于点G,则∠O′GB=90°,∴∠E=∠O′GB,∴AE∥O′G,∵∠ABC=30°,AB=6,∴AE=O′G=3,∴四边形O′AEG为平行四边形,∴AO′∥BE,∴∠O′AB=∠ABC=30°,作O′M⊥AF于M∵O′A=3,∠O′AB=30°,∴AM=MF=,∴AF=2AM=.故答案为:.【点评】本题考查圆的切线的性质,垂径定理,直角三角形的性质,平行四边形的判定和性质,解题的关键是掌握圆的切线的性质.五、解答题(本大题共3个小题,共30分)26.【分析】(1)根据表格中的数据可以判断y与x符合那种函数模型,并求出相应的函数解析式;(2)根据题意可以得到利润与售价的函数关系式,然后利用二次函数的性质即可解答本题.【解答】解:(1)由图表可知,售价每增加0.5元,销售量就减少2件,故y与x符合①y=kx+b,,得,即y与x的函数关系式为y=﹣4x+92;(2)设利润为w元,w=(x﹣3)(﹣4x+92)=﹣4(x﹣13)2+400,∴当x=13时,w取得最大值,此时w=400,答:每件小商品销售价是13元时,商店每天销售这种小商品的利润最大,最大利润是400元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.27.【分析】(1)由矩形的性质可得∠A=∠D=∠ABC=∠BCD=90°,由余角的性质和对顶角的性质可得∠DFC=∠APE,即可得结论;(2)由题意可证△APE≌△B1FE,可得AE=B1E,AP=B1F,即AF=B1P,由折叠的性质可得BP=B1P=a,BC=B1C=4,根据勾股定理可求BP的长.(3)由折叠的性质和等腰三角形的性质可得∠PB1B=∠PCB,设EQ=8k,QF=5k,可得B1F =5k,EF=EQ+QF=13k,由勾股定理可得B1E=12k,由相似三角形的性质可得EH=,HQ=,即可求tan∠PCB.【解答】证明:(1)∵四边形ABCD是矩形∴∠A=∠D=∠ABC=∠BCD=90°∴∠APE+∠AEP=90°,∠DCF+∠DFC=90°,∵折叠∴∠ABC=∠PB1C=90°,∴∠B1EF+∠B1FE=90°,又∵∠B1EF=∠AEP,∠B1FE=∠DFC,∴∠DFC=∠APE,且∠A=∠D,∴△APE∽△DFC(2)∵PE=EF,∠A=∠B1=90°,∠AEP=∠B1EF,∴△APE≌△B1FE(AAS),∴AE=B1E,AP=B1F,∴AE+EF=PE+B1E,∴AF=B1P,设BP=a,则AP=3﹣a=B1F,∵折叠∴BP=B1P=a,BC=B1C=4,∴AF=a,CF=4﹣(3﹣a)=a+1∴DF=AD﹣AF=4﹣a,在Rt△DFC中,CF2=DF2+CD2,∴(a+1)2=(4﹣a)2+9,∴a=2.4即BP=2.4(3)∵折叠∴BC=B1C,BP=B1P,∠BCP=∠B1CP,∴CP垂直平分BB1,∴∠B1BC+∠BCP=90°,∵BC=B1C,∴∠B1BC=∠BB1C,且∠BB1C+∠PB1B=90°∴∠PB1B=∠PCB,∵四边形ABCD是矩形∴AD∥BC∴∠B1BC=∠B1QF,∴∠B1QF=∠BB1C,∴QF=B1F∵EQ:QF=8:5,∴设EQ=8k,QF=5k,∴B1F=5k,EF=EQ+QF=13k,在Rt△B1EF中,B1E==12k,如图,过点Q作HQ⊥B1E于点H,又∵∠PB1C=90°,∴HQ∥B1F∴△EHQ∽△EB1F,∴∴∴EH=,HQ=∴B1H=∴tan∠PCB=tan∠PB1B==【点评】本题是相似形综合题,考查了相似三角形的判定和性质,矩形的性质,勾股定理,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.28.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)过点D作DF⊥x轴,垂足为F,DF交AC于点M,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,设点D的坐标为(x,﹣x2﹣x+3)(﹣4<x<0),则点M的坐标为(x,x+3),进而可得出DM的长,在Rt△AOC中,利用勾股定理可求出AC的长,由∠DEM=∠AFM,∠DME=∠AMF可得出△DME∽△AMF,利用相似三角形的性质可得出DE=DM=﹣x2﹣x,再利用二次函数的性质即可解决最值问题;(3)设点D的坐标为(x,﹣x2﹣x+3)(﹣4<x<0),则DE=﹣x2﹣x,DC=﹣x •,由点B,C的坐标可得出BC的长度,分△DEC∽△COB和△CED∽△COB 两种情况考虑:①当△DEC∽△COB时,利用相似三角形的性质可得出关于x的无理方程,解之经检验后即可得出结论;②当△CED∽△COB时,利用相似三角形的性质可得出关于x的无理方程,解之经检验后即可得出结论.综上,此题得解.【解答】解:(1)将A(﹣4,0),B(1,0)代入y=﹣+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+3.(2)在图1中,过点D作DF⊥x轴,垂足为F,DF交AC于点M.当x=0时,y=﹣x2﹣x+3=3,∴点C的坐标为(0,3).设直线AC的解析式为y=kx+d(k≠0),将A(﹣4,0),C(0,3)代入y=kx+d,得:,解得:,∴直线AC的解析式为y=x+3.设点D的坐标为(x,﹣x2﹣x+3)(﹣4<x<0),则点M的坐标为(x,x+3),∴DM=﹣x2﹣x+3﹣(x+3)=﹣x2﹣3x.在Rt△AOC中,OA=4,OC=3,∴AC==5.∵DF⊥x轴,DE⊥AC,∴∠DEM=∠AFM.∵∠DME=∠AMF,∴△DME∽△AMF,∴===,∴DE=DM=﹣x2﹣x=﹣(x+2)2+,∴当x=﹣2时,DE取得最大值,最大值为.(3)设点D的坐标为(x,﹣x2﹣x+3)(﹣4<x<0),则DE=﹣x2﹣x,DC==﹣x•.∵点B的坐标为(1,0),点C的坐标为(0,3),∴OB=1,OC=3,BC=.①当△DEC∽△COB时,=,即=,∴13x2+14x﹣27=0,解得:x1=﹣,x2=1(舍去),经检验,x=﹣是原方程的解,且符合题意;②当△CED∽△COB时,=,即=,∴243x2+2034x+4123=0,解得:x1=﹣,x2=﹣(舍去),经检验,x=﹣是原方程的解,且符合题意.综上所述:当△BOC与以C、D、E为顶点的三角形相似时,点D的横坐标为﹣或﹣.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、相似三角形的判定与性质、二次函数的性质以及解无理方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)利用相似三角形的性质找出DE=﹣x2﹣x;(3)分△DEC∽△COB和△CED∽△COB 两种情况,利用相似三角形的性质找出关于x的无理方程.。
四川省成都市青羊区石室联中2019年中考数学一诊试卷(包含答案解析)

2019年四川省成都市青羊区石室联中中考数学一诊试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 13的相反数是()A.3B.-3C.13D.−132、(3分) 下列几何体的主视图是三角形的是()A. B. C. D.3、(3分) 习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()A.135×107B.1.35×109C.13.5×108D.1.35×10144、(3分) 如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上.若∠1=70°,∠2=50°,则∠ABC等于()A.95°B.100°C.110°D.120°5、(3分) 函数y=√x−5中,自变量x的取值范围是()A.x≥-5B.x≤-5C.x≥5D.x≤56、(3分) 某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14B.极差为3C.中位数为13D.平均数为147、(3分) 如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)8、(3分) 若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤-1B.m≤1C.m≤4D.m≤129、(3分) 如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.2 3πB.πC.43π D.53π10、(3分) 抛物线y=ax2+bx+c(对称轴为x=1)的图象如图所示,下列四个判断中正确的是()A.a>0,b>0,c>0B.b2-4ac<0C.2a+b=0D.a+b+c>0二、填空题(本大题共 9 小题,共 36 分)11、(4分) 分解因式:m2n-n3=______.12、(4分) 如图,四边形ABCD与四边形EFGH位似为点O,且OEEA =43,这EFAB=______.13、(4分) 方程2x+3=1x−1的解是______.14、(4分) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是______.15、(4分) 已知x,y满足方程组{x−2y=5x+2y=−3,则x2-4y2的值为______.16、(4分) 如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为______.17、(4分) 在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第1个正方形的面积为______;第4个正方形的面积为______.18、(4分) 如图,△ABC内接于⊙O.AB为⊙O的直径,BC=3,AB=5,D、E分别是边AB、BC上的两个动点(不与端点A、B、C重合),将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上(包含端点A、C),若△ADB′为等腰三角形,则AD的长为______.19、(4分) 如图,直线y=2x+b与双曲线y=kx(k>0)交于点A、D,直线AD交y轴、x轴于点B、C,直线y=-23x+n过点A,与双曲线y=kx(k>0)的另一个交点为点E,连接BE、DE,若S△ABE=4,且S△ABE:S△DBE=3:4,则k的值为______.三、计算题(本大题共 1 小题,共 12 分)20、(12分) (1)计算:(π-2)0+√27-2cos30°+(12)−1(2)化简:(1−1a+2)÷a 2+2a+1a 2−4四、解答题(本大题共 8 小题,共 72 分)21、(6分) 已知关于x 的一元二次方程x 2+(2m+1)x+m-1=0,若方程的一个根为2,求m 的值和方程的另一个根.22、(8分) 如图,甲、乙两座建筑物的水平距离BC 为78m .从甲的顶部A 处测得乙的顶部D 处的俯角为48°,测得底部C 处的俯角为58°,求甲、乙建筑物的高度AB 和DC .(结果取整数,参考数据:tan48°≈1.1,tan58°≈1.60)23、(8分) 2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A 《三国演义》、B 《红楼梦》、C 《西游记》、D 《水浒传》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了______名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著(A 、B 、C 、D )中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中A 和B 的概率.24、(10分) 如图,在平面直角坐标系中,直线y=12x 与反比例函数y=kx (x >0)在第一象限内的图象相交于点A (m ,1).(1)求反比例函数的解析式;(2)将直线y=12x 向上平移后与反比例函数图象在第一象限内交于点B ,与y 轴交于点C ,且△ABO 的面积为32,求直线BC 的解析式.25、(10分) 如图,AB 为⊙O 的直径,AC ,BC 是⊙O 的两条弦,过点C 作∠BCD=∠A ,CD 交AB 的延长线与点D .(1)求证:CD 是⊙O 的切线;(2)若tanA=34,求BDAB 的值;(3)在(2)的条件下,若AB=7,∠CED=∠A+∠EDC ,求EC 与ED 的长.26、(8分) 某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y 件与销售单价x (x >10)元之间的关系式;(2)当销售单价x 定为多少,才能使每天所获销售利润最大?最大利润是多少?27、(10分) 如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,已知AC=2√5,AB=5.(1)求BD 的长;(2)点E 为直线AD 上的一个动点,连接CE ,将线段EC 绕点C 顺时针旋转∠BCD 的角度后得到对应的线段CF (即∠ECF=∠BCD ),EF 交CD 于点P .①当E 为AD 的中点时,求EF 的长;②连接AF、DF,当DF的长度最小时,求△ACF的面积.28、(12分) 如图1,在平面直角坐标系xOy中,抛物线y=-(x-a)(x-4)(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)若D点坐标为(32,254),求抛物线的解析式和点C的坐标;(2)若点M为抛物线对称轴上一点,且点M的纵坐标为a,点N为抛物线在x轴上方一点,若以C、B、M、N为顶点的四边形为平行四边形时,求a的值;(3)直线y=2x+b与(1)中的抛物线交于点D、E(如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D′,与直线的另一个交点为E′,与x轴的交点为B′,在平移的过程中,求D′E′的长度;当∠E′D′B′=90°时,求点B′的坐标.2019年四川省成都市青羊区石室联中中考数学一诊试卷【第 1 题】【答案】解:13的相反数为-13.