23树和森林的存储和遍历

合集下载

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

数据结构-第6章 树和二叉树---4. 树和森林(V1)

数据结构-第6章 树和二叉树---4. 树和森林(V1)
ElemType data ; struct CSnode *firstchild, *nextsibing ; }CSNode;
6.4.1 树的存储结构
R AB C D EG F
R⋀
A
⋀D
⋀B
⋀E ⋀
C⋀
⋀G
⋀F ⋀
6.4.2 树、森林和二叉树的转换
1. 树转换为二叉树 将树转换成二叉树在“孩子兄弟表示法”中已 给出,其详细步骤是: ⑴ 加线。在树的所有相邻兄弟结点之间加一 条连线。 ⑵ 去连线。除最左的第一个子结点外,父结点 与所有其它子结点的连线都去掉。 ⑶ 旋转。将树以根结点为轴心,顺时针旋转 450,使之层次分明。
B C
D
A E
L HK
M
技巧:无左孩子 者即为叶子结点
6.4.3 树和森林的遍历
1. 树的遍历 由树结构的定义可知,树的遍历有二种方法。 ⑴ 先序遍历:先访问根结点,然后依次先序 遍历完每棵子树等。价于对应二叉树的先序遍历
⑵ 后序遍历:先依次后序遍历完每棵子树,然 后访问根结点。等价于对应二叉树的中序遍历
0 R -1 1A 0 2B 0 3C 0
}Ptree ; R
4D 1 5E 1
AB C
6F 3
7G 6
DE
F
8H 6
9I 6
G H I 10~MAX_Size-1 ... ...
6.4.1 树的存储结构
2. 孩子表示法
每个结点的孩子结点构成一个单链表,即有n 个结点就有n个孩子链表;
n个孩子的数据和n个孩子链表的头指针组成一 个顺序表; 结点结构定义: 顺序表定义:
typedef struct PTNode { ElemType data ;

树与森林的遍历

树与森林的遍历

D
(a) 带权路径长度为36
2
C 4
D
75
A
B
(b) 带权路径长度为46
7
A 5
B 2
4
C
D
(c) 带权路径长度为35
WPL(a)=7×2+5×2+2×2+4×2=36 WPL(b)=4×2+7×3+5×3+2×1=46 WPL(c)=7×1+5×2+2×3+4×3=35
第十七讲
问题2: 什么样的树的带权路径长度最小? 例如: 给定一个权值序列{2, 3, 4, 7}, 可构造如图6.29所 示的多种二叉树的形态。
(1) 用给定的n个权值{w1, w2, …, wn}对应的n个结点构成n 棵二叉树的森林F={T1, T2, …, Tn},其中每一棵二叉树T i(1≤i≤n)都只有一个权值为wi的根结点,其左、右子树为空。
(2) 在森林F中选择两棵根结点权值最小的二叉树,作为 一棵新二叉树的左、右子树,标记新二叉树的根结点权值为其 左右子树的根结点权值之和。
第十七讲
树与森林的遍历
第十七讲
1. 树的遍历方法主要有以下两种: 1) 若树非空,则遍历方法为: (1) 访问根结点。 (2) 从左到右, 依次先根遍历根结点的每一棵子树。 例如, 图6.21中树的先根遍历序列为ABECFHGD。
第十七讲
2) 若树非空, 则遍历方法为: (1) 从左到右, 依次后根遍历根结点的每一棵子树。
(2) 访问根结点。 例如, 图6.21中树的后根遍历序列为EBHFGCDA。
第十七讲
2. 森林的遍历 森林的遍历方法主要有以下三种: 1) 若森林非空, 则遍历方法为: (1) 访问森林中第一棵树的根结点。 (2) 先序遍历第一棵树的根结点的子树森林。 (3) 先序遍历除去第一棵树之后剩余的树构成的森林。 例如, 图6.24(a)中森林的先序遍历序列为ABCDEFGHIJ。

