离散数学定义定理
离散数学 第三章 函数

下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
离散数学简介

数理逻辑
非欧几何的产生和集合论的悖论的发现, 说明数学本身还存在许多问题,为了研 究数学系统的无矛盾性问题,产生了证 明论
数理逻辑
证明论(proof theory)
– 证明论是数学家D.希尔伯特于20世纪初期建立的,目的是要
证明公理系统的无矛盾性 – 1931年,K.哥德尔证明:一个包含公理化的算术的系统中不 能证明它自身的无矛盾性。这就是著名的哥德尔不完备性定 理 – 1936年,G.根岑证明了算术公理系统的无矛盾性 – 20世纪60年代以后,证明论不再局限于无矛盾性的证明
数理逻辑
现代数理逻辑可分为
– 命题逻辑演算 – 谓词逻辑演算 – 证明论 – 模型论
– 递归函数论
– 公理化集合论等
数理逻辑
命题逻辑和一阶谓词逻辑是数理逻辑中 最成熟的部分,在计算机科学中应用最 为广泛
– 命题逻辑是数理逻辑的最基础部分 – 谓词逻辑在命题逻辑的基础上发展起来
数理逻辑
在数理逻辑的历史上,哥德尔的工作起着承前 启后的作用 他的不完全性定理,把人们引向一种完全不同 的境界 第一不完全性定理:一个包括初等数论的形式 系统,如果是协调的,那就是不完全的。
欧氏几何
欧氏几何的五条公理是:
– 1、任意两个点可以通过一条直线连接。 – 2、任意线段能无限延伸成一条直线。 – 3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作
离散数学是后继课程的基础 离散数学是实际应用的基础工具 计算机科学和离散数学处理问题的方法、思维 方式有相似之处 离散数学可提供所需的思维训练,培养所需的 分析问题和解决问题的能力
简介
离散数学是学习数据结构与算法、数据库、编 译原理、算法设计与分析、计算机网络等课程 的主要基础,对开发大型软件、研究信息安全 和密码学、开展计算机理论研究以及开发新型 计算机都提供了不可缺少的基础知识
离散数学的基本概念与应用

离散数学的基本概念与应用离散数学是数学中的一个分支,研究离散对象和离散结构的数学理论。
与连续数学相对应,离散数学主要关注离散化的问题,如整数、图论、逻辑等。
本文将重点介绍离散数学的基本概念和应用领域。
一、离散数学的基本概念1. 整数论:整数论是离散数学中的一个重要分支,研究整数及其性质。
其中包括最大公约数、最小公倍数、同余关系、剩余类等概念和定理。
这些概念和定理在密码学、编码理论等领域有重要应用。
2. 图论:图论是离散数学的重要分支,研究图以及与图相关的问题。
图是由节点和边构成的数学模型,可以用来描述实际问题中的关系和连接。
图论在计算机科学、网络优化、运筹学等领域有广泛应用。
3. 逻辑:逻辑是数学中研究命题和推理的学科,也是离散数学的重要组成部分。
逻辑中的命题逻辑和谓词逻辑可以用来分析和验证证明过程的正确性。
逻辑在人工智能、计算机科学等领域有广泛应用。
4. 组合数学:组合数学是离散数学的一个分支,研究离散结构的组合性质和计数问题。
它包括排列组合、图的着色、树的计数等内容,广泛应用于密码学、信息论、统计学等领域。
二、离散数学的应用领域1. 计算机科学:离散数学在计算机科学中有广泛并且重要的应用。
例如,图论可以用来研究网络拓扑结构、路径规划等问题;逻辑可以用于编程语言的设计和验证;组合数学可以用于算法分析和优化等。
2. 信息科学:离散数学在信息科学中也有重要应用。
密码学是其中的一个典型例子,通过利用整数论和组合数学的概念,可以设计出安全可靠的密码算法;信息论中的编码理论也涉及到离散数学的知识。
3. 运筹学与管理科学:离散数学在运筹学和管理科学中有广泛应用。
图论可以用于最优路径规划、网络流等问题;排队论可以用于优化生产调度和资源规划等领域。
4. 统计学与概率论:离散数学的一些概念和方法也被应用于统计学和概率论中。
例如,组合数学可以用于计算组合问题的概率;逻辑可以用于推理和证明的建立等。
结论离散数学作为数学的一个分支,研究离散对象和离散结构的数学理论,具有广泛的应用领域。
离散数学重要公式定理汇总

关系的性质
一. 自反性
定义:设R是集合A中的关系,如果对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中自反关系。 即 R是A中自反的关系x(xAxRx) 例如: 在实数集合中,“”是自反关系,因
离散数学重要公式定理汇总
大一上
Formula
基本的等价公式
⑴ 对合律 PP ⑵ 幂等律 P∨PP P∧PP ⑶ 结合律 P∨(Q∨R)(P∨Q)∨R P∧(Q∧R)(P∧Q)∧R ⑷交换律 P∨QQ∨P P∧QQ∧P ⑸分配律 P∨(Q∧R)(P∨Q)∧(P∨R) P∧(Q∨R)(P∧Q)∨(P∧R) ⑹ 吸收律 P∨(P∧Q)P P∧(P∨Q)P ⑺德.摩根定律 (P∨Q)P∧Q (P∧Q)P∨Q
2013-12-16 7
Formula
• 蕴含的性质
*若AB且A为重言式,则B必为重言式 *若AB且BC,则AC (传递性) *若AB且AC,则A(B ∧ C) *若AB且C B,则(A∨C) B 证明见书P22
2013-12-16
8
conjunction
一、全功能真值表
2013-12-16 10
normal form