故选:D .在一个数前面放上“-”,就是该数的相反数.本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.【 第 2 题 】【 答 案 】B【 解析 】解:A 、圆柱的主视图是矩形,故此选项错误;B 、圆锥的主视图是三角形,故此选项正确;C 、球的主视图是圆,故此选项错误;D 、正方体的主视图是正方形,故此选项错误;故选:B .主视图是从物体正面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.【 第 3 题 】【 答 案 】B【 解析 】解:1350000000=1.35×109,故选:B .用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.【 第 4 题 】【 答 案 】解:∵l1∥l2∥l3,∴∠3=∠1=70°,∠4=∠2=50°,∴∠ABC=∠3+∠4=70°+50°=120°.故选:D.根据两直线平行,同位角相等可得∠3=∠1,内错角相等可得∠4=∠2,然后根据∠ABC=∠3+∠4计算即可得解.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.【第 5 题】【答案】C【解析】解:由题意得,x-5≥0,解得x≥5.故选:C.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.【第 6 题】【答案】A【解析】解:A、这12个数据的众数为14,正确;B、极差为16-12=4,错误;C 、中位数为14+142=14,错误;D 、平均数为12+13×3+14×4+15×2+16×212=16912,错误;故选:A .根据众数、中位数、平均数与极差的定义逐一计算即可判断.本题主要考查众数、极差、中位数和平均数,熟练掌握众数、极差、中位数和平均数的定义是解题的关键.【 第 7 题 】【 答 案 】C【 解析 】解:根据以原点O 为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A 的坐标是(1,2),则点A′的坐标是(-2,-4),故选:C .根据以原点O 为位似中心,将△ABO 扩大到原来的2倍,即可得出对应点的坐标应乘以-2,即可得出点A′的坐标.此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k 或-k 是解题关键.【 第 8 题 】【 答 案 】B【 解析 】解:∵一元二次方程x 2+2x+m=0有实数解,∴b 2-4ac=22-4m≥0,解得:m≤1,则m 的取值范围是m≤1.故选:B .由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m 的取值范围.此题考查了一元二次方程解的判断方法,一元二次方程ax 2+bx+c=0(a≠0)的解与b 2-4ac 有关,当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac <0时,方程无解.【 第 9 题 】【 答 案 】C【 解析 】解:∵PA 、PB 是⊙O 的切线,∴∠OBP=∠OAP=90°,在四边形APBO 中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l=120π×2180=43π, 故选:C .由PA 与PB 为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB 的度数,利用弧长公式求出的长即可.此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.【 第 10 题 】【 答 案 】C【 解析 】解:(A )由图象可知:a >0,c <0,对称轴可知:x=−b2a >0,∴b <0,故A 错误;(B )由抛物线与x 轴有两个交点可知:b 2-4ac >0,故B 错误;(C )由题意可知:−b 2a =1,∴b+2a=0,故C 正确;(D )当x=1时,y <0,∴a+b+c <0,故D 错误;故选:C .根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.【第 11 题】【答案】n(m+n)(m-n)【解析】解:原式=n(m2-n2)=n(m+n)(m-n).故答案是:n(m+n)(m-n).先提取公因式n,然后利用平方差公式进行因式分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.【第 12 题】【答案】47【解析】解:∵四边形ABCD与四边形EFGH位似,∴四边形ABCD∽四边形EFGH,EF∥AB,∴△EOF∽△AOB,∵OE EA =4 3,∴EF AB =OEOA=47.故答案为:47.根据位似图形的概念、相似多边形的性质解答.本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.【第 13 题】【答案】x=5【解析】解:在方程两侧同时乘以最简公分母(x+3)(x-1)去分母得,2x-2=x+3,解得x=5,经检验x=5是分式方程的解.故答案为:x=5.在方程两侧同时乘以最简公分母(x+3)(x-1)去掉分母转化为整式方程,求出解即可. 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.【 第 14 题 】【 答 案 】解:连接AD .∵PQ 垂直平分线段AB ,∴DA=DB ,设DA=DB=x ,在Rt△ACD 中,∠C=90°,AD 2=AC 2+CD 2,∴x 2=32+(5-x )2,解得x=175,∴CD=BC -DB=5-175=85, 故答案为85.【 解析 】连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt△ACD 中,∠C=90°,根据AD 2=AC 2+CD 2构建方程即可解决问题;本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.【 第 15 题 】【 答 案 】-15【 解析 】解:原式=(x+2y)(x-2y)=-3×5=-15故答案为:-15根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.【第 16 题】【答案】1【解析】解:根据题意,AB2=AE2+BE2=13,∴S正方形ABCD=13,∵△ABE≌△BCF,∴AE=BF=3,∵BE=2,∴EF=1,∴S正方形EFGH=1,.,故飞镖扎在小正方形内的概率为113故答案为1.13根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.本题考查概率、正方形的性质,用到的知识点为:概率=相应的面积与总面积之比;难点是得到正方形的边长.【第 17 题】【答案】5 (9)3×54【解析】解:∵点A的坐标为(1,0),点D的坐标为(0,2).∴OA=1,OD=2,在Rt△AOD中,AD=√OA2+OD2=√5,∴正方形ABCD的面积为:(√5)2=5;∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA ,∴∠ADO+∠DAO=90°,∠DAO+∠BAA 1=90°,∴∠ADO=∠BAA 1,∵∠DOA=∠ABA 1,∴△DOA∽△ABA 1,∴OD AB =OA A 1B ,即√5=1A 1B , 解得:A 1B=√52,∴A 1C=A 1B+BC=3√52, ∴正方形A 1B 1C 1C 的面积为:(3√52)2=454; ∵第1个正方形ABCD 的面积为:5; 第2个正方形A 1B 1C 1C 的面积为:454=94×5;同理可得:第3个正方形A 2B 2C 2C 1的面积为:94×94×5=(94)2×5;∴第4个正方形A 3B 3C 3C 2的面积为:(94)3×5. 故答案为:5,(94)3×5.由点A 的坐标为(1,0),点D 的坐标为(0,2).即可求得OA 与OD 的长,然后由勾股定理即可求得AD 的长,继而求得第1个正方形ABCD 的面积;先证得△DOA∽△ABA 1,然后由相似三角形的对应边成比例,可求得A 1B 的长,即可求得A 1C 的长,即可得第2个正方形A 1B 1C 1C 的面积;以此类推,可得第3个、第4个正方形的面积.此题考查了相似三角形的判定与性质、正方形的性质以及勾股定理.此题难度较大,注意掌握数形结合思想的应用.【 第 18 题 】【 答 案 】52或4013或25−5√103【 解析 】解:∵AB 为⊙O 的直径,∴∠C=90°,∵BC=3,AB=5,∴AC=4,∵将△BDE 沿DE 折叠,点B 的对应点B′恰好落在线段AC 上,∴BD=B′D ,BE=B′E ,若△ADB′为等腰三角形,①当AB′=DB′时,设AB′=DB′=BD=x ,则AD=5-x ,如图1,过B′作B′F⊥AD 于F ,则AF=DF=12AD , ∵∠A=∠A ,∠AFB′=∠C=90°, ∴△AFB′∽△ACB ,∴AB′AB =AFAC ,∴x 5=12(5−x)4,解得:x=2513,∴AD=5-x=4013;②当AD=DB′时,则AD=DB′=BD=12AB=52;③当AD=AB′时,如图2,过D 作DH⊥AC 于H ,∴DH∥BC ,∴AD AB =AH AC =DH BC ,设AD=5m ,∴DH=3m ,AH=4m ,∴DB′=BD=5-5m ,HB′=5m -4m=m ,∵DB′2=DH 2+B′H 2,∴(5-5m )2=(3m )2+m 2,∴m=5−√103,m=5+√103(不合题意舍去), ∴AD=25−5√103,故答案为:52或4013或25−5√103.根据圆周角定理得到∠C=90°,根据勾股定理得到AC=4,根据折叠的性质得到BD=B′D ,BE=B′E ,①当AB′=DB′时,设AB′=DB′=BD=x ,根据相似三角形的性质得到AD=5-x=4013;②当AD=DB′时,则AD=DB′=BD=12AB=52;③当AD=AB′时,如图2,过D 作DH⊥AC 于H ,根据平行线分线段成比例定理即可得到结论.本题考查了三角形的外接圆与外心,折叠的性质,圆周角定理,等腰三角形的性质,分类讨论是解题的关键.【 第 19 题 】【 答 案 】83【 解析 】解:过点A 作AF⊥y 轴于点F ,过点D 作DG⊥y 轴于点G ,∴AF∥DG ,∴△ABF∽△DBG , ∴AF DG =ABDB ,∵S △ABE :S △DBE =3:4,∴AB DB =34, 由2x+b=kx 得,2x 2+bx-k=0,解得,x=−b±√b 2+8k 2,即A 点的横坐标为−b+√b 2+8k 4,D 点有横坐标为−b−√b 2+8k 4, ∴AF=−b+√b 2+8k 4,DG=|−b−√b 2+8k 4|=b+√b 2+8k 4, ∴√b 2+8kb+√b 2+8k =34,解得,k=6b 2, ∴A 点的横坐标为−b+√b 2+8k 4=32b ,纵坐标为k 32b =6b 232b =4b , ∴A (32b ,4b ), 把A (32b ,4b )代入y=-23x +n 中,得n=5b ,∴AE 的解析式为:y=-23x +5b ,联立方程组{y =−23x +5b y =6b 2x, 解得,{x 1=32b y 1=4b,{x 2=6b y 2=b , ∴E (6b ,b ),∵B (0,b ),∴BE∥x 轴,∴BE=6b ,∴S △ABE =12BE ×BF =12×6b ×3b =9b 2,∵S △ABE =4,∴9b 2=4,∴b 2=49, ∴k=6b 2=6×49=83.故答案为:83.过点A 作AF⊥y 轴于点F ,过点D 作DG⊥y 轴于点G ,先联立直线AB 反比例函数的解析式求出A 、D 点的横坐标,得到AF 与DG ,再由三角形的面积比与相似三角形的比例线段得到k 与b 的关系,进而用b 的代数式表示A 点坐标,再将其代入AE 的解析式中,用b 表示n ,进而联立AE 与反比例函数解析式求出E 的坐标,最后根据已知三角形的面积,得到b 的方程求得b ,问题便可迎刃而解.本题是反比例函数图象与一次函数图象的交点问题,主要考查了求反比例函数与一次函数图象的交点坐标,相似三角形的判定与性质,三角形的面积公式的应用,关键是根据相似三角形得到b 与的关系,以及由已知三角形的面积列出方程.【 第 20 题 】【 答 案 】解:(1)原式=1+3√3-2×√32+2=1+3√3-√3+2=3+2√3;(2)原式=(a+2a+2-1a+2)÷(a+1)2(a+2)(a−2)=a+1a+2•(a+2)(a−2)(a+1)2 =a−2a+1.【 解析 】(1)先计算零指数幂、化简二次根式、代入三角函数值、计算负整数指数幂,再进一步计算可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则,也考查了三角函数值、负整数指数的规定、零指数幂的规定.【 第 21 题 】【 答 案 】解:把x=2代入x 2+(2m+1)x+m-1=0,得22+2(2m+1)+m-1=0.解得m=-1.设方程的另一根为x ,则2x=m-1=-2.解得x=-1.综上所述,m 的值和方程的另一根都是-1.【 解析 】把x=2代入方程得出关于m 的方程,求出m 的值.利用根与系数的关系求得另一根.