离散数学课本定义和定理

合集下载

离散数学 第三章 函数

离散数学 第三章  函数

下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解

离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。

离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。

下面是对离散数学中一些重要的公式和定理的汇总。

1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。

一个集合有n个元素,那么它的幂集有2^n个元素。

-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。

2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。

-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。

3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。

-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。

4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。

- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。

5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。

离散数学课本定义和定理

离散数学课本定义和定理

第1章集合集合的基本概念1. 集合、元元素、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义子集:给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的一个子集;如果集合A和B满足,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的一个真子集;4. 定义幂集:给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为或集合的运算定义并集:设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B 的并集,记为.定义交集:A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B 的交集,记为.定义不相交:A和B是两个集合,如果它们满足,则称集合A和B是不相交的;定义差集:A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B的差集,记为.定义补集:若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为. 定义对称差:A和B是两个集合,则定义A和B的对称差为包含排斥原理定理设为有限集,其元素个数分别为,则定理设为有限集,其元素个数分别为,则定理设为有限集,则重要例题P11 例第2章二元关系关系定义序偶:若和是两个元,将它们按前后顺序排列,记为,则成为一个序偶;※对于序偶和,当且仅当并且时,才称和相等,记为定义有序元组:若是个元,将它们按前后顺序排列,记为,则成为一个有序元组简称元组;定义直接积:和是两个集合,则所有序偶的集合,称为和的直接积或笛卡尔积,记为.定义直接积:设是个集合,,则所有元组的集合,称为的笛卡尔积或直接积,记为.定义二元关系若和是两个集合,则的任何子集都定义了一个二元关系,称为上的二元关系;如果,则称为上的二元关系;定义恒等关系:设是上的二元关系,,则称是上的恒等关系;定义定义域、值域:若是一个二元关系,则称为的定义域;为的值域;定义自反:设是集合上的关系,若对于任何..,都有即则称关系是自反的;定义反自反:设是集合上的关系,若对于任何,都满足,即对任何都不成立,则称关系是反自反的;定义对称:设是集合上的关系,若对于任何,只要,就有,那么称关系是对称的;定义反对称:设是集合上的关系,若对于任何,只要并且时,就有,那么称关系是对称的;定义传递设是集合上的关系,若对于任何,只要并且时,就有,则称关系是传递的;定理设是集合上的关系,若是反自反的和传递的,则是反对称的;关系矩阵和关系图定义无定理无关系的运算定义连接:设为上的关系,为上的关系,则定义关系称为关系和的连接或复合,有时也记为.定义逆关系:设为上的关系,则定义的逆关系为为上的关系:.定理设和都是上的二元关系,则下列各式成立12345定理设为上的关系,为上的关系,则闭包运算定义自反闭包:设是集合上的二元关系,如果是包含的最小自反关系,则称是关系的自反闭包,记为.定义对称闭包:设是集合上的二元关系,如果是包含的最小对称关系,则称是关系的对称闭包,记为.定义传递闭包:设是集合上的二元关系,如果是包含的最小传递关系,则称是关系的传递闭包,记为或.定理设是集合上的二元关系,则(1)是自反的,当且仅当.(2)是对称的,当且仅当.(3)是传递的,当且仅当.定理设是集合上的二元关系,则. “恒等关系”定理设是集合上的二元关系,则. “逆关系”定理设是集合上的二元关系,则. “幂集”定理设是一个元集,是上的二元关系,则存在一个正整数,使得.