主析取范式定义 析取范式 A1∨A2∨...∨An, , 其中每个Ai (i=1,2..n) 都是小项,称之为主析取范式。 思考:主析取范式与析取范式的区别是什么? 主析取范式的写法 方法Ⅰ:列真值表 ⑴列出给定公式的真值表。 ⑵找出真值表中每个“T”对应的真值指派再对 应的小项。 ⑶用“∨”联结上述小项,即可。
离散数学 第7讲 拉格朗日定理剖析

23
<S3,◇>为三次对称群,此六阶群不是阿贝尔群。
12
2 3
31
◇ ◇
12
2 1
33 11
2 3
23
12
2 1
33
12
2 3
31 13
2 1
23
二、拉格朗日定理
定理5:设<H,>是群<G,>的子群, 于是b∈aH, 当且仅当a-1 b∈H 证明:b∈aH, 当且仅当存在一h∈H, 使b=ah, 即a-1 b=h, 因而,b ∈aH当且仅当a-1 b∈H。
bbcdea
ccdeab
ddeabc
Klein四元群
二、拉格朗日定理
例3 令A={1,2,3},A上置换的全体S3 = {pi i = 1,2,3,4,5,6}。
1 p1 1
2 2
33 p2 12
2 1
33 p3 13
2 2
31
1 p4 1
2 3
3 2
p5
12
2 3
31 p6 13
2 1
推论1:质数阶的群没有非平凡子群。 说明:<{e}, *>和<G, *>叫做群<G, *>的平凡子群。
推论2:在有限群<G , >中, 任何元素的阶必是|G|的一个因子。
说明:如果a∈G的阶是r ,则<{e,a,a2,…,ar-1},>是<G,>的子群。
推论3:一个质数阶的群必定是循环的, 并且任一与么元不同的元 素都是生成元。
设aH∩bH≠Ø, 那么必存在一个公共元素f, 有f∈aH∩bH,则存在h1,h2 ∈H, 使f=ah1= bh2,因此 a=bh2h1-1 下面证明aH⊆bH :
离散数学知识点总结

注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学重要公式定理汇总分解

关系的性质
一. 自反性
定义 :设 R是集合 A中的关系,如果对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中自反关系。 即 R是A中自反的关系x(xAxRx) 例如: 在实数集合中 , “ ”是自反关系,因
例 邻居关系和朋友关系是对称关系。
四.反对称性
定义:设R为集合A中关系,若对任何x, y∈A,如果有 xRy,和yRx,就有x=y,则称R为A中反对称关系 。
R是A上反对称的 xy((xAyAxRyyRx) x=y) xy((xAyAxyxRy)y Rx) (P112) 由R的关系图看反对称性:两个不同的结点之间 最多有一条边。 从关系矩阵看反对称性:以主对角线为对称的两 个元素中最多有一个1。 另外对称与反对称不是完全对立的,有些关系它 既是对称也是反对称的,如空关系和恒等关系。
如 实数的大于关系>,父子关系是反自反的。 注意:一个不是自反的关系,不一定就是反自反
的。
三.对称性 定义:R是集合A中关系,若对任何x, y∈A,如果有
xRy,必有yRx,则称R为A中的对称关系。 R是A上对称的
xy((xAyAxRy) yR方向相反的两 条边。 从关系矩阵看对称性:以主对角线为对 称的矩阵。
3
2018/10/25
Formula
等价公式(前10个)与集合论的公式比较: ⑴ 对合律 ~~AA ~A表示A的绝对补集 ⑵ 幂等律 A∪AA A ∩ A A ⑶ 结合律 A∪(B∪C)(A∪B)∪C; A∩(B∩C)(A∩B)∩C ⑷交换律 A∪BB∪A A∩BB∩A ⑸分配律 A∪(B∩C)(A∪B)∩(A∪C) A∩(B∪C)(A∩B)∪(A∩C) ⑹ 吸收律 A∪(A∩B)A A∩(A∪B)A
离散介值定理

离散介值定理离散介值定理(Discrete Intermediate Value Theorem)是数学中的一个重要定理,它刻画了一个函数在某个区间上连续性的性质。
离散介值定理是连续介值定理在离散情况下的推广,它指出了对于一个离散函数,只要函数的定义域是一个连续的区间,那么函数在这个区间上一定能够取到介于最小值和最大值之间的任意值。
离散介值定理可以形式化地表述如下:设f是一个定义在闭区间[a, b]上的离散函数,且a < b,如果对于任意的y介于f(a)和f(b)之间,存在一个x介于a和b之间,使得f(x) = y,那么f在[a, b]上介值。
该定理的证明基于反证法。
假设存在一个y介于f(a)和f(b)之间,但是在[a, b]的所有点x上,f(x)都不等于y。
根据定义,f(a)和f(b)是函数f在[a, b]上的最小值和最大值。
由于y介于这两个值之间,所以根据离散函数的定义,必然存在一个x介于a和b之间,使得f(x)等于y。
这与假设矛盾,因此假设不成立,即函数f在[a, b]上介值。
离散介值定理的一个重要应用是在密码学中的哈希函数。
哈希函数是一种将任意长度的输入映射到固定长度的输出的函数。
由于哈希函数的输入域通常是无限的,但输出域是有限的,所以哈希函数是一个离散函数。
离散介值定理保证了哈希函数的输出空间中的任何一个值都可以通过输入来找到。
离散介值定理还可以用于解决一些离散优化问题。
例如,在某个离散优化问题中,我们希望在一组离散的解中找到一个最优解。
如果我们能够证明这个离散函数是连续的,并且根据离散介值定理知道这个函数在最小值和最大值之间可以取到所有的值,那么我们就能够确保在这个离散解空间中一定存在一个最优解。
离散介值定理是离散数学中的一个重要定理,它刻画了离散函数在某个区间上连续性的性质。
离散介值定理的应用涵盖了密码学、优化问题等多个领域。