本题考查根与系数的关系,一元二次方程的解的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【 第 22 题 】【 答 案 】解:作DE⊥AB于E,则四边形EBCD为矩形,∴DE=BC=78m,BE=CD,由题意得,∠ADE=48°,∠ACB=58°,,在Rt△ADE中,tan∠ADE=AEDE则AE=DE•tan∠ADE≈78×1.1=85.8,在Rt△ACB中,tan∠ACB=AB,BC则AB=BC•tan∠ACB≈78×1.60=124.8≈125,则CD=BE=AB-AE=39,答:甲建筑物的高度AB约为125m,乙建筑物的高度DC约为39m.【解析】作DE⊥AB于E,根据正切的定义分别求出AB、AE,得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.【第 23 题】【答案】50【解析】解:(1)本次一共调查:15÷30%=50(人);故答案为:50;(2)B对应的人数为:50-16-15-7=12,如图所示:(3)列表: ABCD∵共有12种等可能的结果,恰好选中A 、B 的有2种, ∴恰好选中A 和B 的概率为212=16.(1)依据C 部分的数据,即可得到本次一共调查的人数;(2)依据总人数以及其余各部分的人数,即可得到B 对应的人数; (3)列表将所有等可能的结果列举出来,利用概率公式求解即可.本题考查了条形统计图、扇形统计图,列表与树状图的应用,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解.【 第 24 题 】 【 答 案 】解:(1)∵直线y=12x 过点A (m ,1), ∴12m=1,解得m=2, ∴A (2,1).∵反比例函数y=kx (k≠0)的图象过点A (2,1), ∴k=2×1=2,∴反比例函数的解析式为y=2x ;(2)设直线BC 的解析式为y=12x+b ,连接AC ,由平行线间的距离处处相等可得△ACO 与△ABO 面积相等,且△ABO 的面积为32, ∴△ACO 的面积=12OC•2=32, ∴OC=32, ∴b=32,∴直线BC 的解析式为y=12x +32. 【 解析 】(1)将A 点坐标代入直线y=12x 中求出m 的值,确定出A 的坐标,将A 的坐标代入反比例解析式中求出k 的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC 的解析式为y=12x+b ,由同底等高的两三角形面积相等可得△ACO 与△ABO 面积相等,根据△ABO 的面积为32列出方程12OC•2=32,解方程求出OC=32,即b=32,进而得出直线BC 的解析式.此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.【 第 25 题 】 【 答 案 】解:(1)如图,连接OC ,∴∠A=∠2, ∵∠A=∠1, ∴∠1=∠2,∵AB 是⊙O 的直径,∴∠ACB=90°,即∠2+∠OCB=90°, ∴∠1+∠OCB=90°,即∠OCD=90°, ∴CD 是⊙O 的切线;(2)∵∠1=∠A ,∠ADC=∠ADC , ∴△ADC∽△CDB , ∵tanA=BCAC =34, ∴BCAC =BD CD =34,∴CD 2=AD•BD ,设CD=4x ,CA=4k , 则AB=5k ,∴(4x )2=3x•(3x+5k ), 解得x=157k ,BD=457k , ∴BDAB =457k 5k =97;(3)由(2)知AB=5k=7知k=75, 则BD=9,CD=4x=4×157k=4×157×75=12, ∵∠CED=∠A+∠EDC=∠A+∠ADE ,∴∠EDC=∠ADE ,即DE 是∠ADC 的平分线, ∴ADCD =AECE =1612=43, 则AC=7×45=285, ∴EC=285×37=125,∵∠1=∠A ,∠EDA=∠EDC ,且∠A+∠1+∠EDA+∠EDC=90°, ∴∠A+∠EDA=∠DEC=45°,过点D 作DH⊥AC 交AC 延长线于点H , 则△CDH 为等腰直角三角形, ∵BC∥DH , ∴∠CDH=∠1, ∴tan∠CDH=34=CHDH ,∴DH=CD•45=12×45=485, 则DE=√2DH=48√25.(1)连接OC ,由∠A=∠1=∠2且∠2+∠OCB=90°知∠1+∠OCB=90°,据此即可得证;(2)先△ADC∽△CDB 得BCAC =BDCD =34,且CD 2=AD•BD ,设CD=4x ,CA=4k ,知AB=5k ,从而得出(4x )2=3x•(3x+5k ),解之得x=157k ,BD=457k ,进而得出答案;(3)由(2)得AB=7、BD=9、CD=12,证DE 是∠ADC 的平分线知AD CD =AE CE =43,AC=285,EC=125,证得∠A+∠EDA=∠DEC=45°,作DH⊥AC ,知△CDH 为等腰直角三角形,由BC∥DH 知∠CDH=∠1,据此得tan∠CDH=34=CHDH ,继而得DH=CD•45=485,DE=√2DH .本题是圆的综合问题,解题的关键是掌握切线的判定与性质、相似三角形的判定与性质、勾股定理、三角函数的应用、等腰三角形的性质等知识点.【 第 26 题 】 【 答 案 】解:(1)y=100-10(x-10) =200-10x (10≤x <20);(2)设商店每天获得的利润为W 元,则W=(x-8)(200-10x )=-10x 2+280x-1600, 当x=14时,w 最大=360,所以当售价为14元时,每天获得的最大利润为360元. 【 解析 】(1)设售价为x 元,总利为W 元,则销量为100-10(x-10)件;(2)根据利润=数量×每件的利润建立W 与x 的关系式,由二次函数的性质就可以求出结论. 本题考查了二次函数的应用,解题的关键是能从实际问题中抽象出二次函数模型,难度不大.【 第 27 题 】 【 答 案 】解:(1)∵四边形ABCD 是菱形,∴AD=AB=BC=CD=5,AC⊥BD ,OA=OC=12AC=√5,OB=OD ,在Rt△ABO 中,由勾股定理得:OB=√AB 2−OA 2=√52−(√5)2=2√5, ∴BD=2OB=4√5;(2)①过点C 作CH⊥AD 于H ,如图1所示:∵四边形ABCD 是菱形, ∴∠BAC=∠DAC ,∴cos∠BAC=cos∠DAC , ∴AHAC =OAAB =√55,即2√5=√55,∴AH=2,∴CH=√AC 2−AH 2=4, ∵E 为AD 的中点, ∴AE=12AD=52, ∴HE=AE -AH=12,在Rt△CHE 中,由勾股定理得:EC=√(12)2+42=√652, 由旋转的性质得:∠ECF=∠BCD ,CF=CE , ∴BC EC =CDCF , ∴△BCD∽△ECF , ∴ECEF =BCBD ,即√652EF =4√5,解得:EF=2√13;②如图2所示: ∵∠BCD=∠ECF ,∴∠BCD -DCE=∠ECF -∠DCE ,即∠BCE=∠DCF ,在△BCE 和△DCF 中,{BC =DC∠BCE =∠DCF CE =CF,∴△BCE≌△DCF (SAS ), ∴BE=DF ,当BE 最小时,DF 就最小,且BE⊥DE 时,BE 最小,此时∠EBC=∠FDC=90°,BE=DF=4,△EBC 的面积=△ABC 的面积=△DCF 的面积, 则四边形ACFD 的面积=2△ABC 的面积=5×4=20,过点F 作FH⊥AD 于H ,过点C 作CP⊥AD 于P , 则∠CPD=90°,∴∠PCD+∠PDC=90°, ∵∠FDC=90°,∴∠PDC+∠HDF=90°, ∴∠PCD=∠HDF , ∴△PCD∽△HDF , ∴HFFD =PDCD =35,∴HF=4×35=125,∴S △ADF =12AD•HF=12×5×125=6,∴S △ACF =S 四边形ACFD -S △ADF =20-6=14,即当DF 的长度最小时,△ACF 的面积为14. 【 解析 】(1)由菱形的性质得出AD=AB=BC=CD=5,AC⊥BD ,OA=OC=12AC=√5,OB=OD ,由勾股定理求出OB ,即可得出BD 的长;(2)①过点C 作CH⊥AD 于H ,由菱形的性质和三角函数得出AHAC =OAAB =√55,求出AH=2,由勾股定理求出CH=√AC 2−AH 2=4,求出HE=AE-AH=12,再由勾股定理求出EC=√652,证明△BCD∽△ECF ,得出ECEF =BCBD ,即可得出结果;②先证明△BCE≌△DCF ,得出BE=DF ,当BE 最小时,DF 就最小,且BE⊥DE 时,BE 最小,此时∠EBC=∠FDC=90°,BE=DF=4,△EBC 的面积=△ABC 的面积=△DCF 的面积,则四边形ACFD 的面积=2△ABC 的面积=20,过点F 作FH⊥AD 于H ,过点C 作CP⊥AD 于P ,则∠CPD=90°,证明△PCD∽△HDF ,得出HFFD =PDCD =35,求出HF=125,S △ADF =12AD•FH=6,即可得出△ACF 的面积. 本题是四边形综合题目,考查了菱形的性质、勾股定理、全等三角形的判定与性质、相似三角形的判定与性质、三角函数、三角形面积公式等知识;本题综合性强,证明三角形相似是解决问题的关键.【 第 28 题 】 【 答 案 】解:(1)依题意得:254=-(32-a )(32-4).解得a=-1.∴抛物线解析式为:y=-(x+1)(x-4)或y=-x 2+3x+4. ∴C (0,4).(2)由题意知:A (a ,0),B (4,0),C (0,-4a ). 对称轴为直线x=a+42,则M (a+42,a ).①MN∥BC 且MN=BC ,根据点的平移特征可知N (a−42,-3a ).则-3a=-(a−42-a )(a−42-4).解得:a=-2±2√13(舍去正值). ②当BC 为对角线时,设N (x ,y ). 根据平行四边形的对角线互相平分可得:{a+42+x =4a +y =−4a.解得{x =4−a 2y =−5a.则-5a=-(a−42-a )(a−42-4).解得a=6±2√213.(舍去正值)∴a 1=-2-2√13,a 2=6−2√213.(3)把D (32,254)代入y=2x+b 得到:2×32+b=254.则b=134. 故直线解析式为:y=2x+134. 联立{y =2x +134y =−x 2+3x +4.解得{x 1=32y 1=254(舍去),{x 2=−12y 2=94. ∴E (-12,94) ∴DE=2√5.根据抛物线的平移规律,则平移后线段D′E′始终等于2√5. 设平移后的D′(m ,2m+134),则E′(m-2,2m-34). 平移后抛物线的解析式为:y=-(x-m )2+2m+134. 则D′B′:y=-12x+n 过点(m ,2m+134), ∴y=-12x+52m+134,则B′(5m+132,0). ∴-12(5m+132)+52m+134=0. 解得m 1=-32,m 2=-138.∴B′1(-1,0),B′2(-138,0)(与D′重合,舍去). 综上所述,B′(-1,0). 【 解析 】(1)将点D的坐标代入函数解析式,求得a的值;利用抛物线解析式来求点C的值.(2)需要分类讨论:BC为边和BC为对角线两种情况,根据“平行四边形的对边平行且相等,平行四边形的对角线相互平分”的性质列出方程组,利用方程思想解答.(3)根据平移规律得到D′E′的长度、平移后抛物线的解析式,然后由函数图象上点的坐标特征求得点B′的坐标.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
四川省成都市2019年中考试卷(数学解析版)

2019年四川省成都市都江堰市中考数学一诊试卷一、选择题(本大题共10小题,共30.0分) 1. 在下列各数中,最小的数是( )A.B. 0C. 5D.2. 使代数式有意义的x 的取值范围是( )A. B. C. D.3. 改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A.B. C. D.4. 如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A 向右平移到正方体P 前面,其“三视图”中发生变化的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和左视图5. 下列运算正确的是( )A.B.C. D.6. 下列说法正确的是( )A. 周长相等的两个三角形全等B. 面积相等的两个三角形全等C. 三个角对应相等的两个三角形全等D. 三条边对应相等的两个三角形全等7. 下列函数中,满足y 的值随x 的值增大而增大的是( )A.B.C. D.8. 某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A. 18分,17分 B. 20分,17分 C. 20分,19分 D. 20分,20分 9. 平行四边形一定具有的性质是( )A. 四边都相等B. 对角相等C. 对角线相等D. 是轴对称图形 10. 对于函数y =-2(x -3)2,下列说法不正确的是( )A. 开口向下B. 对称轴是C. 最大值为0D. 与y 轴不相交二、填空题(本大题共9小题,共36.0分) 11. 分式方程=1的解为______.12. 如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.关于x 的一元二次方程3x 2-6x +m =0有两个不相等的实数根,则m 的取值范围是______.13. 如图,▱ABCD 中,AB =2,BC =3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P 、Q 为圆心,大于PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则线段AE 的长为______.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m +n =______.14. 如图,已知数轴上的点A 、B 、C 、D 表示的数分别为-3、-1、1、2,从A 、B 、C 、D 四点中任意取两点,则所取两点之间的距离为2的概率为______.15.