等价关系和相容关系定义覆盖、划分:是一个集合,,如果,则称是的一个覆盖;如果,并且,则称是的一个划分,中的元称为的划分块;定义等价关系:设是上的一个关系,如果具有自反性、对称性和传递性三个性质,则称是一个等价关系;设是等价关系,若成立,则称等价于.定义等价类:设是上的一个等价关系,则对任何,令,称为关于的等价类,简称为的等价类,也可以简记为.定义同余:对于整数和正整数,有关系式:如果,则称对于模同余的,记作定义商集:设是上的一个等价关系,由引出的等价类组成的集合称为集合上由关系产生的商集,记为. “等价类的集合”定理若是上的一个等价关系,则由可以产生唯一的一个对的划分; “商集”定义相容关系:设是上的一个关系,如果是自反的和对称的,则称是一个相容关系;相容关系可以记为.所有的等价关系都是相容关系,但相容关系却不一定是等价关系;定义最大相容块:设是一个集合,是定义在上的相容关系;如果,中的任何两个元都有关系,而的每一个元都不能和中所有元具有关系,则称是的一个最大相容块;偏序关系定义偏序关系:是定义在集合上的一个关系,如果它具有自反性、反对称性和传递性,则称是上的一个偏序关系,简称为一个偏序,记为.更一般地讲,若是一个集合,在上定义了一个偏序,则我们用符号来表示它,并称是一个偏序集;定义全序/链:是一个偏序集,对任何,如果或这两者中至少有一个必须成立,则称是一个全序集或链,而称是上的一个全序或线性序;定义盖住:是一个偏序集,,若,并且不存在,使并且,则称盖住. “紧挨着”定义最小元、最大元:是一个偏序集,如果中存在有元,对任何都满足,则称是的最小元;如果中存在有元,对任何都满足,则称是的最大元; 定义极小元、极大元:是一个偏序集,如果,而中不存在元,使,则称是的极小元;如果,而中不存在元,使,则称是的极大元;定义上界、下界、上确界、下确界:是一个偏序集,,如果对于所有的,都有,则称是的一个上界;如果对于所有的,都有,则称是的一个下界;如果是的一个上界,对于的任一上界,都有,则称是的最小上界上确界. 如果是的一个上界,对于的任一上界,都有,则称是的最大下界下确界.定义良序集:设是一个偏序集,对于偏序,如果的每个非空子集都具有最小元,则称是一个良序集,而称是上的一个良序;每个良序集都是全序集;第3章函数和运算函数定义映射、象:关系定义在上,如果对于每一个.....,使,...,都有唯一的一个则称是从到的一个函数或映射,记为.称为函数的变元,称为变元在下的值或象,记为.注意:(1)定义域,而不是.(2)每一个,有唯一的,使. 多值函数不符合定义(3)值域.定义受限、扩展:若是从到的一个函数,,则也是一个函数,它定义于到,我们称它是在上的受限;如果是函数的一个受限,则称是的一个扩展;★定义映上、映内、一对一、一一对应:若,则的值域时,称函数是映上的或满射;如果的值域时,则称函数是映内的;如果,则有,则称是一对一的单射即时,有.如果映上的,又是一对一的,则称是一一对应的或双射;定义复合运算:若,则定义和的复合运算为:即.注:逆函数若要存在需要满足以下条件:1函数是映上的2函数必须是一对一的定义恒等函数函数称为恒等函数;定理,则的充分必要条件是,并且运算定义二目运算:若是一个集合,是从到的一个映射函数,则称为一个二目运算;一般地,若是从到的一个映射是正整数,则称是一个目运算;运算的封闭:运算的结果总是集合中的一个元,因此这个定义保证了运算的施行,这种情况又称为集合对于该种运算是封闭的;定义可交换:若是一个运算,对于任何,都有,则称运算是可交换的或者说,服从交换律.定义可结合:若是一个运算,对于任何,都有,则称运算是可结合的或者说,服从结合律.定义可分配:若是一个运算,是一个运算,对于任何,都有,则称运算对于运算是可分配的或者说,对于服从分配律定义左单位元、右单位元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左单位元;如果中存在有一个元,对于任何,有,则称是运算的右单位元;定理若是上的一个运算,和分别是它的左、右单位元,则,并且是唯一的因此,称为运算的单位元.定义左零元、右零元:设是上的一个运算,如果中存在有一个元,对于任何,有,则称是运算的左零元;如果中存在有一个元,对于任何,有,则称是运算的右零元.定义等幂:若是上的一个运算,,对于运算,有,则称元对于运算是等幂的;定义左逆元、右逆元:若是上的一个运算,它具有单位元,对于任何一个,如果存在有元,使,则称是的左逆元;如果存在有元,使,则称是的右逆元;定理若是上的一个运算,它具有单位元,并且是可结合...的,则当元可逆时,它的左、右逆元相等,并且唯一的此时称之为的逆元,并且记为.定义可消去:若是上的一个运算,对于任何,如果元满足:则;或则,则称元对于运算是可消去的;第4章无限集合基数★定义等势:若和是两个集合,如果在和之间可以建立一个一一....对应关系,则称集合和等势,并记为;定理令是由若干个集合为元所组成的集合,则上定义的等势关系是一个等价关系;定义有限集、无限集:若是一个集合,它和某个自然数集等势,则称是一有限集,不是有限集的集合称为无限集;定理有限集的任何子集都是有限集定理有限集不与其任何真子集等势定理自然数集是无限集可列集定义可列集:若是一个集合,它和所有自然数的集合等势,则称是一个可列集;可列集的基数用符号表示;定理若是一个集合,可列的充分必要条件是可以将它的元排列为的序列形式;定理任何无限集必包含有可列子集;定理可列集的子集是有限集或可列集记为:定理若是可列集,是有限集,并且,则是可列集记为:.定理若和都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集记为:定理设都是可列集,并且,则是可列集记为:推论设都是可列集,则是可列集.