通过理解和应用离散介值定理,我们可以更好地理解离散函数的性质,解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学定义定理1.3.1命题演算的合式公式规定为:(1)单个命题变元本身是一个合式公式.(2)如果A是合式公式,那么┐A是合式公式.(3)如果A和B是合式公式,那么(A∨B),(A∧B),(A→B),(AB),都是合式公式.(4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式.1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式.1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派.若指定的一种指派,使P的值为真,则称这组指派为成真指派.若指定的一种指派,使P的值为假,则称这种指派为成假指派.含n个命题变元的命题公式,共有2n个指派.1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A B.1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式.1.3.6 设A为一命题公式,若A在它的各种指派情况下,其取值均为假,则称A为矛盾式或永假式.1.3.7设A为一命题公式,若A在它的各种指派情况下至少存在一组成真指派,则称A为可满足式.1.4.1 设X式合式公式A的子公式,若有Y也是一个合式公式,且XY,如果将A中的X用Y 置换,得到公式B,则AB.1.4.2 设A,B为两个命题公式,AB,当且仅当A ←→B为一个重言式.P=>Q称做P蕴含Q或蕴含式,又称永真条件式.蕴含式有下列性质:(1)对任意公式A,又A=>A;(2)对任意公式A,B和C,若A=>B,B=>C,则A=>C;(3)对任意公式A,B和C,若A=>B,A=>C,则A=>(B∧C);(4)对任意公式A,B和C,若A=>C,B=>C,则A∨B=>C.1.4.3设P,Q为任意两个命题公式,PQ的充分必要条件式P=>Q,,Q=>P.蕴含式推理P∧Q=>P化简式P∧Q=>Q化简式P=>P∨Q附加式┐P=>P→Q变形附加式Q=>P→Q变形附加式┐(P→Q)=>P变形简化式┐(P→Q)=>┐Q变形简化式p∧(P→Q)=>Q假言推论┐Q∧(P→Q)=>┐P拒取式┐p∧(P∨Q)=>Q析取三段式(P→Q) ∧(Q→R)=>P→R条件三段式(PQ) ∧(QR)=>PR双条件三段式(P→Q)∧(R→S)∧(P∧R)=>Q→S合取构造二难(P→Q)∧(R→S)∧(P∨R)=>Q∨S析取构造二难P→Q=>(P∨R) →(Q∨R)前后附加式P→Q=>(P∧R) →(Q∧R)前后附加式1.5.1 一个命题公式称为合取范式,当且仅当它具有形式:A1∧A2∧…∧An(n≥1),其中A1,A2,…,An都是有命题变元及其否定所组成的析取式.1.5.2 一个命题公式称为析取范式,当且仅当它具有形式:A1∨A2∨…∨An(n≥1),其中A1,A2,…,An都是有命题变元及其否定所组成的合取式.1.5.3 n个命题变元的合取式,称作布尔合取或小项,其中每个变元与他的否定不能同时存在,但两者必须出现且仅出现一次.小项有如下性质:(1)每个小项具有一个相应的编码,当该编码与其真实指派相同时,该小项为T,在其余2n-1种指派情况下为F.(2)任意两个不同小项的合取是永假.(3)全体小项的析取式为永真.定义1.5.4 对于给定的命题公式,如果有一个等价公式,它仅由小项的析取组成,则该等价公式称作原公式的主析取范式.定理1.5.1 在真值表中,一个公式的真值为T的指派所对应的小项的析取,即为此公式主析取范式.定理1.5.2 任意含n个命题变元的非永假命题公式,其主析取范式是唯一的.定义1.5.5 n个命题变元的析取式称作布尔析取或大项.其中每个变元与它的否定不能同时出现,但两者必须出现仅出现一次.定理1.5.3 在真值表中一个公式的真值为F的指派所对应的大项的合取,称为此公式的主合取范式.定理1.5.4 任意含有n个命题变元的非永假命题公式A,其主合取范式是唯一的.设命题公式中含有n个命题变元,且A的主析取范式中含有k个小项mi1,mi2,…,mik,则A的主合取范式比含有2n-k个大项.如果命题公式A的主析取范式为∑(i1,i2,……,ik),则A的主合取范式为: ∏(0,1,2,…,i1-1,i1+1,…,ik-1,ik+1,……,2n-1).从A的主析取范式求其主合取范式的步骤为:(1)求出A的主析取范式中未包含小项的下标.(2)把(1)中求出的下标写成对应大项.(3)做(2)中县城大项合取,即为A的主合取范式.根据主范式(主析取范式,主合取范式)的定义和定理,可以判定含n个命题变元的公式:(1)若A可化为与其等价的含2n个小项的主析取范式,则A为永真式.(2)若A可化为与其等价的含2n个大项的主合取范式,则A为永假式.(3)若A的主析取范式不含2n个小项,或A的主合取范式不含2n个大项,则A为可满足的. 定义1.6.1 设H1,H2,…Hn,C是命题公式,当且仅当H1∧H2∧…∧Hn=>C,称C是一组前提H1,H2,…,Hn的有效结论.