如图,平行于x轴的直线与函数y=(k1>0,x>0)和y=(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1-k2的值为______.平面直角坐标系xOy中,若抛物线y=ax2上的两点A、B满足OA=OB,且tan∠OAB=,则称线段AB 为该抛物线的通径.那么抛物线y=x2的通径长为______.16.如图,已知在△ABC中,AB=AC,BC=8,D、E两点分别在边BC、AB上,将△ABC沿着直线DE翻折,点B正好落在边AC上的点M处,并且AC=4AM,设BD=m,那么∠ACD的正切值是______(用含m 的代数式表示)三、计算题(本大题共1小题,共6.0分)17.计算:四、解答题(本大题共8小题,共78.0分)18.(1)计算:(2)解方程:x2-6x-1=019.如图,A型、B型、C型三张矩形卡片的边长如图所示,将三张矩形卡片分别放入三个信封中,三个信封的外表完全相同;(1)从这三个信封中随机抽取1个信封,则抽中A型矩形的概率为______;(2)先从这三个信封中随机抽取1个信封(不放回),再从余下的两个信封中随机抽取1个信封,求事件“两次抽中的矩形卡片能拼成(无重叠无缝隙)一个新矩形”发生的概率.(列表法或树状图)20.如图是云梯升降车示意图,其点A位置固定,AC可伸缩且可绕点A转动,已知点A距离地面BD的高度AH为3.4米.当AC长度为9米,张角∠HAC为119°时,求云梯升降车最高点C距离地面的高度.(结果保留一位小数)参考数据:sin29°≈0.49,cos29°≈0.88,tan29°≈0.5521.如图,在平面直角坐标系xOy中,已知直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(2,-3)和点B(n,2);(1)求直线与双曲线的表达式;(2)点P是双曲线y=(m≠0)上的点,其横、纵坐标都是整数,过点P作x轴的垂线,交直线AB于点Q,当点P位于点Q下方时,请直接写出点P的坐标.22.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.23.如图,工人师傅用一块长为10分米,宽为6分米的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形;(厚度不计)(1)当长方体底面面积为12平方分米时,裁掉的正方形边长为______分米;(2)若要求制作的长方体的底面长不大于底面宽的5倍,且将容器的外表面进行防锈处理,其侧面处理费用为0.5元/平方分米,底面处理费用为2元/平方分米;求:裁掉的正方形边长为多大时,防锈处理总费用最低,最低为多少?24.如图,在△ABC中,∠ACB=90°,tan A=,AC=6,以BC为斜边向右侧作等腰直角△EBC,P是BE延长线上一点,连接PC,以PC为直角边向下方作等腰直角△PCD,CD交线段BE于点F,连接BD.(1)求证:PC:CD=CE:BC;(2)若PE=n(0<n≤4),求△BDP的面积;(用含n的代数式表示)(3)当△BDF为等腰三角形时,请直接写出线段PE的长度.25.在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点(2,3),对称轴为直线x=1.(1)求抛物线的表达式;(2)如果垂直于y轴的直线l与抛物线交于两点A(x1,y1),B(x2,y2),其中x1<0,x2>0,与y轴交于点C,求BC-AC的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.答案和解析选择1.A 2 .A 3.D 4.C 5. B 6.D 7.B 8.D 9.B 10.D填空11.x=-1 12.2:3 13.m<3 14.1 15.-10 16.17. 8【解析】:设A、B、C三点的坐标分别是A(,m)、B(,m),则:△ABC的面积=•AB•y A=•(-)•m=4,则k1-k2=8.故答案为8.18. 2【解析】:设点A的坐标为(-2a,a),点A在x轴的负半轴,则a=,解得,a=0(舍去)或a=,∴点A的横坐标是-1,点B的横坐标是1,∴AB=1-(-1)=2,故答案为:2.19.【解析】:作AH⊥BC于H,MG⊥BC于G,连接EM、MD、BM,如图所示:∵AB=AC,BC=8,AH⊥BC,∴CH=4,∵AC=4AM,∴CM:AC=3:4,∵AH∥MG,∴==,即=,解得:CG=3,∴BG=5,∴DG=m-5,由翻折的性质可知MD=BD=m,在Rt△MGD中,依据勾股定理可知:MG===,∴tan∠ACD=tan∠ACG==;故答案为:.20.【解析】:原式=+2×-4+1=+-4+1=1-2.先计算负整数指数幂、代入三角函数值、化简二次根式、计算零指数幂,再进一步计算可得.本题主要考查实数的混合运算,解题的关键是掌握负整数指数幂、三角函数值、二次根式的性质及零指数幂的规定.21.【解析】:(1)原式=÷=•=;(2)x2-6x=1,x2-6x+9=10,(x-3)2=10,x-3=±,所以x1=3+,x2=3-.22.【解析】:(1)从这三个信封中随机抽取1个信封,则抽中A型矩形的概率为,故答案为:;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的抽中的矩形能拼成一个新矩形的有4种结果,∴事件“两次抽中的矩形卡片能拼成(无重叠无缝隙)一个新矩形”发生的概率为.23.【解析】:作CE⊥BD于E,AF⊥CE于F,如图,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=119°-90°=29°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin29°=9×0.49=4.41,∴CE=CF+EF=4.41+3.4≈7.8(m),答:云梯升降车最高点C距离地面的高度为7.8m.24.【解析】:(1)双曲线y=(m≠0)经过点A(2,-3),∴m=-6,∴反比例函数的解析式为y=-,∵B(n,2)在y=-上,∴n=-3,∴B(-3,2),则有:,解得:,∴一次函数的解析式为y=-x-1.(2)由题意点P在点B的左侧或在y轴的右侧点A的左侧,∵点P的横坐标与纵坐标为整数,∴满足条件点点P坐标为(-6,1)或(1,-6).25.【解析】:(1)由已知∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,∵在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=16为常数;(2)设AP=x,则PD=4-x,由已知∠DPM=∠PAE=∠ABP,∴△PDM∽△BAP,∴=,即=,∴DM==x-x2,当x=2时,即点P是AD的中点时,DM有最大值为1.26.【解析】2(1)设裁掉的正方形的边长为x dm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm;(2)设总费用为y元,则y=2(10-2x)(6-2x)+0.5×[2x(10-2x)+2x(6-2x)]=4x2-60x+192=4(x-7.5)2-33,又∵12-2x≤5(8-2x),∴x≤3.5,∵a=4>0,∴当x<7.5时,y随x的增大而减小,∴当x=3.5时,y取得最小值,最小值为31,答:裁掉的正方形边长为3.5分米时,总费用最低,最低费用为31元.27.选(1)证明:∵△PCD,△EBC都是等腰直角三角形,∴CD=PC,BC=CE,∴==,==,∴=(2)如图1中,作PH⊥BD于H,∵△PCD,△EBC都是等腰直角三角形,∴∠PCD=∠BCE=45°,∠PBC=∠PDC=45°,∴B、C、P、D四点共圆,∴∠DBP=∠PCD=45°,∴∠CBD=∠DBP+∠PBC=45°+45°=90°,△PBH是等腰直角三角形,∵∠BCE=∠DCP=45°,∴∠BCD=∠ECP,∵∠CEP=∠CBD=90°,∴△CBD∽△CEP,∴==,∵PE=n,∴BD=n,∵tan A==,AC=6,∴BC=4,∴EC=BE=4,∴PB=4+n,PH=BH=(4+n),∴S △BDP=•BD•PH=×n×(4+n)=2n2+n(0<n≤4);(3)①如图2中,当BF=BD时,在BC上取一点G,使得BG=BD,∵∠PBD=45°,∴∠BDF=67.5°,∵∠CBD=90°,∴∠BDG=∠BGD=45°,∴∠BCD=∠GDC=22.5°,∴GC=GD,∵PE=n,BD=n,∴BG=n,CG=DG=BG=2n,∴BG+CG=BC=4,∴n+2n=4,∴n=4-4,∴PE=4-4;②如图3中,当FB=FD时,则∠FBD=∠FDB=45°,此时BD=BC=4,∵∠CDP=45°,∴∠BDP=90°,∵∠CPD=90°,∠CBD=90°,∴四边形CBDP为正方形,E、F点重合,∴PE=BE=4,综上所述,线段PE的长度为:4-4或4.28.【解析】:(1)∵抛物线y=-x2+bx+c经过点(2,3),对称轴为直线x=1,∴,解得,∴抛物线的表达式为y=-x2+2x+3;(2)如图,设直线l与对称轴交于点M,则BM=AM.∴BC-AC=BM+MC-AC=AM+MC-AC=2MC=2;(3)∵y=-x2+2x+3=-(x-1)2+4,∴顶点为(1,4),∵将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,∴新抛物线的顶点为(1,0),∴将原抛物线向下平移4个单位即可.设点P的坐标为(x,y),则y=-x2+2x+3,点Q的坐标为(x,y-4),则y>y-4.∵OP=OQ,∴x2+y2=x2+(y-4)2,∴y2=(y-4)2,∵y>y-4,∴y=-(y-4),∴y=2,∴y-4=-2,当y=2时,-x2+2x+3=2,解得x=1±,∴点Q的坐标为(1+,-2)或(1-,-2).。
初2019届成都市龙泉驿区中考数学九年级一诊数学试卷(含答案)

初2019届成都市龙泉驿区中考数学九年级一诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(满分30分,每小题3分)1.已知α是锐角,sinα=cos60°,则α等于()A.30°B.45°C.60°D.不能确定2.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=63.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小5.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,A,B,D为⊙O上的点,∠AOB=52°,则∠ADB的度数是()A.104°B.52°C.38°D.26°7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1088.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.9.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x 轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10 B.12 C.14 D.1610.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(每小题4分,共16分)11.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60°角,房屋向南的窗户AB高1.6米,现要在窗子外面的上方安装一个水平遮阳蓬AC(如图所示).要使太阳光线不能直接射入室内,遮阳蓬AC的宽度至少长米.12.二次函数y=2x2﹣12x+5关于x轴对称的图象所对应的函数化成顶点式为.13.已知关于x的一元二次方程x2+bx+1=0有两个相等的实数根,则b的值为.14.如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.三.解答题(共6小题,满分54分)15.(5分)计算:﹣(2019﹣π)0﹣4cos45°+(﹣)﹣216.(15分)用适当的方法解方程(1)x2﹣3x=0(2)x2+4x﹣5=0(3)3x2+2=1﹣4x17.(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.18.(8分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(3,0),且过点C(0,﹣3).(1)求抛物线的表达式.(2)请写出一种平移的方法,使这条抛物线平移后的顶点落在直线y=﹣x上,并写出平移后的抛物线表达式.19.(8分)如图,直线y=﹣x+1与反比例函数y=的图象相交于点A、B,过点A作AC⊥x轴,垂足为点C(﹣2,0),连接AC、BC.(1)求反比例函数的解析式;(2)求S△ABC;(3)利用函数图象直接写出关于x的不等式﹣x+1<的解集.20.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.B卷(50分)一.填空题(共5小题,满分20分,每小题4分)21.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为.22.如图,在直角坐标系中有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=(x>0)经过点D,交BC的延长线于点E,且OB•AC=160,则点E的坐标为.23.如图,四边形ABCD内接于⊙O,AB是直径,∠ADC=130°,过C点的切线CE与直线AB交于E点,则∠BCE的度数为.24.已知a,b是方程x2﹣x﹣3=0的两个根,求代数式2a3+b2+3a2﹣11a﹣b+5的值.25.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是.