定理所有有理数的集合是可列集;不可列集定理区间中所有实数构成的集合是不可列的;定义连续基数:开区间中所有数组成集合的基数记为,具有基数的集合称为连续统,称为连续基数;推论:集合的基数也是.定理所有实数的集合是不可列的,它的基数是.定理对于任何数,若,则区间,以及都具有连续基数定理一个无限集和一个可列集作并集时,并集的基数等于集的基数;推论一个无限集和一个有限集的并集,其基数等于集的基数;基数的比较定义设集合的基数是.如果与的真子集等势,而和不等势,则称的基数小于的基数,记为.定理:是两个集合,若与的某一子集等势,与的某一子集等势,则.定理:是任意两个集合,的基数为,的基数为,则下列三个关系:中必有一个且只有个成立;定理:若是有限集的基数,则.定理:若是无限集合,则定理:若是可列个互不相交的集合,它们的基数都是,则的基数是记为:定理:可列集的幂集,其基数是记为:定理:若是一个集合,是的幂集,则.此定理说明:不存在最大的基数;补充:第5章形式语言文法和语言定义产生式:一个产生式或重写规则是一个有序对,通常写成,其中,是一个符号,而是一个符号的非空有限串,是这个产生式的左部,而是产生式的右部.产生式将简称为规则;定义非终极符号、字母表、终极符号、开始符号:一个文法是一个四元组.其中,是元语言的语法类或变元的集合,它生成语言的串,这些语法类或变元成为非终极符号,是符号的非空有穷集合,称为字母表,的符号称为终极符号.是之一,是词汇表的一个识别元素,称为开始符号.是产生式的集合;定义直接产生、直接推导,直接规约:设是一个文法,如果,而中有规则,就称串直接产生串,或称是直接推导出来的,或直接规约到,记为.定义产生、规约到、推导:设是一个文法,如果存在产生式序列,使得,而,就说产生规约到,或是的推导,记为.定义句型:令是一个文法,如果串可从开始符号推导出来,即如果,则称为一个句型;补充:若,则,其中是空串,不含空串文法的类型定义0-型文法:在上的0-型文法由以下组成:(1)不在中的不同符号的非空集合,称为变量表,它包含一个纲符号,称为开始变量; (2)产生式的有限集合;由产生的所有字集称为由产生的语言;定义0-型语言:在上可由某一0-型文法产生的字集称为0-型语言;定义1-型文法:如果在0-型文法中,对于中的每个产生式,要求,则这文法称为1-型文法或上下文敏感文法.定义2-型文法:设文法,对于中的每一个产生式有且有的人要求,则此文法叫2-型文法或前后文无关文法;定义3-型文法:设为一文法,又设中的每一个产生式都是或,其中和都是变量,而为终极符号,而此文法为3-型文法或正规文法;第1章代数系统代数系统的实例和一般性质定义代数系统:若是序偶,是一个非空集合,是定义在上的某些运算的非空集合,则称是一个代数系统,或称代数;代数系统的类型:(1)代数系统的类型是,其中代表目运算符; (2),分别为目运算符,则的类型为.同态和同构定义同态象、同态映射:和是两个同类型的代数系统,映射和也构成一一对应.如果对于任意目运算,及其对应的运算,当时,都有,则称代数是的同态象,称是从到的一个同态映射;定义同态象、同态映射:若和是两个同类型的代数系统,和都是二目运算,映射.如果对于任何,都有,则称是的一个同态象,称是从到的一个同态映射;注:如果就是,则映射是从到它自身;当上述条件仍然满足时,我们就称是的一个自同态映射;定义同构、同构映射、自同构映射:如果和是同态的,映射不仅是同态映射,而且是一一对应....的,则称和同构,称是从到的一个同构映射;如果就是,则称是上的一个自同构映射定义同余关系:设是一个代数系统,是上的一个等价关系,如果存在,当时,成立,则称是上的一个同余关系;定理:设~是上的一个等价关系,如果存在同态映射,使得当时,当且仅当,则~是上的同余关系;商代数与积代数定义子代数:设是一个代数系统,在运算下封闭的,则称是的一个子代数;定义直接积:设到是两个同类型的代数系统,如果对任意的和,定义运算于,称是和的直接积,称和为的因子;第2章半群和群半群和有幺半群定义半群、有幺半群:是一个非空集合,如果中定义了一个二目运算,对于任何,都有,则称是一个半群.如果半群中具有单位元,使得对任何,都有,则称是一个有幺半群;1是一个由有限个符号组成的集合,其中的元称为字母;表示所有的字构成的集合,表示非空串组成的集合;2自由半群:半群的各元相互间没有任何关系;说明:半群是一个定义了二目运算,并且服从结合律的代数系统;有幺半群则是具有单位元的半群;群和循环群定义群:在代数系统中,如果二目运算满足1对于任何,有;2中存在单位元,对任何,有;3对于任何,存在有逆元,使则称是一个群;注:对于群来说,单位元是唯一的,每个元的逆元也是唯一的;“存在逆元的有幺半群叫做群”定义阶数:若是一个群,当是有限集时,则称中元的个数为群的阶数,记为.定理若是一个群,,则,其中即.定义幂:是一个群,,则记个的积为,称为幂,记为表示单位元;定理指数律:若和是整数,则.定理若则定义次数:若是一个群,,使的最小正整数,称为元的次数;定理若是一个群,,的次数为,则都是中不同的元;定义循环群、生成元:由一个单独元素的一切幂所组成的群称为循环群,称为这个群的生成元;定理在阶数为的循环群,由生成元所产生的元次数为,即是生成元的充分必要条件是和互质;定理若和不是互质的,则的次数是,其中的是和的最小公倍数;定义阿贝尔群:如果群中的元对于运算满足交换律,则称这个群是一个阿贝尔群; “满足交换律的群叫做阿贝尔群”循环群是一个阿贝尔群;定理若和都是有限的阿贝尔群,定义则是一个阿贝尔群;最简单的一个阿贝尔群是群,为按位加二面体群、置换群二面体群是从图形的变换中到处,这些图形都是比较正规的图形;定理更一般地讲,定义置换:若是一个非空的有限集合,则上任何一个到它自身的一一对应的映射,都称为上的置换;定理两个置换的乘积仍是一个置换,并且置换的乘积服从结合律;的恒等映射也是一个置换称为单位置换;上所有置换的集合,对于置换乘法构成一个群,这个群称为对称群,记为,是中元的个数;定义阶置换群若是非空有限集合,是上的个置换所构成的群,则称是一个阶置换群; 定理任何一个阶群都同构于一个阶置换群;子群、群的同态定义子群:是一个群,,如果1单位元2若,则的逆元3若,则则称是的一个子群;定理是一个群,,是一个子群的充分必要条件是:若,则定义同态象、群同态映射:和是群,.