等值公式表E1┐┐pPE12R∨(P∧┐P)RE2P∧QQ∧PE13R ∧(P∨┐P)RE3P∨QQ∨PE14R∨(P∨┐P)TE4(P∧Q)∧RP∧(Q∧R)E15R∧(P∧┐P)FE5(P∨Q)∨RP∨(Q∨R)E16P→Q┐P∨QE6P∧(Q∨R)(P∧Q)∨(P∧R)E17┐(P→Q) P∧┐QE7P∨(Q∧R)(P∨Q)∧(P∨R)E18P→Q┐Q→┐PE8┐(P∧Q) ┐P∨┐QE19P→(Q→R)(P∧Q)→RE9┐(P∨Q) ┐P∧┐QE20PQ(P→Q)∧(Q→P)E10P∨PPE21PQ(P∧Q)∨(┐P∧┐Q)E11P∧PPE22┐(PQ) P┐Q常用的推理规则有:(1)前提引入规则:在证明的任何步骤上,都可以引入前提,简称P规则.(2)结论引入规则:在证明的任何步骤上,所证明的结论都可作为后续证明的前提,称为T规则.(3)置换规则:在证明的任何步骤上,命题公式的任何子命题公式都可以用与之等值的命题公式置换,也记作T规则.定理1.6.1 推理H1∧H2∧…∧Hn┣C是有效推理的充分必要条件是H1∧H2∧…∧Hn→C 为永真式.定义1.6.2 设H1,H2,…,Hn是可满足式,则称H1,H2,…,Hn是相容的,若H1,H2,…,Hn是永假式称H1,H2,…,Hn是不相容的.定理1.6.2 若H1∧H2∧…∧Hn∧┐C为永假式,则H1∧H2∧…∧Hn┣C成立.定理1.6.3 若H1∧H2∧…∧Hn∧R=>C,则H1∧H2∧…∧Hn =>R→C.本定理即:若H1,H2,…,Hn,R┣C,则H1,H2,…,Hn┣R→C定义2.1.1 由一个谓词,一些个体变元组成的表达式简称为谓词变项或称为命题函数. (命题函数不是命题,只有命题函数中的变元都取为特定具体的个体时,才是确定的命题.谓词变项摘,个体变元的数目为谓词变项的元数.)定义 2.2.1 由一个或几个原子命题函数以及逻辑联接词组合而成的表达式称为符合命题函数.定义2.2.2 谓词演算的合式公式,可由下述各条组成(合式公式A记为WffA):(1)原子谓词公式是合适公式.(2)若A是合式公式,则┐A是合式公式.(3)若A和B都是合式公式,则(A∨B),(A∧B),(A→B),(AB)是合式公式.(4)如果A是合式公式,x是A中出现的任何变元,则(x)A和(x)A都是合式公式.(5)只有经过有限次应用规则(1)(2)(3)(4)所得到的公式是合式公式.定义2.2.3 给定谓词合式公式A,其中一部分公式形式为(x)(Bx)或(x)(Bx),称量词,后面所跟的x为指导变元或作用变元.称B为相应量词的辖域(或作用域).在辖域中,x的一切出现称为约束出现.在B中除去约束出现的其他变项的出现称为自由出现.(1)约束改名规则,将量词辖域中,某个约束出现的个体变元及其相应指导变元改成本辖域中未出现过的个体变元,其余不变.(2)自由带入规则,对某个自由出现的个体变元可用个体常元或用与原子公式中与所有个体变元不同的个体变元取代入,且处处代入.定义2.3.1 给定任何两个谓词公式WffA和WffB,设它们有共同的个体域E,若对A和B的任一一组变元进行赋值,所得命题的真值相同,则称谓词公式A和B在E上市等价的,记作AB. 定义2.3.2 给定任意谓词公式WffA,其个体域为E,对于A的所有赋值WffA都为真,则称WffA在E上有效的(或永真的).定义2.3.3一个谓词公式WffA,对于A的所有赋值WffA都为假,则称WffA为不可满足的(或永假的).定义2.3.4一个谓词公式WffA,如果至少在一个赋值下为真,则称该WffA为可满足.等值公式表E23(x)((Ax)∨(Bx))( x)(Ax)∨(x)(Bx)E30(x)(Ax) →B(x) ((Ax)→B)E24(x)((Ax)∧(Bx))(x)(Ax)∧(x)(Bx)E31(x)(Ax) →B(x) ((Ax)→B)E25┐(x)(Ax)(x)┐(Ax)E32A→(x)(Bx) (x) (A→(Bx))E26┐(x)(Ax)(x)┐(Ax)E33A→(x)(Bx) (x) (A→(Bx))E27(x)(A∨(Bx))A∨(x)(Bx)I17(x)(Ax)∨(x)(Bx) =>(x)((Ax)∨(Bx))E28(x)(A∧(Bx))A∧(x)(Bx)I18(x)((Ax)∧(Bx)) =>(x)(Ax)∧(x)(Bx)E29(x)((Ax)→(Bx))(x)(Ax)→(x)(Bx)I19(x)(Ax)→(x)(Bx) =>(x)((Ax)→(Bx))定义 2.4.1 一个公式,如果量词均在全式的开头,它们的作用域,延伸到整个公式的末尾,则该公式叫做前束范式.前束范式形式如下:(Q1V1)(Q2V2)……(QnVn)A.其中Qi(1≤i≤n)为或,A为不含有量词的谓词公式.定理2.4.1 任意一个谓词公式,均和一个前束范式等价.谓词演算推理规则(1)全称指定规定,US. ∵(x)P(x) ∴P(c)(2)全称推广规则,UG:∵P(x)∴(x)P(x)(3)存在指定规则,ES: ∵(x)P(x) ∴P(c)(4)存在推广规则,EG:∵:P(c) ∴(x)P(x)定义3.1.1 设A,B是任意两个集合,若A=B,当且仅当它们有相同的成员.定义3.1.2 设A,B是任意两个集合,加入A的每个元素都是B的元素,则称A为B的子集,或A包含在B内或B包含A.记作: AB或BA定理3.1.1 集合A和集合B相等的充分必要条件式两个集合互为子集.定义3.1.3 如果集合A的每一元素都属于B,但集合B中至少有一个元素不属于A,则称A为B的真子集,记作AB.定义3.1.4 不包含任何元素的集合称为空集,记作Φ或{ }.定理3.1.2 对于任何集合A必有ΦA.(空集包含在A内)定义3.1.5 设A为任意集合,以A的子集为元素所组成的集合,称为集合A的幂集.记作P(A). 