二.解答题(共3小题,满分30分)26.(8分)某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x =80时,y=40;(1)写出销售单价x的取值范围;(2)求出一次函数y=kx+b的解析式;(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?27.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)试证明EG2=GF•AF.28.(12分)如图,B(2m,0)、C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E、A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′;(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为M,过M作MN垂直y轴,垂足为N:①求a、b、m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为5,请你探究a的取值范围.参考答案与试题解析1.【解答】解:∵sinα=cos60°=,∴α=30°.故选:A.2.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.3.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.4.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则0<y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D错误;故选:D.5.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠DAB=90°﹣55°=35°,∴∠BCD=∠DAB=35°.故选:C.6.【解答】解:∵∠AOB=52°,∴∠ADB=26°,故选:D.7.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:A.8.【解答】解:∵反比例函数的图象经过点A(,﹣2),∴k=×(﹣2)=﹣1,∴反比例函数解析式为:y=﹣,∴图象过第二、四象限,∵k=﹣1,∴一次函数y=x﹣1,∴图象经过第一、三、四象限,联立两函数解析式可得:﹣=x﹣1,则x2﹣x+1=0,∵△=1﹣4<0,∴两函数图象无交点,故选:D.9.【解答】解:延长BA,交y轴于M,作AN⊥x轴于N,∵点A的反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,∴S四边形OMAN=4,∵点B在反比例函数y=(x>0)的图象上,∴S四边形OMBC=k,∵S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,∴k﹣4=2×6,解得k=16,故选:D.10.【解答】解:①观察图象知最高点为(﹣1,4),故最大值为4正确;②当x=2时,y<0,故4a+2b+c<0正确;③∵抛物线对称轴为x=﹣1,故一元二次方程ax2+bx+c=1的两根之和为﹣2正确;④使y≤3成立的x的取值范围是x≤﹣2或x≥0,故错误;⑤∵x1<﹣1<x2,且x1+x2>﹣2,∴P(x1,y1)距离对称近,∴y1>y2,故错误;故正确的有①②③3个,故选:C.11.【解答】解:此时△ABC组成∠ABC是30°的直角三角形.则AC=AB=.当遮阳蓬AC的宽度大于时,太阳光线不能射入室内.故答案为:.12.【解答】解:y=2x2﹣12x+5=2(x﹣3)2﹣13,顶点坐标是(3,﹣13),该点关于x轴对称的点的坐标是(3,13),所以二次函数y=2x2﹣12x+5关于x轴对称的对应的函数关系式是y=﹣2(x﹣3)2+13.故答案是:y=﹣2(x﹣3)2+13.13.【解答】解:根据题意知,△=b2﹣4=0,解得:b=±2,故答案为:±2.14.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵FA=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,FA为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.15.【解答】解:原式=2﹣1﹣2+9=8.16.【解答】解:(1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(3)3x2+2=1﹣4x,3x2+4x+1=0,(3x+1)(x+1)=0,3x+1=0,x+1=0,,x2=﹣1.17.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+1.52=6.25,∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.18.【解答】解:(1)∵抛物线过点A(1,0)和点B(3,0),∴设抛物线的表达式为y=a(x﹣1)(x﹣3),将C(0,﹣3)代入得:3a=﹣3,∴a=﹣1,∴抛物线的表达式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3.(2)∵抛物线表达式为y=﹣x2+4x﹣3,∴抛物线的顶点坐标为(2,1).当x=2时,y=﹣x=﹣2,∴将抛物线向下平移3个单位可使顶点落在直线y=﹣x上.19.【解答】解:(1)把x=﹣2代入y=﹣x+1,得y=2+1=3,∴A(﹣2,3),∵反比例函数y=的图象过点A,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣;(2)由,解得,或,∴B(3,﹣2),∴S△ABC=×3×5=7.5;(3)由图象可知,当﹣2<x<0或x>3时,直线y=﹣x+1落在双曲线y=的下方,所以关于x的不等式﹣x+1<的解集是﹣2<x<0或x>3.20.【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=221.【解答】解:∵A(x1,4)、C(x2,4)在二次函数y=2(x+1)2+3的图象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根据根与系数的关系得,x1+x2=﹣2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(﹣2+1)2+3=5,故答案为5.22.【解答】解:过点C作CF⊥x轴于点F,如下图所示:∵OB•AC=160,A点的坐标为(10,0),OA=AB=BC=OA=10,∴OA•CF=OB•AC═×160=80,∴CF=8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴解得:,∴E点坐标为(4,8),故答案为(4,8).23.【解答】解:连接AC,∵四边形ABCD内接于⊙O,∴∠ABC=180°﹣∠ADC=50°,∵AB是直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=40°,∵EC是切线,∴∠BCE=∠BAC=40°.故答案为:40°.24.【解答】解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5 =2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.25.【解答】解:∵二次函数y=ax2+bx(a≠0)的最小值是﹣3,∴a>0,且=﹣3,即b2=12a,∵关于x的一元二次方程ax2+bx+c=0有实数根,∴△=b2﹣4ac≥0,即12a﹣4ac≥0,即4a(3﹣c)≥0,∴3﹣c≥0,即c≤3,∴c的最大值为3.故答案为:3.26.【解答】解:(1)根据题意得,60≤x≤60×(1+40%),即60≤x≤84;(2)由题意得:,∴.∴一次函数的解析式为:y=﹣x+120;(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线开口向下,∴当x<90时,w随x的增大而增大,而60≤x≤84,∴当x=84时,w=(84﹣60)×(120﹣84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.27.【解答】(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)解:如图所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴=,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.28.【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),P∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+n过点E,A′,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为5,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=5,即m=1,当m=1时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=1,∴a=2,则抛物线与四边形ABCD有公共点时a的范围为≤a≤2.。
2019年四川省成都市中考数学真题(word版,含答案)

2019年成都中考数学试题全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟A卷(共100分)第I卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.比-3大5的数是()A.-15B.-8C.2D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为()5500×104 B.55×106 C.5.5×107 D.5.5×1084.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)【解析】一个点向右平移之后的点的坐标,纵坐标不变5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)(C.1)1(22-=-a a D.2222a b b a =÷ 7.分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( )A.42件B.45件C.46件D.50件9.如图,正五边形ABCDE 内接于⊙O ,P 为上的一点(点P 不与点D 重合),则∠CPD 的度数为( )A.30°B.36°C.60°D.72°10.如图,二次函数c bx ax y ++=2的图象经过点A (1,0),B (5,0),下列说法正确的是( )A.0>cB.042<-ac bC.0<+-c b aD.图象的对称轴是直线3=x第II 卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若1+m 与-2互为相反数,则m 的值为 .12.如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 的长为 .13.已知一次函数1)3(+-=x k y 的图象经过第一、二、四象限,则k 的取值范围是 .14. 如图,□ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线N O '交BC 于点E ,若AB=8,则线段OE 的长为 .三.解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:|31|1630cos 2)2(0-+-︒--π.(2)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x16.(本小题满分6分) 先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x .17(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.18.(本小题满分8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数521+=x y 和x y 2-=的图象相交于点A ,反比例函数xk y =的图象经过点A. (1)求反比例函数的表达式;(2)设一次函数521+=x y 的图象与反比例函数x k y = 的图象的另一个交点为B ,连接OB ,求△ABO 的面积。
成都市2019级高中毕业班第一次诊断性检测数学(理)参考答案

x -2a
∵2
a ≥1,∴ 当 x ∈ [
0,
π]时,f′ (
x)≤0 恒成立
∴f(
x)在 [
0,
π]上单调递减
9 分
11 分
12 分
1 分
2 分
∴ 当 x =0 时,f(
x)取得最大值为 0;当 x =π 时,f(
x)取得最小值为 -2aπ
(Ⅱ )不等式 f(
4 分
∴ 平面 A′DB ⊥ 平面 BDEC
5 分
∵ A′D ⊥ BD ,DE ⊂ 平面 BDEC ,DB ⊂ 平面 BDEC ,DE ∩ DB =D ,
又 A′D ⊂ 平面 A′DB ,
(Ⅱ )选 ①
∵BM =BE ,∠BDM = ∠BDE =90
°,
∴ △ BDM ≌△ BDE∴ DE =DM =2
.