若对任何,有群的同态映射具有下列性质:1将单位元映射为单位元2将逆元映射为逆元3对运算封闭,即对任何,有定理若和是群,是一个群同态映射,则将的子群映射为的子群;定义同态核:若是一个群同态映射,是的单位元,则中所有满足的元的集合,称为同态核,记为.定理同态核是一个子群;定理若是群的子群,则定义了上的一个划分因而也定义了上一个等价关系. 群子集:假定都是群中的元构成的集合称之为群子集,定义特别地,当是一元集时,我们简记为,则定理若是群的子群都是群的子群,则是一个群的充分必要条件是.陪集、正规子群、商群定义左陪集:若是群的子群,对于,称称为的一个左陪集. 定理若是群的子群,则的所有左陪集构成的一个划分;定理拉格朗日定理每个左陪集的元和中的元都是一样多;推论子群中元的个数一定是群中元的个数的因子;定义正规子群:若是群的子群,对于任何,都满足,则称是群的一个正规子群.一个阿贝尔群的任何子群都是正规子群;当是群的正规子群时,对于关于的陪集.定义运算为考虑所有关于的陪集组成的集合和运算构成的系统为一个群;这个群称为关于的商群,记为.定理若是从群到群的映上的同态映射,则核是正规子群,商群同构于.群同态基本定理:商群是由陪集构成的群,也是同余类的集构成的群,所以它同构于象代数,即同构于.如果群没有真正的正规子群,则该群为单群;正规群的任何子群都是正规子群;第3章格和布尔代数格定义格:表示一个偏序集,如果对于中的任何两个元和,在中都存在一个元是它们的上确界,存在一个元是它们的下确界,则称是一个格;对于中的元,它们的上确界常常记为,它们的下确界常常记为,前者又称为和析取或和或,后者又称为和的合取或积或或;定理若是一个格,则对于任何,有(1)的充分必要条件是.(2)的充分必要条件是.定理保序性若是一个格,则对于任何,当时,有引理若是一个格,,则定理分配不等式:若是一个格,则对于任何,定理模数不等式若是一个格,则对于任何,的充分必要条件是定理若是一个代数系统,和是上的二目运算,它服从交换律、结合律和吸收律.则是一个格.定义子格是一个格,,当且仅当对于运算和是封闭的,运算结果和在中相同时,则称代数系统是的一个子格;定义直接积若和是两个格,则称为这两个格的直接积,其中的运算和定义为:对于任何的,定义同态映射设和是两个格,.如果对任何,有则称是到的一个同态映射.特别地,当是一个一一对应时,称是一个同构映射,并且称格和同构的;如果是格上一个同态映射,则称是一个自同态映射.如果是一个同构映射,则称是一个自同构映射.定义完备:对于一个格,如果它的每一个非空子集在格中都具有一个上确界和下确界,则这个格称为完备的;显然每个有限的格都是完备的;对于一个格,它的上确界和下确界如果存在,我们称它们为这个格的边界,并分别记为1和0,因此有时这种格称为有界格;定义补元:是一个有界格,,如果存在元,使且,则称为的补元;定义补格:中的每个元都至少具有一个补元,则称这个格是一个补格;定义分配格:是一个格,如果对任何,有则称是一个分配格;定理任何两个分配格的直接积是分配格;定理若是一个分配格,则对于任何,如果,并且,则推论如果一个格是分配格,同时又是补格,则它的每一个元都具有唯一的一个补元;布尔代数定义布尔代数一个既是补格,又是分配格的格,称为布尔代数;定义对偶命题如果是一个布尔代数,是关于中变元的一个命题,它可以由中变元元通过运算来表示.如果对的表示式进行下列代换:代换为;代换为;代换0;0代换为1,则这样代换后也将得到一个命题,它成为命题的对偶命题,简称为对偶;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算来表示,则对它的对偶命题也在任何一个布尔代数中成立;定理对偶原理如果是一个命题,它在任何一个布尔代数中都成立,并且可以由运算和关系来表示,则将中的运算代换为;代换为;0代换为1,代换0;换为,换为,所得到的对偶命题也在任何一个布尔代数中成立;定理若和是两个布尔代数,是一个同态映射,则在中的同态象是的一个子布尔代数;定义基元:是一个布尔代数,,如果中不存在元,使,则称是的一个基元;如果对于任何都存在有基元,则称这个布尔代数是基元的; 定理若是一个布尔代数,,则下列命题是等价的;1是一个基元2对于所有的,若,则或3对于所有的,推论若和是不同的基元,定理是一个基元的布尔代数,是其基元的集合,对任一令,则,并且作为基元的析取式,这个表达式是唯一的;定理若是一个非空有限的布尔代数,是它的所有基元构成的集合,则同构.推论一个有限的布尔代数具有个元,其中的是它的基元的个数;推论对于任意正整数,具有个元的布尔代数是同构的;其他代数系统定义环若代数系统满足下列条件:1对于二目运算是一个可交换的加法群;2对于二目运算即乘法是封闭的;3乘法结合律成立,即对中任何三个元和,有4分配律成立,即对中任何元和,有则称是一个环;定义交换环一个环中的任何两个元,如果都满足,则称是一个交换环;定义逆元、零元一个环中如果存在有元,使得对中任何一个元都有,则称是的一个单位元;定义逆元、零元在一个有单位元的环里,如果和是环中的元,满足,则称是。