数据结构第七章 树和森林

数据结构第七章 树和森林

7.5 树的应用
➢判定树
在实际应用中,树可用于判定问题的描述和解决。
•设有八枚硬币,分别表示为a,b,c,d,e,f,g,h,其中有一枚且 仅有一枚硬币是伪造的,假硬币的重量与真硬币的重量不同,可能轻, 也可能重。现要求以天平为工具,用最少的比较次数挑选出假硬币, 并同时确定这枚硬币的重量比其它真硬币是轻还是重。
的第i棵子树。 ⑺Delete(t,x,i)在树t中删除结点x的第i棵子树。 ⑻Tranverse(t)是树的遍历操作,即按某种方式访问树t中的每个
结点,且使每个结点只被访问一次。
7.2.2 树的存储结构
顺序存储结构 链式存储结构 不管哪一种存储方式,都要求不但能存储结点本身的数据 信息,还要能够唯一的反映树中各结点之间的逻辑关系。 1.双亲表示法 2.孩子表示法 3.双亲孩子表示法 4.孩子兄弟表示法
21
将二叉树还原为树示意图
A BCD
EF
A
B
C
E
D
F
A
B
C
E
D
F
22
练习:将下图所示二叉树转化为树
1 2
4
5
3
6
2 4
1 53
6
23
7.3.2 森林转换为二叉树
由森林的概念可知,森林是若干棵树的集合,只要将森林中各棵树 的根视为兄弟,森林同样可以用二叉树表示。 森林转换为二叉树的方法如下:
⑴将森林中的每棵树转换成相应的二叉树。 ⑵第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树 的根结点作为前一棵二叉树根结点的右孩子,当所有二叉树连起来 后,此时所得到的二叉树就是由森林转换得到的二叉树。
相交的集合T1,T2,…,Tm,其中每一个集合Ti(1≤i≤m)本身又是 一棵树。树T1,T2,…,Tm称为这个根结点的子树。 • 可以看出,在树的定义中用了递归概念,即用树来定义树。因此, 树结构的算法类同于二叉树结构的算法,也可以使用递归方法。

数据结构习题及答案与实验指导(树和森林)7

数据结构习题及答案与实验指导(树和森林)7

第7章树和森林树形结构是一类重要的非线性结构。

树形结构的特点是结点之间具有层次关系。

本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。

重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。

要点:树是一种递归的数据结构。

2.结点的度:一个结点拥有的子树数称为该结点的度。

3.树的度:一棵树的度指该树中结点的最大度数。

如图7-1所示的树为3度树。

4.分支结点:度大于0的结点为分支结点或非终端结点。

如结点a、b、c、d。

5.叶子结点:度为0的结点为叶子结点或终端结点。

如e、f、g、h、i。

6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。

7.兄弟结点:具有同一父亲的结点为兄弟结点。

如b、c、d;e、f;h、i。

8.树的深度:树中结点的最大层数称为树的深度或高度。

9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。

10.森林:是m棵互不相交的树的集合。

7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。

(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。

(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。

下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

树形结构——树和森林

树形结构——树和森林
树形结构——树和森林 树形结构——树和森林
TT
讨论的问题
1、树的概念 2、树的遍历 3、树的存储方式 4、二叉树
树的概念
树是一种常见的非线性的数据结构。 树是一种常见的非线性的数据结构 。 树的递归定义如 下: 树是n(n> 个结点的有限集, n(n>0 树是n(n>0)个结点的有限集,这个集合满足以下条 件: 有且仅有一个结点没有前件(父亲结点) ⑴有且仅有一个结点没有前件(父亲结点),该结 点称为树的根; 点称为树的根; 除根外,其余的每个结点都有且仅有一个前件; ⑵除根外,其余的每个结点都有且仅有一个前件; 除根外,每一个结点都通过唯一的路径连到根上。 ⑶除根外,每一个结点都通过唯一的路径连到根上。 这条路径由根开始,而未端就在该结点上, 这条路径由根开始 , 而未端就在该结点上 , 且除根以 路径上的每一个结点都是前一个结点的后件( 外 , 路径上的每一个结点都是前一个结点的后件 ( 儿 子结点) 子结点);
树的表示方法
树的表示方法一般有两种: 自然界的树形表示法:用结点和边表示树, ⑴自然界的树形表示法:用结点和边表示树,例如上图采用的就 是自然界的树形表示法。树形表示法一般用于分析问题。 是自然界的树形表示法。树形表示法一般用于分析问题。
⑵括号表示法:先将根结点放入一对圆括号中,然后把它的子树 括号表示法: 按由左而右的顺序放入括号中,而对子树也采用同样方法处理: 同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔 开,最后用闭括号括起来。例如图可写成如下形式 (r(a(w,x(d(h),e)),b(f),c(s,t(i(m,o, n),j),u)))
1、二叉树的递归定义和基本形态
二叉树是以结点为元素的有限集,它或者为空, 二叉树是以结点为元素的有限集,它或者为空,或者满足以 下条件: ⑴有一个特定的结点称为根; ⑵ 余下的结点分为互不相交的子集 L 和 R , 其中 R 是根的 余下的结点分为互不相交的子集L 其中R 左子树;L是根的右子树;L 左子树;L是根的右子树;L和R又是二叉树; 由上述定义可以看出, 由上述定义可以看出,二叉树和树是两个不同的概念 ⑴树的每一个结点可以有任意多个后件,而二叉树中每 树的每一个结点可以有任意多个后件, 个结点的后件不能超过2 个结点的后件不能超过2; ⑵树的子树可以不分次序(除有序树外);而二叉树的 树的子树可以不分次序(除有序树外) 子树有左右之分。我们称二叉树中结点的左后件为左儿子, 子树有左右之分。我们称二叉树中结点的左后件为左儿子, 右后件为右儿子。 右后件为右儿子。