=8(
2
2
5
1 分
i
2
)
-x
=4+1+0+1+4=10,
5
∑ (x
^ = i=1
∴b
i
5
∑
i=1
)(
)
yi -y
-x
2
)
(
xi -x
^ =0
∴y
85x +0
6
^ =4-0
85,
a
85×4=0
6
=0
数学(理科)“一诊”参考答案 第
1 页(共 6 页)
3 分
5 分
x ≥1
ìï3x +1,
ï
(Ⅱ )由(Ⅰ ),得 f(
x)= íx +3,-1< x <1
ïï
x ≤-1
2019年四川省成都外国语学校中考数学一诊试卷及参考答案

2019年四川省成都外国语学校中考数学一诊试卷及参考答案2019年四川省成都外国语学校中考数学一诊试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,数轴上点A表示数a,则|a|是()A.2B.1C.﹣1D.﹣22.(3分)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2B.2C.﹣1D.13.(3分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5B.6C.7D.84.(3分)如图所示的几何体的左视图是()A.B.C.D.5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥46.(3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2B.3,4C.5,2D.5,48.(3分)如图,菱形ABCD的两个顶点B、D在反比例函数y =的图象上,对角线AC 与BD的交点恰好是坐标原点O,已知点A (1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣29.(3分)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2B.=2C.=2D.=210.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b =0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()。
初2019届成都市双流区中考数学九年级一诊数学试卷(含答案)

初2019届成都市双流区中考数学九年级一诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的倒数是()A.﹣B.C.﹣3 D.32.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥3.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×1054.如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°5.下列计算正确的是()A.x2+x2=x4B.(x+y)2=x2+y2C.(xy2)3=xy6D.(﹣x)2⋅x3=x56.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.在解分式方程+=2时,去分母后变形正确的是()A.3﹣(x+2)=2(x﹣1)B.3﹣x+2=2(x﹣1)C.3﹣(x+2)=2 D.3+(x+2)=2(x﹣1)8.如图,圆O是△ACD的外接圆,AB是圆O的直径,∠BAD=48°,则∠C的度数是()A.30°B.42°C.45°D.48°9.如图,在平行四边形ABCD中,BC=6,BC边上高为4,∠B=120°,M为BC中点,若分别以B、C为圆心,BM长为半径画弧,交AB,CD于E,F两点,则图中阴影部分面积是()A.24﹣3πB.12﹣3πC.24﹣πD.24﹣10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共4个小题,每小题4分,共16分)11.计算:|﹣|=.12.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为.13.已知2x+y=2,2x﹣y=﹣4,则4x2﹣y2=.14.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)(1)计算:(﹣)﹣2+2﹣8cos30°﹣(2019﹣π)0.(2)解不等式组:.16.(6分)先化简(1﹣)÷,再在0,﹣1,1,2中选取一个适当的数代入求值.17.(8分)为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.18.(8分)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)19.(10分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣2,3),点B的坐标为(4,n).(1)求该反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.20.(10分)如图,AB是⊙O的直径,C,G是⊙O上两点,且=,过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)若=,求证:AE=AO;(3)连接AD,在(2)的条件下,若CD=,求AD的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.22.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是.23.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于.24.如图,在正方形ABCD中,AB=2,点E是CD的中点,连接AE,将△ADE沿AE折叠至△AHE,连接BH,延长AE和BH交于点F,BF与CD交于点G,则FG=.25.在平面直角坐标系xOy中,当m,n满足mn=k(k为常数,且m>0,n>0)时,就称点(m,n)为“等积点”.若直线y=﹣x+b(b>0)与x轴、y轴分别交于点A和点B,并且该直线上有且只有一个“等积点”,过点A与y轴平行的直线和过点B与x轴平行的直线交于点C,点E是直线AC上的“等积点”,点F是直线BC上的“等积点”,若△OEF的面积为k2+k﹣,则OE=.二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.(8分)为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如表(为所学过的一次函数,反比例函数或二次函数中的一种).x(亩)20 25 30 35y(元)1800 1700 1600 1500(1)请求出种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.27.(10分)天府新区某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ.求证:BP=CQ;(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,连接CQ.判断∠ABC和∠ACQ的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为6,CQ=2,求正方形ADBC的边长.28.(12分)如图,已知:抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D为顶点,连接BD,CD,抛物线的对称轴与x轴交与点 E.(1)求抛物线解析式及点D的坐标;(2)G是抛物线上B,D之间的一点,且S四边形CDGB=4S△DGB,求出G点坐标;(3)在抛物线上B,D之间是否存在一点M,过点M作MN⊥CD,交直线CD于点N,使以C,M,N为顶点的三角形与△BDE相似?若存在,求出满足条件的点M的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.2.【解答】解:∵几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,∵俯视图是一个圆,∴该几何体是一个圆锥;故选:D.3.【解答】解:55000用科学记数法可表示为:5.5×104,故选:B.4.【解答】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.5.【解答】解:A.x2+x2=2x2,故本选项不合题意;B.(x+y)2=x2+2xy+y2,故本选项不合题意;C.(xy2)3=x3y6,故本选项不合题意;D.(﹣x)2⋅x3=x5,正确.故选:D.6.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.7.【解答】解:两边都乘以x﹣1,得:3﹣(x+2)=2(x﹣1),故选:A.8.【解答】解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠B=180°﹣∠ADB﹣∠BAD=180°﹣90°﹣48°=42°,∴∠C=∠B=42°.故选:B.9.【解答】解:∵BC=6,M为BC中点,分别以B、C为圆心,BM长为半径画弧,∴BM=CM=3,又∵四边形ABCD是平行四边形,∴AB∥DC,∴∠B+∠C=180°,∵∠B=120°,∴∠C=60°,∵在平行四边形ABCD中,BC=6,BC边上高为4,∴图中阴影部分面积是:6×4﹣=24﹣,故选:C.10.【解答】解:∵抛物线的开口向下,∴a<0,∵x=﹣>0,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①正确;∵抛物线与x轴有两个交点,∴b2>4ac,②正确;∵x=2时,y>0,∴4a+2b+c>0,故③错误;∵对称轴为直线x=1,∴,∴b=﹣2a,即2a+b=0,④正确.故选:B.二、填空题(本大题共4个小题,每小题4分,共16分)11.【解答】解:|﹣|=,故答案为:.12.【解答】解:∵共有6名学生干部,其中女生有2人,∴任意抽一名学生干部去参加一项活动,其中是女生的概率为=,故答案为:.13.【解答】解:∵2x+y=2,2x﹣y=﹣4,∴4x2﹣y2=(2x+y)(2x﹣y)=﹣8,故答案为:﹣814.【解答】解:∵CD=AC,∠A=48°,∴∠ADC=48°,由作图知MN是BC的垂直平分线,∴DB=DC,∴∠B=∠BCD=∠ADC=24°,则∠ACB=180°﹣∠A﹣∠B=108°,故答案为:108°.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解答】解:原式=4+4﹣8×﹣1=4+4﹣4﹣1=3;(2)解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集,﹣3<x≤2.16.【解答】解:原式=÷=•=,由分式有意义的条件可知:a=2,∴原式=17.【解答】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,抽查的学生劳动时间的众数是1.5小时,中位数是1.5小时,故答案为:1.5,1.5;(2)所有被调查同学的平均劳动时间为:×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均劳动时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×=290(人).18.【解答】解:过P作PC⊥AB于C,在Rt△APC中,AP=200m,∠ACP=90°,∠PAC=60°.∴PC=200×sin60°=200×=100.∵在Rt△PBC中,sin37°=,∴PB==≈288(m),答:小亮与妈妈相距约288米.19.【解答】解:(1)将点A的坐标代入y=(m≠0)得:m=﹣2×3=﹣6,则反比例函数的表达式为:y=﹣,将点B的坐标代入上式并解得:n=﹣,故点B(4,﹣),将点A、B的坐标代入一次函数表达式y=kx+b得:,解得:,故一次函数的表达式为:y=﹣x+;(2)y=﹣x+,令y=0,则x=2,故点C(2,0),①当∠APC为直角时,则点P(﹣2,0);②当∠P(P′)AC为直角时,由点A、C的坐标知,PC=4,AP=3,则AC=5,cos∠ACP====,解得:CP′=,则OP′=﹣2=,故点P的坐标为:(﹣2,0)或(﹣,0).20.【解答】(1)证明:连接OC,∵OC=OB,=,∴∠OCB=∠OBC,∠OBC=∠CBD,∴∠CBD=∠OCB,∴OC∥BD,∴∠ECO=∠EDB,∵CD⊥BG于点D,∴∠EDB=90°,∴∠ECO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)∵OC∥BD,∴∠OCF=∠DBF,∠COF=∠BDF,∴△OCF∽△DBF,∴,∵=,∴,∵OC∥BD,∴△EOC∽△EBD,∴,∴,设OE=2a,则EB=3a,∴OB=a,∴AO=a,∴EA=a,∴AE=AO;(3)∵OC=OA=a,EO=2a,∴OC=EO,又∵∠OCE=90°,∴∠E=30°,∵∠BDE=90°,BC平分∠EBD,∴∠EBD=60°,∠OBC=∠DBC=30°,∵CD=,∴BC=2,BD=,∵,∴OC=,作DM⊥AB于点M,∴∠DMB=90°,∵BD=,∠DBM=60°,∴BM=,DM=,∵OC=,∴AB=,∴AM=AB﹣BM==,∵∠DMA=90°,DM=,∴AD===.一、填空题(本大题共5个小题,每小题4分,共20分)21.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.22.【解答】解:∵阴影部分的面积=4个小正方形的面积,大正方形的面积=9个小正方形的面积,∴阴影部分的面积占总面积的,∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是.故答案为:.23.【解答】解:∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;...∵2020÷3=673 (1)∴AP2020=673(3+)+2=2021+673,故答案为:2021+67324.【解答】解:过点H作MN∥AD,交AB于M,交CD于N,∴∠BAD=∠BMN=90°,∠D=∠MNC=90°,∴四边形ADNM是矩形,∴AM=DM,MN=AD=2,∵将△ADE沿AE折叠至△AHE,∴AH=AD=2,∠AHE=90°,HE=DE=1,∴∠AHM+∠EHN=90°,且∠MAH+∠AHM=90°,∴∠MAH=∠EHN,且∠AMH=∠ENH=90°,∴△AMH∽△HNE,∴,∴,∴MH=2EN,HN=,∵MH+HN=MN=2,∴2EN+=2,∴EN=,∴MH=,HN=,AM=,∴BM=,∴BH==,∵AB∥CD,∴=,∴NG=,HG=,∴BG=,EG=,∵AB∥CD,∴,∴=∴FG=,故答案为:.25.【解答】解:如图,由题意“等积点”在反比例函数y=图象上,∵直线y=﹣x+b(b>0)与x轴、y轴分别交于点A和点B,并且直线有且只有一个“等积点”,∴“等积点”M的坐标为(,),B(0,2),A(2,0),E(2,),F(,2),∵△OEF的面积=S正方形AOBC﹣2•S△AOE﹣S△EFC=k2+k﹣,∴k2+k﹣=4k﹣k﹣k,解得k=2或﹣(舍弃),∴E(2,),∴OE==,故答案为.二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.【解答】解:(1)设y=kx+b,将x=20、y=1800和x=30、y=1600代入得:,解得:,∴y=﹣20x+2200,(2)当0<x≤15时,W=1900x,∴当x=15时,W最大=28500元;当15<x≤50时,W=(﹣20x+2200)x=﹣20x2+2200x=﹣20(x﹣55)2+60500,∵x≤50,∴当x=50时,W最大=60000元,综上,小王家承包50亩荒山获得的总利润最大,并求总利润W的最大值为60000元.27.