离散数学

离散数学
2019/3/2 离散数学 7
3、:N×NN,N是自然数集 (0∈N),(<x,y>)=|x2-y2|
解: 取<1,1>,<2,2>∈ N×N (<1,1>)=|12-12|=0 (<2,2>)=|22-22|=0 故不是单射. 又取2∈N, 因不存在自然数x,y∈N 满足: |x2-y2|=2 故不是满射. ∴ 既不是单射也不是满射.
2019/3/2
离散数学
9
§3.2 映射的运算
• 逆映射的概念
定义3.2.1 设:AB,定义关系RBA为: R={<y,x> | y∈B , x∈A,且(x)=y};如果R是B 到A的映射,则称R为的逆映射。记为– 1。
• 例如:设:N E,N 是自然数集合,E是 自然数中所有偶数的集合,(n) = 2n,n∈N。 则的逆映射-1为: -1 :E N,-1(m)=m/2,m∈E。
§3.1 基本概念
定义3.1.1: 设A,B是两个集合,是A到B的二 元关系,若对A中每个元素a,有唯一的 b∈B, 使得<a,b>∈ ,则称为A到B的映射,记为: : AB 或 A B
• 所谓从A到B的映射就是A中的每个人都向B中 的人射了一箭,并且都射中了B中的一个人。 既没有人偷懒不射,也没有人一箭双雕。 • 这时,B中的人,有的可能身中数箭,有的可 能一箭未中。当然也可能刚好每人中了一箭。
• 充分性:设是双射,考虑的逆关系,易知,对于B 中的每个元素y,都对应着A中唯一的一个在下以y 为映象的元素x,因此, 的逆关系是B到A的映射。
2019/3/2 离散数学 4
满射、单射和双射的例子
• 设:N N,N 是自然数集,(n)= 2n, n∈N。则是 单射,但不是满射。