树与二叉树的关系

树与二叉树的关系
右的次序顺序编号,即把树看作为有序树。
将一棵树转换为二叉树的方法: ⑴ 树中所有相邻兄弟之间加一条连线。 ⑵ 对树中的每个结点,只保留其与第一个 孩子结点之间的连线,删去其与其它孩子结 点之间的连线。 ⑶ 以树的根结点为轴心,将整棵树顺时针 旋转一定的角度,使之结构层次分明。
树转换为二叉树示意图
A
A
B
E
CF G
DH
I
A
B
E
CF G
DH
I
J
J
A
BC D EG FH I J
用递归的方法描述其转换
若B是一棵二叉树,T是B的根结点,L是B的 左子树,R为B的右子树,设B对应的森林F(B) 中含有的n棵树为T1,T2, …,Tn,则有: (1)B为空,则:F(B)为空的森林(n=0)。
(2)B非空,则:

森林
二叉树
先根遍历 先序遍历 先序遍历
后根遍历 中序遍历 中序遍历
3、森林的后序遍历*
若森林非空,则遍历方法为:
(1)后序遍历森林中第一棵树的根结点的子 树森林。 (2)后序遍历除去第一棵树之后剩余的树构 成的森林。 (3)访问第一棵树的根结点。
6.5 哈夫曼树及其应用
6.5.1 哈夫曼树
哈夫曼树最典型、最广泛的应用是在 编码技术上,利用哈夫曼树,可以得到 平均长度最短的编码。这在通讯领域是 极其有价值的。
权值 双亲序号 左孩子序号 右孩子序号
静态三叉链表结构定义
#define N 20 #define M 2*N-1 typedef struct { int weight ;
int parent,Lchild,Rchild ; }HTNode, HuffmanTree[M+1];
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