【解答】(1)问题发现:证明:∵△ABC与△APQ都是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠PAQ=60°,∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,在△BAP和△CAQ中,,∴△BAP≌△CAQ(SAS),∴BP=CQ;(2)变式探究:解:∠ABC和∠ACQ的数量关系为:∠ABC=∠ACQ;理由如下:∵在等腰△ABC中,AB=BC,∴∠BAC=(180°﹣∠ABC),∵在等腰△APQ中,AP=PQ,∴∠PAQ═(180°﹣∠APQ),∵∠APQ=∠ABC,∴∠BAC=∠PAQ,∴△BAC∽△PAQ,∴=,∵∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∴△BAP∽△CAQ,∴∠ABC=∠ACQ;(3)解决问题:解:连接AB、AQ,如图3所示:∵四边形ADBC是正方形,∴=,∠BAC=45°,∵Q是正方形APEF的中心,∴=,∠PAQ=45°,∴∠BAP+∠PAC=∠PAC+∠CAQ,∴∠BAP=∠CAQ,∵==,∴△ABP∽△ACQ,∴==,∵CQ=2,∴BP=CQ=4,设PC=x,则BC=AC=4+x,在Rt△APC中,AP2=AC2+PC2,即62=(4+x)2+x2,解得:x=﹣2±,∵x>0,∴x=﹣2+,∴正方形ADBC的边长=4+x=4﹣2+=2+.28.【解答】解:(1)点A(﹣1,0)、B(3,0),根据两点式得:抛物线的表达式为:y=(x+1)(x﹣3)=x2﹣2x﹣3…①;函数的对称轴为x=1,当x=1时,y=x2﹣2x﹣3=﹣4,则D(1,﹣4);(2)过点G作y轴的平行线交BD于点H,设直线BC交对称轴于点F,由点B(3,0)、C(0,﹣3)的坐标可得,直线BC的表达式为:y=x﹣3,则点F(1,﹣2),则FD=2,同理可得,BD的表达式为:y=2x﹣6,设点G(x,x2﹣2x﹣3),则点H(x,2x﹣6),S四边形CDGB=4S△DGB,则S△BDG=S△BCD=×FD×OB=×2×3=1,S△BDG=HG×BE=(2x﹣6﹣x2+2x+3)×(3﹣1)=1,解得:x=2,故点G(2,﹣3);(3)存在,理由:过点B作BP⊥BC交CM的延长线于点P,∵点B(3,0)、C(0,﹣3)、则BC=3,BC、CD与y轴的夹角都是45°,故∠BDC=90°,∵MN⊥CD,∴BC∥MN,∵C,M,N为顶点的三角形与△BDE相似,∴B,C,P为顶点的三角形与△BDE相似,则,即,解得:BP=或6;过点P作PQ⊥x轴于点Q,∵∠OBC=45°,∴∠PBQ=45°;①当PB=时,PQ=BQ=PB=,OQ=OB+BQ=3+=,故点P(,﹣),由点C、P的坐标得,直线CP的表达式为:y=x﹣3…②,联立①②并解得:x=0(舍去)或,故点M(,﹣);②当BP=6时,同理可得:点P(9,﹣6),则直线CP的表达式为:y=﹣x﹣3…③,联立①③并解得:x=0(舍去)或,故点M(,﹣);综上,点M的坐标为:(,﹣)或(,﹣)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年成都中考数学一诊20,27,28一.解答题(共50小题)1.(2019•成华区模拟)如图,抛物线经过原点O,与x轴交于点A(﹣4,0),且经过点B (4,8)(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当﹣=时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点C,连接OC,当S△POC:S△BOC=1:2时,求点P的坐标.2.(2019•合浦县二模)如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3,0)与B(1,0),与直线y=kx(k≠0)交于点C(﹣2,﹣3).(1)求抛物线的解析式;(2)如图1,点E是抛物线上(x轴下方)的一个动点,过点E作x轴的平行线与直线OC交于点F,试判断在点E运动过程中,以点O,B,E,F为顶点的四边形能否构成平行四边形,若能,请求出点E的坐标;若不能,请说明理由.(3)如图2,点D是抛物线的顶点,抛物线的对称轴DM交x轴于点M,当点E在抛物线上B,D之间运动时,连接EA交DM于点N,连接BE并延长交DM于点P,猜想在点E的运动过程中,MN+MP的和是否为定值?若是,试求出该定值;若不是,请说明理由.3.(2019•锦江区校级模拟)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+,分别交x轴于A与B点,交y轴于点C点,顶点为D,连接AD.(1)如图1,P是抛物线的对称轴上一点,当AP⊥AD时,求P的坐标;(2)在(1)的条件下,在直线AP上方、对称轴右侧的抛物线上找一点Q,过Q作QH ⊥x轴,交直线AP于H,过Q作QE∥PH交对称轴于E,当▱QHPE周长最大时,在抛物线的对称轴上找一点,使|QM﹣AM|最大,并求这个最大值及此时M点的坐标.(3)如图2,连接BD,把∠DAB沿x轴平移到∠D′A′B′,在平移过程中把∠D′A′B′绕点A′旋转,使∠D′A′B′的一边始终过点D点,另一边交直线DB于R,是否存在这样的R点,使△DRA′为等腰三角形,若存在,求出BR的长;若不存在,说明理由.4.(2018•武侯区模拟)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.5.(2019•武侯区模拟)如图,在平面直角坐标系中,直线y=mx+3与抛物线交于点A(9,﹣6),与y轴交于点B,抛物线的顶点C的坐标是(4,﹣11).(1)分别求该直线和抛物线的函数表达式;(2)D是抛物线上位于对称轴左侧的点,若△ABD的面积为,求点D的坐标;(3)在y轴上是否存在一点P,使∠APC=45°?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.6.(2019•岳池县模拟)如图,抛物线y=﹣+bx+c与x轴交于A(﹣4,0),B(1,0)两点,与y轴交于点C,点D为直线AC上方抛物线上的动点,DE⊥线段AC于点E.(1)求抛物线解析式;(2)如图1,求线段DE的最大值;(3)如图2,连接CD、BC,当△BOC与以C、D、E为顶点的三角形相似时,求点D 的横坐标.7.(2019•龙泉驿区模拟)如图,B(2m,0)、C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E、A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′;(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为M,过M作MN垂直y轴,垂足为N:①求a、b、m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为5,请你探究a的取值范围.8.(2019•都江堰市模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(2,3),对称轴为直线x=1.(1)求抛物线的表达式;(2)如果垂直于y轴的直线l与抛物线交于两点A(x1,y1),B(x2,y2),其中x1<0,x2>0,与y轴交于点C,求BC﹣AC的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.9.(2019•成都模拟)如图,抛物线y=x2+bx+c与轴交于点A和点B,与y轴交于点C,作直线BC,点B的坐标为(6,0),点C的坐标为(0,﹣6).(1)求抛物线的解析式并写出其对称轴;(2)D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求D点坐标;(3)若E为y轴上且位于点C下方的一点,P为直线BC上的一点,在第四象限的抛物线上是否存在一点Q.使以C,E,P,Q为顶点的四边形是菱形?若存在,请求出Q点的横坐标;若不存在,请说明理由.10.(2010•北海)如图,在△OAB中,AO=AB,∠OAB=90°,点B坐标为(10,0).过原点O的抛物线,又过点A和G,点G坐标为(7,0).(1)求抛物线的解析式;(2)边OB上一动点T(t,0),(T不与点O、B重合)过点T作OA、AB的垂线,垂足分别为C、D.设△TCD的面积为S,求S的表达式(用t表示),并求S的最大值;(3)已知M(2,0),过点M作MK⊥OA,垂足为K,作MN⊥OB,交点OA于N.在线段OA上是否存在一点Q,使得Rt△KMN绕点Q旋转180°后,点M、K恰好落在(1)所求抛物线上?若存在请求出点Q和抛物线上与M、K对应的点的坐标,若不存在请说明理由.11.(2019•简阳市模拟)如图1,在平面直角坐标系xOy中,抛物线y=﹣(x﹣a)(x﹣4)(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)若D点坐标为(),求抛物线的解析式和点C的坐标;(2)若点M为抛物线对称轴上一点,且点M的纵坐标为a,点N为抛物线在x轴上方一点,若以C、B、M、N为顶点的四边形为平行四边形时,求a的值;(3)直线y=2x+b与(1)中的抛物线交于点D、E(如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D′,与直线的另一个交点为E′,与x 轴的交点为B′,在平移的过程中,求D′E′的长度;当∠E′D′B′=90°时,求点B′的坐标.12.(2019•郫都区模拟)如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.(1)用含m的代数式表示点A、B的坐标;(2)求证:;(3)若点C、点A到y轴的距离相等,且s△CDE=1.6时,求抛物线和直线BE的解析式.13.(2019•无锡一模)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.14.(2018秋•新都区期末)如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.15.(2018秋•镇原县期末)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.16.(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.17.(2018•资阳)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.18.(2018•昆明)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.19.(2018秋•成都期末)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=4.①如图2,若∠PBM=∠ACP,AB=7,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,求BP的长.20.(2018•温江区模拟)在四边形ABCD中,点E为AB边上一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形;①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE、DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B 逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图3中画出草图,并求出AE′与DF′的数量关系.21.(2018秋•新都区期末)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.22.(2018秋•金牛区期末)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.23.(2019•简阳市模拟)如图,在菱形ABCD中,对角线AC、BD交于点O,已知AC=2,AB=5.(1)求BD的长;(2)点E为直线AD上的一个动点,连接CE,将线段EC绕点C顺时针旋转∠BCD的角度后得到对应的线段CF(即∠ECF=∠BCD),EF交CD于点P.①当E为AD的中点时,求EF的长;②连接AF、DF,当DF的长度最小时,求△ACF的面积.24.(2019•彭州市模拟)如图①,在正方形ABCD中,对角线AC、BD交于点O,动点P 在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)如图②,当点P与点C重合时,求证:△BOG≌△POE;(2)通过观察、测量、猜想:=,并结合图①证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ACB=a,直接写出的值,为.(用含a的式子表示)25.(2019•都江堰市模拟)如图,在△ABC中,∠ACB=90°,tan A=,AC=6,以BC为斜边向右侧作等腰直角△EBC,P是BE延长线上一点,连接PC,以PC为直角边向下方作等腰直角△PCD,CD交线段BE于点F,连接BD.(1)求证:PC:CD=CE:BC;(2)若PE=n(0<n≤4),求△BDP的面积;(用含n的代数式表示)(3)当△BDF为等腰三角形时,请直接写出线段PE的长度.26.(2019•成都模拟)已知四边形ABCD是矩形,AB=2,BC=4,E为BC边上一动点且不与B、C重合,连接AE(1)如图1,过点E作EN⊥AE交CD于点N①若BE=1,求CN的长;②将△ECN沿EN翻折,点C恰好落在边AD上,求BE的长;(2)如图2,连接BD,设BE=m,试用含m的代数式表示S四边形CDFE:S△ADF值.27.(2019•历下区模拟)在矩形ABCD中,AB=3,AD=4,点P为AB边上的动点(P与A、B不重合),将△BCP沿CP翻折,点B的对应点B1在矩形外,PB1交AD于E,CB1交AD于点F.(1)如图1,求证:△APE∽△DFC;(2)如图1,如果EF=PE,求BP的长;(3)如图2,连接BB′交AD于点Q,EQ:QF=8:5,求tan∠PCB.28.(2019•五华区二模)如图,点E,F分别在矩形ABCD的边AB,BC上,连接EF,将△BEF沿直线EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.(1)如图1,当∠BEF=45°时,EH的延长线交DC于点M,求HM的长;(2)如图2,当FH的延长线经过点D时,求tan∠FEH的值;(3)如图3,连接AH,HC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由.29.(2019•锦江区校级模拟)已知,如图所示,在矩形ABCD中,点E在BC边上,△AEF =90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.30.(2018•成都)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.31.(2019•锦江区模拟)如图,在等边△ABC中,点E,F分别是边AB,BC上的动点(不与端点重合),且始终保持AE=BF,连接AF,CE相交于点P.过点A作直线m∥BC,过点C作直线n∥AB,直线m,n相交于点D,连接PD交AC于点G.(1)求∠APC的大小;(2)求证:△APD∽△EAC;(3)在点E,F的运动过程中,若=,求的值.32.