离散数学定义列表

离散数学定义列表

A.定义1.简单命题/原子命题、复合命题2.定义1.1:否定式、否定联结词3.定义1.2:合取式、合取联结词4.定义1.3:析取式、析取联结词定义1.4:蕴含式、前件、后件、蕴含联结词;规定19.4、20.45.定义1.5:等价式、等价联结词;规定6.联结词的定义(真值表)表1.1、优先级7.命题常项、命题变项(不是命题)、合式公式8.定义1.6:原子命题公式、公式、子公式9.定义1.7:公式层次10.定义1.8:赋值/解释、成真赋值、成假赋值11.定义1..9:真值表12.定义1..10:重言式/永真式、矛盾式/永假式、可满足式13.哑元************************重点:命题逻辑等值演算***************15.等值演算、置换规则4.116.定义2.2:文字、简单析取式、简单合取式17.定义2.3:析取范式、合取范式、范式18.定义2.4:极小项、极大项定义2.5:主析取范式、主合取范式********************************一阶逻辑**********************19.个体词、个体常项、个体变项、个体域/论域、全总个体域20.谓词、谓词常项、谓词变项、n元谓词、0元谓词量词、全称量词、存在量词全称蕴含、存在合取P71 5.3********************************集合代数**********************21.定义6.1:子集、包含22.定义6.2:相等23.定义6.3:真子集定义6.4:空集P139 124.n元集、m元子集、(单元集)25.定义6.5:幂集公式:26.定义6.6:全集27.定义6.7:并集、交集、相对补集、不交28.定义6.8:对称差集29.定义6.9:绝对补集30.定义6.10:广义并31.定义6.11:广义交幂等律、结合律、交换律、分配律、同一律、零律、排中律、矛盾律、吸收律、德摩根律、双重否定律eg6.8,P108 36****************************重点:二元关系***********************32.定义7.1:有序对/序偶33.定义7.2:笛卡尔积性质P11134.定义7.3:二元关系/关系P139 735.定义7.4:从A到B的二元关系、A上的二元关系、空关系36.定义7.5:A上的全域关系(E)、恒等关系(I)、小于等于关系(L)、整除关系(D)、包含关系(R)37.关系矩阵(x行,y列)、关系图38.定义7.6:定义域、值域、域39.定义7.7:逆关系40.定义7.8:右复合(左复合)41.定义7.9:R在A上的限制、A在R下的像42.定义7.10:关系的n次幂定义7.11:自反、反自反定义7.12:对称、反对称定义7.13:传递43.定义7.15:等价关系(性质)P142 32(4)、4144.定义7.16:等价类45.定义7.17:商集46.定义7.18:划分、划分块 P134 eg7.1847.定义7.19:偏序关系(性质)48.定义7.20:小于、可比49.定义7.21:全序关系/线序关系50.定义7.22:偏序集P13551.定义7.23:偏序集中顶点的覆盖关系(为画哈斯图)P143 43(2)***************************函数*******************************53.定义8.1:函数54.定义8.2:函数相等55.定义8.3:从A到B的函数P171 6(8)(9)56.定义8.4:从A到B的函数的集合B A57.定义8.5:A1在ƒ下的像、函数的像、完全原像定义8.6:满射、单射、双射/一一映射P173 2558.定义8.7: 常函数、恒等函数、单调递增、单调递减、严格单调递减、特征函数、自然映射59.反函数(双射)*************************代数系统*****************************60.定义9.2:一元运算定义9.3:可交换/交换律定义9.4:可结合/结合律定义9.5:幂等律、幂等元61.定义9.6:可分配/分配律62.定义9.7:吸收律63.定义9.8:左单位元(右单位元)、单位元/幺元64.定义9.9:左零元(右零元)65.定义9.10:左逆元(右逆元)、逆元、可逆66.定义9.11:消去律、左消去律(右消去律)注意P183 eg9.667.定义9.12:代数系统/代数、特异元素/代数常数68.定义9.13:具有相同的构成成分/同类型69.定义9.14:子代数系统/子代数、平凡的子代数、真子代数(函数对子集封闭)70.定义9.15:积代数、因子代数************************************群与环***************************************半群与群都是具有一个二元运算的代数系统71.定义 10.1:半群()、幺半群/独异点()、群()72.有理数加群、整数加群、实数加群、复数加群、四元群、子代数、语言73.定义 10.2:有限群、无限群、平凡群、交换群/Abel群74.定义 10.3:n次幂75.定义 10.4:(元素的)阶/周期、k阶元、无限阶元***********************************格与布尔代数**********************************格与布尔代数是具有两个二元运算的代数系统定义11.1:格(偏序集定义的)P22176.幂集格、子群格77.定义11.2:对偶命题、格的对偶原理78.定义11.3:格(代数系统定义的)79.定义11.4:子格80.定义11.5:分配格81.定义11.6:全上界、全下界82.定义11.7:有界格83.定义11.8:补元84.定义11.9:有补元定义11.10:布尔格/布尔代数(有补分配格)85.定义11.11:布尔代数(代数系统定义)86.定义11.12:原子**********************************14.图的基本概念********************************87.无序积A&B88.定义14.1:无向图、顶点集、顶点/结点、边集、无向边/边89.定义14.2:有向图、无向边/边90.(P294)图、阶、n阶图;零图、平凡图;空图;标定图、非标定图;基图;端点、关联、关联次数、环、相邻;始点、终点、孤立点;邻域、闭邻域、关联集、后继元集、先驱元集91.定义14.3:平行边、重数、多重图、简单图92.定义14.4:度数/度、出度、入度、最大度、最小度、悬挂顶点、悬挂边、偶度(奇度)顶点93.度数列、可图化的、可简单图化的,出度列、入度列94.定义14.6:n阶无向完全图/n阶完全图、n阶有向完全图、n阶竞赛图95.定义14.7:k-正则图96.定义14.8:母图、真子图、生成子图、导出的子图97.定义14.10:删除边e、删除E’、删除顶点v、删除V‘、边的收缩、新加边删点边不留,删边点还在98.定义14.11:通路、始点、终点、长度、回路、简单通路、简单回路、初级通路/路径、初级回路/圈、奇圈、偶圈、复杂通路、复杂回路99.定义14.12:连通、连通图、非连通图100.定义14.13:连通分支、连通分支数101.定义14.14:短程线、距离102.定义14.15:点割集、割点103.定义14.16:边割集/割集、割边/桥104.定义14.21:弱连通图/连通图、单向连通图、强连通图105.定义14.22:二部图/二分图/偶图,完全二部图定义14.23:无向图关联次数、关联矩阵定义14.24:有向图关联矩阵定义14.25:邻接矩阵定义14.26可达矩阵**********************************15.欧拉图与哈密顿图****************************106.定义15.1:欧拉通路、欧拉回路、欧拉图、半欧拉图107.定义15.2:哈密顿通路、哈密顿回路、哈密顿图、半哈密度图**********************************16.树*****************************************108.定义16.1:无向树/树、森林、平凡树、树叶、分支点109.定义16.2:生成树、树枝、弦、余树110.定义16.:5:权、最小生成树111.避圈法(Kruskal算法)B.定理1.定理2.1:简单析取式是重言式的充要条件;简单合取式是矛盾式的充要条件2.定理2.2:析取范式(矛盾式)、合取范式(重言式)3.定理2.3:范式存在定理4.定理2.4:极小项和极大项关系5.定理2.5:主析、主合存在并唯一6.定理6.1:子集是一切集合的子集推论:空集是唯一的7.定理7.1:逆关系性质8.定理7.2:复合结合律、逆9.定理7.3:关系与恒等关系复合10.定理7.4:复合分配律注意交11.定理7.5:限制和像的分配律注意像的交12.定理7.6:有穷集上只有又穷多个不同的二元关系13.定理7.7:关系的幂性质14.定理7.8:有穷集A上的关系R的幂序列R0,R1,R2等是一个呈现周期性变化的序列15.定理7.9:五大性质16.定理7.14:等价关系的性质17.定理8.1:函数的复合(关系的右复合)推论1:函数复合结合律推论2:ƒ:A→B,g:B→C,则ƒ。