定理3.1.3 如果有限集合A有n个元素,则其幂集P(A)有2n个元素.(2n-1个子集元素个数为奇数)定义3.1.6 在一定范围内,如果所有集合均为某一集合的子集,则称该集合为全集.全集记作E. 定义3.2.1 设任意两个集合A和B,由集合A和B的所有共有元素组成的集合S,称为A和B 的交集,记作A∩B.S=A∩B={x|(x∈A)∧(x∈B)}集合的交运算有如下性质:A∩A=A A∩B=B∩A A∩Φ=Φ A∩B定义3.2.2 设任意两个集合A和B,所有属于A或属于B的元素所组成的集合S称为A和B 的并集,记作A∪B.S=A∪B={x|(x∈A)∨(x∈B)}交运算性质:a)A∪(A∩B)=A b)A∩(A∪B)=A吸收率:c) 设集合ABA∪B=B d)设集合ABA∩B= A定义3.2.3 设A,B为任意两个集合,所有属于A而不属于B的一切元素组成的集合S,称为B 对于A的补集,或相对补,记作A-B.定义3.2.4 设E为全集,对任一集合A,关于E的补E-A,称为集合A的绝对补,记作~Aa)~(~A)=A b)~E=Φ c)~ Φ=E; d)A∪~A=E c)A∩~A=Φ定理3.2.2 设A,B为任意两个集合,则下列关系式成立.a) A-B=A∩~B b)A-B=A-(A∩B) c)~(A∪B)=~A∩~B d)~(A∩B)=~A∪~B定义3.2.5 设A,B为任意两个集,A和B的对称差为集合S,其元素或属于A,或属于B,但不能既属于B,又属于比,记作AB.定理3.2.3 设任意集合A,B,C,则有以下性质:a)AB=BA b)AΦ=A c)AA=Φ d)AB=(A∩~B)∪(~A∩B) e)(AB)C=A(BC)定义3.3.1 由两个客体x和y,按一定的顺序,组成一个二元组,称此二元组为有序对,或称序偶,记作或(x,y).其中x是该序偶的第一元素,y是该序偶的第二元素.定义3.3.2 两个序偶相等,=,iff x=u,y=v.定义3.3.3 设A,B为集合.用A中的元素x作为第一元素,B中的元素作为第二元素,构成有序对,所有这样的有序对组成的集合,叫做A和B的笛卡尔积,记作A×B.A×B={|x∈A,y∈B}定理3.3.1 设A,B,C为任意三个集合,则有:a) A×(B∪C)=(A×B)∪(A×C) b) A×(B∩C)=(A×B)∩(A×C) c)(A∪B)×C=(A∪C)×(B∪C) d) (A ∪B)×C=(A∪C)×(B∪C)定理3.3.2 设A,B,C,D,为非空集合,则A×BC×D的充要条件为AC,BD.定义3..3.4 设A,B是任意两个集合,A×B的子集R称为从A到B的二元关系.当A=B是,称R 为A上的二元关系.从这个定义可以表明A到B的二元关系,也是序偶的集合.故∈R,即称a与b有关系R,记作aRb.若R,则称a与b没有关系R,记作aRb.若R=Φ称为空关系,若R=A×B称R为全关系,当A=B时,全关系EA={|x∈A∧y∈A}=A×A,A 上的恒等关系IA={|x∈A}定义 3.3.5 设R为二元关系,由∈R的所有x所组成的集合domR,称为R的前域.domR={x|(y)(∈R)}使∈R得所有y组成的集合ranR称为R的值域. ranR={y|(x)(∈R)}R的前域和值域一起称为R的域,记作FLDR,即:FLDR=domR∪ranR.定理3.3.3 若Z和S是从集合X到Y的两个关系,则Z,S的交,并,差,补仍是X到Y的关系. 定义3.4.1 设R是集合X上的二元关系,(1)如果对任意x∈X,必有xRx,则称关系R在X上是自反的.(2)如果对任意x∈X,必有xRx,则称关系R在X上是反自反的.(3)如果对任意x,y∈X,若xRy必有yRx,则称关系R在X上是对称的.(4)如果对任意x,y∈X,若xRy且yRx必有x=y,则称R是反对称的.也可叙述为:若xRy,且xY,必有xRy.(5)如果对任意x,y,z∈X,xRy且yRz必有xRz,则称关系R在X上是传递的.定义3.5.1 设R是从X到Y的二元关系,如将R中每一序偶的元素顺序互换,所得到的集合称为R的逆关系,记作R-1(或Rc)即:R-1={|∈R}定义3.5.2 设R为A到B的关系,S为从B到C的关系,则R○S称为R和S的复合关系表示为:R○S={|x∈A∧z∈C∧(y)(y∈B∧∈R∧∈S)},R○S称为关系的合成运算.(复合运算不满足交换律)定理3.5.2 设A={a1,a2,…,am},B={b1,b2,……,bn},C={c1,c2,……,cr}从A到B的关系R1关系矩阵MR1=(xij)是m×n阶矩阵.从B到C的关系R2的关系矩阵MR2=(yij)是n×r阶矩阵,那么从A到C的关系矩阵:MR1○R2=(zij)是m×r阶矩阵,其中,i=1,2,……,m, j=1,2,……,r.定义3.5.3 设R是A上二元关系,如果有另一个关系R',满足:(1)R'是自反的(对称的,可传递的);(2)R'R;(3)对于任何自反的(对称的,可传递的)关系R",如果有R"R,就有R"R',则称关系R'为R的自反(对称,传递)闭包,记作r(R)(s(R),t(R)).定理3.5.3 设R为非空有穷集合A上的二元关系.(1)r(R)=R∪IA;(2)s(R)=R∪R-1;(2)t(R)=R∪R2∪……∪Rn,其中n是集合A中元素的数目. 定义3.6.1 给定集合A上的关系ρ,若ρ是自反的,对称的,则称ρ是A上的相容关系.定义3.6.2 若把一个集合A分成若干叫做分块的非空子集,使得A中每个元素,至少属于一个分块,那么这些分块的全体构成的集合叫做A的覆盖.