森林的先序遍历
A F H I K K JJ
森林对应的二叉链表
A B C D E E K G F
B
C
D D
E E
G
H I
J
先序遍历序列为: ABCDE FG HIKJ
课堂练习
B E F A C D G H I J K
森林的中序遍历
森林不空,则 中序遍历森林中第一棵树的子树森林; 访问森林中第一棵树的根结点; 中序遍历森林中(除第一棵树之外)其余树构成的森林。
A B E B F C D G
A E C F G
D
}利用二者的先序遍历结果相同
构造树
和二叉树类似,不同的定义相应有不同的算法。 假设以二元组(F,C)的形式自上而下、自左而右依 次输入树的各边,建立树的孩子-兄弟链表。
构造树
对左侧所示树的输入序列应为: A B C D
(‘#’, ‘A’) (‘A’, ‘B’) (‘A’, (‘A’, ‘C’) ‘C’) (‘A’, (‘A’, ‘D’) ‘D’) (‘C’, (‘C’, ‘E’) ‘E’) (‘C’, ‘F’) (‘E’, ‘G’) (‘ ‘,’#’) A B C
A
B E F
C
D
G
求根到所有叶子结点的路径
A B E C D G 左图的输出结果为:
F
H I J K
A A A A A A
B B C D D D
E F
G H I G H J G H K
求根到所有叶子结点的路径
对树先根遍历(深度优先) ,设立一个栈
1、T为空,则栈中存放的是从根到T的父结点的路径 2、将T压栈,栈中存放的是从根到T的路径 3、递归访问T的子树
E
G
树的后根遍历
若树不空,则先依次后根遍历各棵子树,然后访问根结点。
后根遍历序列为:
A A B B E E F C D D G H
E F BCI J K H G D A
I
J
K
课堂练习
A B C D F H I J
E
G
树的层次遍历
若树不空,则自上而下自左至右访问树中每个结点。
按层次遍历序列为:
A B E E F F
链式存储
a.结点同构
b.结点异构
如何描述节点可以有可变个指针,参见跳表
顺序+链式存储
A
data firstchild
0 A B C D E F G
1
2
3
B
E
C
F
D
1 2 3 4 5
4
5
root=0 n=7
6
G
6
孩子链表:找孩子方便,如何找双亲?
顺序+链式存储
A B E C F D
Parent data firstchild
B E F A C D G H I J K
树和森林的遍历
一、树的遍历 二、森林的遍历 三、树的遍历的应用
树的先根遍历
若树不空,则先访问根结点,然后依次(?)先根遍历各棵子树。
先根遍历序列为: A B E F C D G H I J K
A BEF CDGHIJK
课堂练习
A B C D F H I J
树的存储结构
一、双亲表示法 二、孩子链表表示法
三、带双亲的孩子链表表示法
四、树的孩子兄弟表示法
顺序存储
A
B E C F G D
data
0 1 2 3 4 5 6 A B C D E F G
parent -1 0 0 0 2 2 5
root=0 n=7
双亲表示法:图中A,B。。。是<Key, Value>
森林可以分解成三部分:
1.森林中第一棵树的根点; 2.森林中第一棵树的子森林; 3.森林中其它树构成的森林。
K
G
H I J
森林的先序遍历
若森林不空,则 1)访问森林中第一棵树的根结点; 2)先序遍历森林中第一棵树的子树森林; 3)先序遍历森林中(除第一棵树之外)其余树构成的森林。
依次从左至右对森林中的每一棵树进行先根遍历。
G
0 1 2 3 4 5 6
-1 0 0 0 2 2 5
A B C D E F G
1
4
2
5
3
6
root=0 n=7
二叉链表 root
A B E C F G G
G 孩子兄弟表示法
A D B
A B
C
E F D
C E F D
树的存储课堂练习
A B E F C D G H I J K
森林=>二叉链表
A B B A B C D E F H G E I F J G H I J J H I F G E A
4、将T出栈
树的遍历的应用
void OutPath( CStree T, Stack& S ) {
if(!T) return; Push(S, T->data ); if(!T->firstchild) {//”叶子”节点 printStack(S); pop(S);} OutPath(T->firstchild, S ); OutPath( T->nextsibling, S );
d[p]=Depth(p) a=max(d[1],d[2],…d[n])
return(a+1) }
求树的深度
int Depth(CSTree T){//二叉链表作为存储结构
if (!T) return 0;//空树
A B E F C D G
p=T->firstchild; d=0;
while(p){//依次求子树的深度 d1 = Depth(p); if(d1>d) d=d1; p=p->nextsibling; } return (d+1); }
E
G
F
D
可见,算法中需要一个队列保 存已建好的结点的指针
作业14
1、给出左侧树的双亲表示法、孩子兄弟表示法的存储结构。 2、给出右侧树的先根、后根和层次遍历结果。
A
L
D G H I J K
B
E F
C
M
P
N
Q
O
R
ABCDEFGHIJK
C
D D G H II J K
树的先根遍历-二叉链表 的对应关系
A B C D G 先根遍历 ABEFCDG 结论:先根对应先序
A
B
E F
C
D
E
F
G
树的后根遍历-二叉链表 的对应关系
A
A
B
B
E F
C
D
G
E F
C D
G
后根遍历 EFBCGDA 结论:后根对应中序
森林的遍历
B E F C D
先序遍历
中序遍历
先序遍历
中序遍历
求树的深度
1、如果T为空,则树的深度为0 2、求出T每棵子树的深度 3、从所有子树的深度中取最大,然后 加1,即为树的深度。 B A C D
E
F
G
求树的深度
int Depth(Tree T){//只考虑逻辑结构 if(!T) return(0); for(p=T1,T2,…Tn){//每棵子树
依次从左至右对森林中的每一棵树进行后根遍历。
森林的中序遍历
A B C D D E E F G I K K E E A H B J J C D K G I J F H
中序遍历序列为:
BCEDAGF KIJH
课堂练习
B E F A C D G H I J K
遍历的对应关系
树 森林 二叉树
先根遍历
后根遍历
C
D
C
D
森林=>二叉链表
A B
C
D E F G H I J B C
A E D F H I J E G F B
C
D
E
G H
I J
二叉链表=>森林
A B C D E F G H I J H G I J E F B C D A
二叉链表=>森林 课堂练习
相关文档
最新文档