离散数学课本定义和定理

离散数学课本定义和定理

第1章集合1.1 集合的基本概念1. 集合、元(元素)、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义1.1.1(子集):给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为A⊆A或A⊇A,并称A为B的一个子集。

如果集合A和B满足A⊆A,但B中有元不属于A,则称集合A真包含于B,记为A⊂A,并且称A为B的一个真子集。

4. 定义1.1.2(幂集):给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A的幂集,记为A(A)或2A1.2 集合的运算定义1.2.1(并集):设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B的并集,记为A∪A.定义1.2.2(交集):A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B的交集,记为A∩A.定义1.2.3(不相交):A和B是两个集合,如果它们满足A∩A=A,则称集合A和B是不相交的。

定义1.2.4(差集):A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B 的差集,记为A−A.定义1.2.5(补集):若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为A′.定义1.2.6(对称差):A和B是两个集合,则定义A和B的对称差A⊕A为A⊕A=(A−A)∪(A−A)1.3 包含排斥原理定理1.3.1设A1,A2为有限集,其元素个数分别为|A1|,|A2|则|A1∪A1|=|A1|+|A2|−|A1∩A2|定理 1.3.2设A1,A2,A3为有限集,其元素个数分别为|A1|,|A2|,|A3|,则|A1∪A2∪A3|=|A1|+|A2|+|A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+|A1∩A2∩A3|定理1.3.3设A1,A2,…,A A为有限集,则|A1∪A2∪…A A|=∑|A A| AA=1−∑|A A∩A A|1≤A<A≤A+∑|A A∩A A∩A A|1≤A<A<A≤A+⋯+(−1)A−1|A1∩A2∩…A A|重要例题 P11 例1.3.1第2章二元关系2.1 关系定义2.1.1(序偶):若A和A是两个元,将它们按前后顺序排列,记为〈A,A〉,则〈A,A〉成为一个序偶。

离散数学定义(必须背)

离散数学定义(必须背)

命题逻辑▪(论域)定义:论域是一个数学系统,记为D。

它由三部分组成:•(1)一个非空对象集合S,每个对象也称为个体;•(2) 一个关于D的函数集合F;•(3)一个关于D的关系集合R。

▪(逻辑连接词)定义•设n>0,称为{0,1}n到{0,1}的函数为n元函数,真值函数也称为联结词。

•若n =0,则称为0元函数。

▪(命题合式公式)定义:•(1).常元0和1是合式公式;•(2).命题变元是合式公式;•(3).若Q,R是合式公式,则(⌝Q)、(Q∧R) 、(Q∨R) 、(Q→R) 、(Q↔R) 、(Q⊕R)是合式公式;•(4).只有有限次应用(1)—(3)构成的公式是合式公式。

▪(生成公式)定义1.5 设S是联结词的集合。

由S生成的公式定义如下:•⑴若c是S中的0元联结词,则c是由S生成的公式。

•⑵原子公式是由S生成的公式。

•⑶若n≥1,F是S中的n元联结词,A1,…,A n是由S生成的公式,则FA1…A n 是由S生成的公式。

▪(复杂度)公式A的复杂度表示为FC(A)•常元复杂度为0。

•命题变元复杂度为0,如果P是命题变元,则FC (P)=0。

•如果公式A=⌝B,则FC (A)=FC(B)+1。

•如果公式A=B1∧ B2,或A=B1∨ B2,或A=B1→B2,或A=B1↔ B2,或A=B1⊕ B2,或则FC (A)=max{FC(B1), FC(B2)}+1。

▪命题合式公式语义•论域:研究对象的集合。

•解释:用论域的对象对应变元。

•结构:论域和解释称为结构。

•语义:符号指称的对象。

公式所指称对象。

合式公式的语义是其对应的逻辑真值。

▪(合式公式语义)设S是联结词的集合是{⌝,∧,∨,⊕,→,↔}。

由S生成的合式公式Q在真值赋值v下的真值指派v(Q)定义如下:•⑴v(0)=0, v(1)=1。

•⑵若Q是命题变元p,则v(A)= pv。

•⑶若Q1,Q2是合式公式▪若Q= ⌝Q1,则v(Q)= ⌝v(Q1)▪若Q=Q1 ∧ Q2,则v(Q)=v(Q1)∧ v(Q2)▪若Q=Q1∨Q2,则v(Q)=v(Q1)∨v(Q2)▪若Q=Q1→ Q2,则v(Q)=v(Q1)→ v(Q2)▪若Q=Q1 ↔ Q2,则v(Q)=v(Q1)↔ v(Q2)▪若Q=Q1⊕ Q2,则v(Q)=v(Q1)⊕ v(Q2)▪(真值赋值)由S生成的公式Q在真值赋值v下的真值v(Q)定义如下:•⑴若Q是S中的0元联结词c,则v(Q)=c。