定义3.6.1 给定集合A的覆盖,S={S1,S2,……Sn},由它确定的关系:ρ=S1×S1∪S2×S2∪……∪Sn×Sn是相容的.定义3.7.1 设R为定义在集合A上的一个关系,若R是自反的,对称的和传递的,则R称为等价关系.定义 3.7.2 设给定非空集合A,若有集合S={S1,S2,……Sm},其中SiA,Si(i=1,2,…,m),且Si∩Sj=(ij),同时有,称S是A的划分.定义3.7.3 设R为集合A上的等价关系,对任何a∈A,集合[a]R={x|x∈A,aRx}称为元素a形成的等价类.简记[a]或.定理3.7.1 设给定非空集合A上等价关系R,对于:a,b∈A有aRb iff[a]R=[b]R.定义3.7.4 集合A上的等价关系R,其等价类集合{[a]R|a∈A}称为A关于R的商集记作A/R. 定理3.7.2 集合A的等价关系R,确定了A的一个划分,该划分就是商集A/R.定理3.7.3 集合A的一个划分确定A的元素间的一个等价关系.设集合A有一个划分S={S1,S2,……Sm},现定义一个关系R,当aRb,当且仅当a,b在同一分块中,这样:(1)a与a在同一分块中,故必有aRa,即R是自反的.(2)若a,b在同一分块中,则b,a也在同一分块,即aRb=>bRa,故R是对称的.(3)若a与b在同一分块中,b与c在同一分块中,因为Si∩Sj=(ij),即b属于且属于一个分块,故a 与c必在同一个分块中,故有:aRb∧bRc=>aRc,即R是传递的.定义3.8.1 设A是一个集合,如果A上的关系R满足自反性,反对称性,以及传递性,则称R是A上的一个偏序关系,并记作"≤",序偶称作偏序关系.定义3.8.2 设集合A上有二元关系,R若是反自反和传递的,称R为A上的拟序关系.并把称为拟序集,或记作<A,.定理3.8.1 集合A上二元关系是拟序的,则R必为反对称的.定义3.8.3 集合A上二元关系是拟序集,对于任意x,y∈A,如果x≤y或者y≤x成立,称x和y 可比.定义3.8.4 在偏序集中,如果想x,y∈A,x≤y,且xy,且没有其他元素,z满足x≤z,z≤y,则称元素y 盖住元素x.记COV A{|x,y∈A;y盖住x}(设R是非空集合A上的偏序集,a,b是A中两个不同元素,如果∈R,且在A中没有其他元素c,使得∈R和∈R,称元素b盖住元素a.)定义3.8.5 设≤是集合A上的二元关系,如果对于A中任意两个元素a,b∈A,必有a≤b或b≤a,则称≤是A上的全序关系(或称线序关系).若≤是A上的全序关系,称是全序集.定义3.8.6 设是一个偏序关系,钱B是A的子集,对于B中的一个元素b,如果B中没有任何元素x,满足bx,且b≤x称b为B的极大元.同理对于b∈B,如果B中没有任何元素x,满足bx,且x≤b,则称b为B的极小元.定义3.8.7 令是一个偏序集,BA,若有某个元素b∈B,对B中每一个元素,x有x≤b,称b为的最大元,同理,若有某个元素b∈B,对于每个x∈B有,b≤x,则称b为的最小元.定义3.8.8 设为偏序集,对于BA,如果有a∈A,且对于B的任意元素x都满足x≤a,则称a为子集B的上界,同样对于B的任意元素x,都满足a≤x,则称a为B的下界.定义3.8.9 设为偏序集,若有子集BA,若a为B的任一上界,若对B的所有上界y均有a≤y,则称a是B的最小上界(上确界),同样若b为B的任一下界,若对B的所有下界z,均有z小于等于b,则称b为B的最大下界(下确界).定义3.8.10 设为全序集,如果A的任何非空子集都含有最小元,称为良序集.定义3.9.1 设X和Y是任何两个集合,而f是X到Y的一个关系,如果对于每一个x∈X,有惟一的y∈Y,使得∈f,称关系f为函数,记作f:XY或.假如∈f,称x为自变元,与x相对应的y称为函数在x处的值,记作y=f(x),即∈f.y称为f作用下的x的象.从函数定义可以知道它与关系有别于如下两点:(1)函数的定义域是X,而不能是X的某个真子集,这点可以表示为domf=X.(2)一个x∈X只能对应惟一的y∈Y,使得∈f称f为函数.定义3.9.2 设f,g,都是X到Y上函数,它们有相同的定义域与值域,即domf=domg,rang=rang,且对每个x∈X都有f(x)=g(x),称函数f与g是相等的,并记作f=g.定义3.9.3 设X,Y为集合,把所有从X到Y的函数构成的集合记作YX,即Yx={f|f: XY}.定义3.9.4 给定函数f: XY.(1)若ranf=Y称f是满射的或f为到上的.(2)若函数满足x1,x2∈X,若x1x2时必有f(x1) f(x2),则称f为入射的.(3)若函数f既是满射,又是入射,则称f为双射.定义3.10.1 设f: XY,g: YZ,合成关系fg={|(x∈X)∧(z∈Z)∧(y)(y∈Y)∧(y=f(x)∧z=g(y))},称fg为,f,g的做合成运算或复合运算.定理3.10.1设f: XY,g: YZ是两个函数,合成运算gf是XZ的函数,且对每一个x∈X有(gf)(x)=g(f(x)).定义3.10.2设函数f: XX,若对所有x∈X有f(x)=x,则称f为X上的恒等函数,并记作IX.定理3.10.2 设f: XY是任意函数,则IXf=fIX=f.定义3.10.3 给定集合X和Y,且有函数,f: XY,对所有x∈X,存在惟一y0∈Y,使得f(x)=y,即ranf=y0,则称f是常值函数.定理3.10.3 令gf是一个复合函数.(1)若g和f是满射的,则gf是满射的.(2)若g和f是如射的,则gf是入射的.(3)若g和f是双射的,则gf是双射的.