(2019•成华区模拟)如果a:b=b:c,即b2=ac,则b叫a和c的比例中项,或等比中项.若一个三角形一条边是另两条边的等比中项,我们把这个三角形叫做等比三角形.(1)已知△ABC是等比三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长;(2)如图,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC,求证:△ABC是等比三角形;(3)如图2,在(2)的条件下,当∠ADC=90时,求的值.33.(2019•郫都区模拟)如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:DG•BC=DF•BG;(2)连接CF,求∠CFB的大小;(3)作点C关于直线DE的对称点H,连接CH,FH.猜想线段DF,BF,CH之间的数量关系并加以证明.34.(2019•成华区模拟)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设=k.(1)求证:AE=BF;(2)求证:=k;(3)连接DF,当∠EDF=30°时,求k的值.35.(2018•成都)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sin B=,求DG的长,36.(2019•锦江区校级模拟)如图,F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求MF、FG、EG之间的数量关系,并说明理由.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.37.(2019•武侯区模拟)如图,四边形ABCD是⊙O的内接四边形,AC平分∠DAB,点B 是弧AC的中点.(1)求证:AB=CD;(2)如图2,连接BO并延长分别交AC,AD于点E和F,交⊙O于点G,连接FC;(i)试判断四边形ABCF的形状,并说明理由;(ii)若,AC=4,求⊙O的半径.38.(2019•青羊区模拟)如图,AB是⊙O的直径,C,D为圆上位于直径AB两侧的点,连接AC、AD、CD、BD,且AD<BD.(1)如图1,若∠C=15°,求∠BAD的度数;(2)如图2,若BD=6,AD=3,CD平分∠ADB,求CD长度;(3)如图3,将(2)中的CD延长与过点A的切线交于点E,连接BE,设tan∠ABD=x,tan∠ABE=y,用含x的代数式表示y.39.(2019•成都模拟)在△ACD中,CD=1,AC=3.以AD为直径作⊙O,点C恰在圆上,点B为射线CD上一点,连接BA交⊙O于点E,连接CE交AD于点G,过点A作AF ∥CD交DE的延长线于点F.(1)若∠DAE=30°,求DE的长;(2)求证:△AEC∽△F AD;(3)当△GEA∽△F AD时,求DF的长.40.(2019•随县一模)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.41.(2013•衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM 的值.42.(2019•彭州市模拟)如图,在△ABC中,BC为⊙O的直径,AB交⊙O于点D,DE⊥AC,垂足为点E,延长DE交BC的延长线于点F,若∠A=∠ABC(1)求证:BD=AD;(2)求证:DF是⊙O的切线;(3)若⊙O的半径为6,sin∠F=,求DE的长.43.(2019•郫都区模拟)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EF=,求AF长.44.(2019•南山区校级三模)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.45.(2018•成都模拟)在平行四边形ABCD中,AB=6,BC=8,点E、F分别为AB、BC 的两点.(1)如图1,若∠B=90°,且BF=CE=2,连接EF、DE,判断EF和DE的数量关系及位置关系,并说明理由;(2)如图2,∠B=∠FED=60°,求证:;(3)如图3,若∠ABC=90°,点C关于BD的对称点为点C',点O为平行四边形ABCD 对角线BD的中点,连接OC交AD于点G,求GD的长.46.(2018秋•朝阳区期末)数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为所对的一个圆外角.(1)请在图2中画出所对的一个圆内角;提出猜想(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角这条弧所对的圆周角;一条弧所对的圆内角这条弧所对的圆周角;(填“大于”、“等于”或“小于”)推理证明:(3)利用图1或图2,在以上两个猜想中任选一个进行证明;问题解决经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)47.(2018秋•成都期末)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,DE⊥AD交AB于E,△ADE的外接圆⊙O与边AC相交于点F,过F作AB的垂线交AD于P,交AB于M,交⊙O于G,连接GE.(1)求证:BC是⊙O的切线;(2)若tan∠G=,BE=6,求⊙O的半径;(3)在(2)的条件下,求MP的长.48.(2018•通辽)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O 于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.49.(2019•锦江区模拟)如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接F A,FC,若∠AFC=2∠BAC,求证:F A⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接F A,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.50.(2019•简阳市模拟)如图,AB为⊙O的直径,AC,BC是⊙O的两条弦,过点C作∠BCD=∠A,CD交AB的延长线与点D.(1)求证:CD是⊙O的切线;(2)若tan A=,求的值;(3)在(2)的条件下,若AB=7,∠CED=∠A+∠EDC,求EC与ED的长.2019年成都中考数学一诊20,27,28参考答案与试题解析一.解答题(共50小题)1.(2019•成华区模拟)如图,抛物线经过原点O,与x轴交于点A(﹣4,0),且经过点B (4,8)(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当﹣=时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点C,连接OC,当S△POC:S△BOC=1:2时,求点P的坐标.【分析】(1)因为抛物线经过原点O,点A(﹣4,0)和点B(4,8),用待定系数法即可得出抛物线的表达式;(2)把条件当﹣=转化为,再利用韦达定理即可得出k的值;(3))由OB∥PC,S△POC:S△BOC=1:2,可得PC:OB=1:2,因为OB=,所以PC=,设点P的坐标为(a,),直线PC的表达式为y=2x+t,再把点P的坐标为(a,)代入求得直线PC的表达式,再与直线AB解交点求得点C的横坐标,最后根据两点之间距离公式可求得a的值,进而得出点P的坐标.【解答】解:(1)∵抛物线经过原点O,与x轴交于点A(﹣4,0),且经过点B(4,8),设抛物线的解析式为y=ax2+bx,把点A(﹣4,0),B(4,8)代入,得,解得,∴抛物线的解析式为(2),消去y得,,∴x1+x2=4(k﹣1),x1x2=﹣16,∵﹣=,∴,即,解得k=3或k=﹣1,经检验符合题意,∴k的值为3或﹣1;(3)∵OB∥PC,S△POC:S△BOC=1:2,∴PC:OB=1:2,∵A(﹣4,0),B(4,8),∴OB=,直线OB的表达式为y=2x,∴PC=,设点P的坐标为(a,),直线PC的表达式为y=2x+t,把点P的坐标为(a,)代入,直线PC的表达式,得,∴线PC的表达式为y=2x+,易得直线AB的表达式为y=x+4,联立,解得x=,∴,解得(舍去)或,代入抛物线表达式,得y=,∴点P的坐标为(,).【点评】本题考查用待定系数法求二次函数,一次函数表达式,综合性较强.第(3)问把条件S△POC:S△BOC=1:2转化为PC:OB=1:2是解题的关键.2.(2019•合浦县二模)如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3,0)与B(1,0),与直线y=kx(k≠0)交于点C(﹣2,﹣3).(1)求抛物线的解析式;(2)如图1,点E是抛物线上(x轴下方)的一个动点,过点E作x轴的平行线与直线OC交于点F,试判断在点E运动过程中,以点O,B,E,F为顶点的四边形能否构成平行四边形,若能,请求出点E的坐标;若不能,请说明理由.(3)如图2,点D是抛物线的顶点,抛物线的对称轴DM交x轴于点M,当点E在抛物线上B,D之间运动时,连接EA交DM于点N,连接BE并延长交DM于点P,猜想在点E的运动过程中,MN+MP的和是否为定值?若是,试求出该定值;若不是,请说明理由.【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣1),把点C(﹣2,﹣3)代入,得a =1,即抛物线的解析式为y=x2+2x﹣3;(2)设点E(m,m2+2m﹣3),由于直线y=kx(k≠0)经过点C(﹣2,﹣3),可得直线表达式为y=x,因为EF平行OA,可求得点F的横坐标,进而得出EF的长度,当EF=OB=1时,以点O,B,E,F为顶点的四边形构成平行四边形,即,解方程求得m的值,进而得出点E的坐标;(3)如图,作EH⊥OA于点H,证明△BEH∽△BPM,△AMN∽△AHE,可得,设点E(m,m2+2m﹣3),可求得MP=2m+6,MN=2﹣2m,进而得出MP+MN=8,其值为定值,【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3,0)与B(1,0),与直线y=kx(k≠0)交于点C(﹣2,﹣3),∴设抛物线的解析式为y=a(x+3)(x﹣1),点C(﹣2,﹣3)代入,得a=1,∴抛物线的解析式为y=x2+2x﹣3;(2)设点E(m,m2+2m﹣3),∵直线y=kx(k≠0)经过点C(﹣2,﹣3),∴﹣3=﹣2k,k=,∴y=x,∵过点E作x轴的平行线与直线OC交于点F,∴m2+2m﹣3=,∴,当EF=OB=1时,以点O,B,E,F为顶点的四边形构成平行四边形,∴,解得m=1(舍去)或m=或m=或m=(舍去),∴点E的坐标为(,)或(,);(3)如图,作EH⊥OA于点H,∵PM⊥OA,∴PM∥EH,∴△BEH∽△BPM,△AMN∽△AHE,∴,设点E(m,m2+2m﹣3),则,,∴MP=2m+6,MN=2﹣2m,∴MP+MN=8,∴在点E的运动过程中,MN+MP的和是定值,该定值为8.【点评】本题考查二次函数,平行四边形,相似三角形等知识,综合性强.用点的坐标来表示线段的长是解决本题的关键.3.(2019•锦江区校级模拟)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+,分别交x轴于A与B点,交y轴于点C点,顶点为D,连接AD.(1)如图1,P是抛物线的对称轴上一点,当AP⊥AD时,求P的坐标;(2)在(1)的条件下,在直线AP上方、对称轴右侧的抛物线上找一点Q,过Q作QH ⊥x轴,交直线AP于H,过Q作QE∥PH交对称轴于E,当▱QHPE周长最大时,在抛物线的对称轴上找一点,使|QM﹣AM|最大,并求这个最大值及此时M点的坐标.(3)如图2,连接BD,把∠DAB沿x轴平移到∠D′A′B′,在平移过程中把∠D′A′B′绕点A′旋转,使∠D′A′B′的一边始终过点D点,另一边交直线DB于R,是否存在这样的R点,使△DRA′为等腰三角形,若存在,求出BR的长;若不存在,说明理由.【分析】(1)求出点A、B、C、D的坐标,设直线AP的表达式为:y=﹣x+b,将点A 的坐标代入上式,即可求解;(2)设点Q(x,﹣x2+x+),则点H(x,﹣x﹣),PH=,可求出点Q(10,﹣9),取点A关于对称轴的对称点A′(6,0),连接QA′,此时,|QM﹣AM|最大,即可求解;(3)分DA=RA′、A′R=A′D、A′D=DR三种情况,求解即可.【解答】解:(1)y=﹣x2+x+,令x=0,则y=,令y=0,则x=﹣2或6,故点A、B、C、D的坐标分别为(﹣2,0)、(6,0)、(0,)、(2,3),直线AD表达式中的k值为:,AP⊥AD,则直线AP表达式中的k值为﹣,设直线AP的表达式为:y=﹣x+b,将点A的坐标代入上式并解得:b=﹣,则直线AP的表达式为:y=﹣x﹣,当x=2时,y=﹣,故点P(2,﹣);(2)设点Q(x,﹣x2+x+),则点H(x,﹣x﹣),PH===,▱QHPE周长=2(PH+QH)=2(﹣x2+x++x++)=﹣x2+x+,当x=﹣=10时,周长取得最大值,此时,点H(10,﹣16)、点Q(10,﹣9),取点A关于对称轴的对称点A′(6,0),连接QA′,此时,|QM﹣AM|最大,最大值为QA′==;(3)存在,理由:AD=BD=5,∴∠DAB=∠DBA=α,由(1)知:tanα=,则sinα=①当DA=RA′时,如下图1,∴∠R′AD=∠RDA′=∠DAB=∠DBA=α,A′D=2DR cosα=DR=A′R,即:=,∠RA'B=∠DRA′﹣α=180°﹣2α﹣α=180°﹣3α,∠ADA′=180°﹣3α,∴∠RA'B=∠ADA′=3α,而∠RBA′=∠DAA′=α,∴△AA′D∽△BRA′,∴===,其中:AD=5,AA′=AB﹣A′B=8﹣A′B,BR=BD﹣DR=5﹣DR,将上述数据代入比例中并解得:AB=,DR=,BR=BD﹣DR=;②当A′R=A′D时,∴∠A′DR=∠DRA′=β,∠ADA′=∠DA′B﹣∠DAA′=∠RA′B+α﹣α=∠RA′B,∠DAA′=∠DBA′=α∴△AA′D≌△BRA′(AAS),∴AB′=AD=5,AA′=AB﹣A′B=8﹣5=3=RB;(3)当A′D=DR时,如下图所示,由图3知,A、A′重合,B、R重合,故:BR=0;故:BR的长为0或3或.【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等和相似等,其中(3),要分类讨论,巧妙利用三角形全等和相似求解,难度很大.4.(2018•武侯区模拟)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.【分析】(1)利用配方法将抛物线表达式变形为顶点式,由此可得出点A的坐标,根据点A的坐标,利用待定系数法即可求出直线的函数表达式;(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x﹣m)2﹣2m﹣2,利用一次函数图象上点的坐标特征结合点C在x轴上且点C不与点A′重合,可得出m>﹣1.(i)联立直线和抛物线的表达式成方程组,通过解方程组可求出点B′的坐标,利用二次函数图象上点的坐标特征可求出点C的坐标,过点C作CD∥y轴,交直线A′B′于点D,由点C的坐标可得出点D的坐标,利用S△A′B′C=S△B′CD﹣S△A′CD=60,即可得出关于t的方程,利用换元法解方程组即可得出m的值,进而可得出点A′的坐标,再由点A的坐标利用两点间的距离公式即可求出结论;(ii)根据点A′、B′、C的坐标,可得出A′B′、A′C、B′C的长度,分∠A′B′C=90°及∠B′A′C=90°两种情况,利用勾股定理可得出关于m的方程,利用换元法解方程即可求出m的值,进而可得出点A′的坐标,此题得解.【解答】解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x﹣m)2﹣2m﹣2.。