定理3.10.4 设f: XY是一个双射函数,那么fc是YZ的双射函数.定义3.10.4设f: XY是一个双射函数,称YX的双射函数f-1为f的逆函数.注意:fc(逆关系)不一定是f-1(逆函数).一个函数f: XY,要有逆函数,必须f是双射的.否则只能保证有fc,但未必有逆函数f-1存在. 定理3.10.5设f: XY是一个双射函数,g: YZ是一个双射函数,则(1)f-1f=IX,f-1f-1=Iy; (2)(f-1)-1=f; (3)(gf)-1= g-1f-1定义4.1.1 设A,B为任意集合,一个从An到B的映射,称为集合A上的一个n元运算.如果BA,则称该n元运算时封闭的.定义4.1.2 一个非空集合A,连同若干个定义在该集合上的运算f1,f2,…,fk所组成的系统,称为一个代数系统,记作:.定义4.1.3 设A为任意非空集合,*是集合A上的二元运算.(1)封闭性:对任意a,b∈A,若有a*b∈A,则称运算*关于集合是封闭的.(2)结合律:对任意a,b,c∈A,若有a*(b*c)=(a*b)*c,则称运算*在集合A是可结合的,或称运算*在A上满足结合律.(3)交换律:对任意a,b∈A,若有a*b=b*a,称为运算*在A上市可交换的,或称*运算在A上满足交换律.(4)幂等率:若对a∈A,有a*a=a,则称运算*在A上市幂等的,或称运算×在A上满足幂等率.(5)分配律:若对a,b,c∈A有: a(b*c)=(ab)*(ac) 和(b*c)a=(ba)*(ca)成立,则称运算对*时可分配的,或称运算*满足分配律.(6)吸收率:若和*满足交换律而且有:a,b∈A,并有a(b*c)=a和a* (bc)=a,则称和*运算时可吸收的,或称和*运算满足吸收率.定义4.1.4 设*为集合A上的二元运算,若存在(或),使得对于x∈A,都有(或),则称(或)是A中关于*运算的左(或右)幺元(或单位元). 如果A中一个元素e,它既是左幺元,又是右幺元,则成e是A中关于运算* 的遥远.显然对于任一x∈A,e*x=x*e=x.定义4.1.5 设*式定义在集合A上的二元运算,如果有一个元素,对于任意元素都有,则称为A 中关于运算*的左零元;如果有一个元素,对于任意元素都有,则称为A中关于运算*的右零元.如果A中的一个元素,他既是左零元,又是右零元,则称为A上关于运算*的零元.定理4.1.1 设*是集合A上的二元运算,且在A中有关于运算*的左幺元和右幺元,则,且A中幺元是惟一的.定理4.1.2 设*是定义在集合A上的二元关系,在A中有关于运算*的左零元和右零元那么,且A中零元是惟一的.定理4.1.3 设有代数系统中,A的元素个数多于1,若其存在关于运算*的单位元e与零元O,则. 定义4.1.6 设代数系统中,e是关于*的单位元,若对A中某个元素a,存在A的一个元素b,使得b*a=e,则称b为a 的一个左逆元;若a*b=e,则称b为a的一个右逆元.若一个元素b,既是a 的左逆元,又是a的右逆元,则称b是a的一个逆元,记作.定理4.1.4 设代数系统,这里*是定义在A上的二元运算,A中存在幺元e,且每一个元素都有左逆元,如果*是可结合运算,那么这个代数系统中,任何一个元素的左逆元必定也是该元素的右逆元,且每个元素的逆元是惟一的.定义4.1.7 如果两个代数系统中运算的个数相同,对应运算的元数也相同,且代数常数的个数也相同,则称这两个代数系统具有相同的构成成分,也称它们是同类型的代数系统.同类型的代数系统仅仅是构成成分相同,不一定具有相同运算性质.定义4.1.8 设是代数系统,,且B对都是封闭的,B和S还含有相同的代数常数,则称是V的子代数系统,简称子代数.定义 4.2.1 设*是集合S上的二元运算,若运算*时封闭的,并且*是可结合的,则称代数系统<S,*》为半群.这个定义包括两点,及对于任意,(1),(2)(a*b)*c=a*(b*c)定理4.2.1 设是一个半群,,且*在B上封闭,那么也是一个半群,通常称是半群的子半群.定义4.2.2 若半群中存在一个幺元则称为独异点(或含幺半群).定理4.2.2 设是独异点,对于,且a, b均有逆元,则:(1),(2)若a*b有逆元,则.定义4.3.1 设是一个代数系统,其中G是非空集合,*是G上一个二元运算,(1)如果*是封闭的;(2)运算*时可结合的;(3)存在幺元e;(4)对于每一个元素,存在它的逆元;则称是一个群.定义4.3.2 设是一个群,如果G是有限群,那么称为有限群,G中元素的个数统称称为该有限群的阶数,记为.定义4.3.3 若群G中,只含有一个元素,即G=|e|,|G|=1,则称G为平凡群.,G关于*运算,构成一个群,这个群称为Klein四元群.定义4.3.4 设是一个群,若运算*在G上满足交换律,则称G为交换群或Abel群(阿贝尔群). 定义4.3.5 设是群,若,使得成立的最小正整数k称为a的阶,记作|a|.定理4.3.1 设为群,有:(1); (2); (3);(4);(5)若G为Abel群,.定理4.3.3 对|G|>1的群不可能有零元.定理4.3.4 设是一个群,对于.必存在惟一的,使a*x=b.定义4.3.7 设为群,若在G中存在一个元素a,使得G中存在一个元素a,使得G中的任意元素都由a的幂组成,则称该群为循环群,元素a称为循环群G的生成元.定义4.3.8 设是一个群,S是G的非空子集,如果也构成群,则称是的一个子群,记作S≤G.子群判别定理:定理4.3.5 设是群,H是G的非空子集,则H≤G iff.(1)a,b∈H,有a*b∈H;(2)a∈H,有a-1∈H.定理4.3.6 设是群,H是G的非空子集,iffa,b∈H,则a*b-1∈H.定理4.3.7设是群,H是G的有穷非空子集,则H是G的子群iffa,b∈H,有a*b∈H.设是群,C={a|a∈G,且对x∈G有a*x=x*a},C又称CentG.定义4.4.1 设是一个代数系统,如果满足(1)是阿贝尔群;(2)是半群;(3)运算*对于运算☆是可分配的;则称是环.定理4.4.1 设是一个环,则对任意a,b∈A有(1);(2);(3);(4);(5)其中是加法幺元,-a是a的加法逆元,a+(-b)记为a-b,注意上面各式中不能只理解是实数上的加法与乘法.定义4.4.2 设是环,对a,b∈R,a≠0,b≠0,但a·b=0;则称a是R中的一个左零因子,b是R中一个右零因子;若一个元素既是左零因子,又是右零因子,则称它是一个零因子.定义4.4.3 设R是一个环,对于任意的a,b∈R,若a·b=0,则a=0或b=0,就称R是一个无零因子环.(整数环,有理环,实数环,复数环都是无零因子环.)定理4.4.2 设是环, R是无零因子环的充分必要条件,是在R中乘法适合消去律,即对任意a,b,c ∈R,a≠0,若有a·b=a·c(或b·a=c·a),则有b=c.定义4.4.4 设是环.如果是可交换的,则称是可交换环.如果含幺元,则称是含幺元.定义4.4.5 设是一个代数系统,如果满足:(1)是阿贝尔群;(2)是可交换独异点,且无零因子,即对任意a,b∈A,a≠,b≠必有a·b≠;(3)运算对于运算+是可分配的.则称是整环.定义4.4.6 设是一个环,且|R|≥2,(1)R有幺元;(2)每个非零元有逆元;则称这个环是除环.如果一个除环是可交换的,称为域.当为域时,及是阿贝尔群,其中R*=R-|0|.定义4.5.1 设是一个偏序集,如果A中任意两个元素都有最小上界和最大下界,则称为格.定义4.5.2 设是一个格,P是由格中元素及≤,=,≥,∧,∨等符合所表示的命题,如果将P中的分别换成≥,≤,∨,∧得到的命题P*,称P*为P的对偶命题,简称对偶.格的对偶原理:如果命题P对一切格L为真,则P的对偶命题业对一切格为真.定义4.5.3 设是一个格,如果在A上定义两个二元运算∨和∧,使得对任意a,b∈A,a∨b等于a 和b的最小上界,a∧b等于a和b的最大下界.称为由格所诱导的代数系统.二元运算∨和∧分别称为并运算和交运算.定理4.5.1 在格中,对任意a,b∈A,都有:a≤a∨b,b≤a∨b, a∧b≤a,a∧b≤b.定理4.5.2 设是格,a,b∈A,(1)a≤b,且a≤c=>a≤b∧c; (2)a≥b且a≥c =>b∨c.定理4.5.3 在格中,对于a,b,c,d∈A,如果a≤b,c≤d,则a∨c≤b∨d,a∧c≤b∧d.定理4.5.4 设是一个格,由所诱导的代数系统为,则对于任意a,b,c,d∈A,有:(1);(交换律)(2);结合律(3)a∨a=a;a∧a=a(幂等律)(4)a∨(a∧b)=a;a∧(a∨b)=a;(吸收律)定理4.5.5 设是一个代数系统,其中∨和∧都是二元运算,且满足交换性,结合性和吸收性,则A 上存在偏序关系≤,使是一个格.定义4.5.4 设是代数系统,其中∧和∨是二元运算,若∧和∨运算满足交换律,结合律,吸收律,则称是一个格.定理4.5.6 设是格,则(1)a,b,c∈L有a≤b=>a∧c≤b∧c,且a∨c≤b∨c; (2)a,b,c,d∈L有a≤b且c≤d=>a∧c≤b∧d,且a∨c≤b∨c;定理4.5.5 设是格,S是L的非空子集,若S关于运算∧和∨是封闭的,则称是格L的子格.定义4.6.1 设是由格所诱导的代数系统,如果对任意a,b,c∈A满足:,称是分配格.定义4.6.2 设和是两个格,由它们分别诱导的代数系统为和,如果存在着一个从A1到A2的映射f,使得对任意a,b∈A1有:,称f为从到格同态,也可称是的格同态象.当f是双射时,格同态也称为格同构.定理4.6.1 格L是分配格,当且仅当L既不含有与五角格同构的子格,也不含有与钻石格同构的子格.(1)每一条链都是分配格.(2)小于五个元素的格都是分配格.定义4.6.3 设是一个格,如果存在元素a∈A对于任意x∈A,都有a≤x(或x≤a),则称a为格的全下界(全上界).记作0(全下界为1).存在全上界和全下界的格称为有界格,记作.定义4.6.4 设是有界格a∈A,若存在b∈A,使得a∨b=1,且a∧b=0,称b是a的补元.定义4.6.5 在一个有界格中,如果每个元素至少有一个补元,则称此格为有补格.定义4.7.1 一个有补格称为布尔格(或布尔代数).定理4.7.1 设有代数系统,其中B至少包含两个元素,∧,∨为B上两个二元运算, '为B上一元运算,对任何a,b∈B满足(H1)a∧b=b∧a,a∨b=b∨a (交换律)(H2)a∧(b∨c)=(a∧b)∨(a∧c),a∨(b∧c)=(a∨b)∧(a∨c) (分配率)(H3)在B中存在零元0,使a∨0=a,a∧0=0,存在单位元1,使得a∧1=a,a∨1=1 (同一律)(H4)a'∈B,使得a∧a'=0,a∨a'=1(补元律)则称是布尔格.定理4.7.2 设为代数系统,∧,∨,是B上的二元运算,'为B上的一元运算,满足条件(H1)-(H4)则称此代数系统为布尔代数.定义4.7.3 设B是布尔代数,函数称为B上的一个n元布尔函数.定义5.1.1 一个图是二元组,其中V是非空结点集,E是连接结点的边集.在一个图中,不与任何结点相邻接的结点称为孤立结点.在一个图中,若两点由一条有向边或一条无向边关联,则这两个结点称为邻接点.关联与同一结点的两条边称为邻接边.。