离散数学——精选推荐

离散数学——精选推荐

离散数学第一章命题逻辑定义1。

设P为一命题,P的否定是一个新的命题,记作¬P。

若P为T,¬P为F;若P为F,¬P为T。

联结词“¬”表示命题的否定。

否定联结词有时亦可记作“¯”。

(P3)定义2。

两个命题P和Q的合取是一个复合命题,记作P∧Q。

当且仅当P,Q同时为T时,P∧Q为T,在其他情况下,P∧Q的真值都是F。

(P4)定义3。

两个命题P和Q的析取是一个复合命题,记作P∨Q。

当且仅当P,Q同时为F时,P∨Q的真值为F,否则P∨Q的真值为T。

(P5)定义4。

给定两个命题P和Q,其条件命题是一个复合命题,记作P→Q,读作“如果P,那么Q”或者“若P则Q”。

当且仅当P的真值为T,Q的真值为F时,P→Q的真值为F,否则P→Q的真值为T。

我们称P为前件,Q为后件。

(P6)定义5。

给定两个命题P和Q,其复合命题P⇆Q的真值为F。

(P7)定义6。

命题演算的合式公式(wff),规定为:(1)单个命题变元本身是一个合式公式。

(2)如果A是合式公式,那么¬A是合式公式。

(3)如果A和B是合式公式,那么(A∧B),(A∨B),(A→B)和(A⇆B)都是合式公式。

(4)当且仅当能够有限次地应用(1),(2),(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。

(P9)定义7。

在命题公式中,对于分量指派真值得各种可能组合,就确定了这个命题公式的各种真值情况,把它汇列成表,就是命题公式的真值表。

(P12)定义8。

给定两个命题公式A和B,设P1,P2,…,P n为所有出现于A和B中的原子变元,若给P1,P2,…,P n任一组真值指派,A和B的真值都相同,则称A和B是等价的或逻辑相等。

记作A⇔B。

(P15)定义9。

如果X是合式公式的A的一部分,且X本身也是一个合式公式,则称X为公式A 的字公式。

(P16)定理1。

设X是合式公式A的字公式,若X⇔Y,如果将A中的X用Y来置换,所得到公式B 与公式A等价,即A⇔B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章集合1.1 集合的基本概念1. 集合、元(元素)、有限集、无限集、空集2. 表示集合的方法:列举法、描述法3. 定义1.1.1(子集):给定集合A和B,如果集合A的任何一个元都是集合B中的元,则称集合A包含于B或B包含A,记为A⊆B或B⊇A,并称A为B的一个子集。

如果集合A和B满足A⊆B,但B中有元不属于A,则称集合A真包含于B,记为A⊂B,并且称A为B的一个真子集。

4. 定义1.1.2(幂集):给定集合A,以A的所有子集为元构成的一个集合,这个集合称为A 的幂集,记为 ρ(A)或 2A1.2 集合的运算定义1.2.1(并集):设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B的并集,记为A∪B.定义1.2.2(交集):A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B的交集,记为A∩B.定义1.2.3(不相交):A和B是两个集合,如果它们满足A∩B=∅,则称集合A和B是不相交的。

定义1.2.4(差集):A和B是两个集合,属于A而不属于B的所有元构成集合,称为A和B 的差集,记为A−B.定义1.2.5(补集):若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为A′.定义1.2.6(对称差):A和B是两个集合,则定义A和B的对称差A⊕B为A⊕B=(A−B)∪(B−A)1.3 包含排斥原理定理1.3.1设A1,A2为有限集,其元素个数分别为|A1|,|A2|则|A1∪A1|=|A1|+|A2|−|A1∩A2|定理1.3.2设A1,A2,A3为有限集,其元素个数分别为|A1|,|A2|,|A3|,则|A1∪A2∪A3|=|A1|+ |A2|+|A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+|A1∩A2∩A3|定理1.3.3设A1,A2,…,A n为有限集,则|A1∪A2∪…A n|=∑|A i| ni=1−∑|A i∩A j|1≤i<j≤n+∑|A i∩A j∩A k|1≤i<j<k≤n+⋯+(−1)n−1|A1∩A2∩…A n|重要例题P11 例1.3.1第2章二元关系2.1 关系定义2.1.1(序偶):若 x 和 y 是两个元,将它们按前后顺序排列,记为〈x,y〉,则〈y,x〉成为一个序偶。

※对于序偶〈x,y〉和〈a,b〉,当且仅当x=a并且y=b时,才称〈x,y〉和〈a,b〉相等,记为〈x,y〉=〈a,b〉定义2.1.2(有序n元组):若x1,x2,…,x n是个元,将它们按前后顺序排列,记为〈x1,x2,…,x n〉,则成为一个有序n元组(简称n元组)。

定义2.1.3(直接积):A和B是两个集合,则所有序偶〈x,y〉的集合,称为和的直接积(或笛卡尔积),记为A×B.定义2.1.4(直接积):设A1,A2,…,A n是n个集合,x i∈A i,i=1,2,…,n,则所有n元组〈x1,x2,…,x n〉的集合,称为A1,A2,…,A n的笛卡尔积(或直接积),记为A1×A2×…×A n.定义2.1.5(二元关系)若A和B是两个集合,则A×B的任何子集都定义了一个二元关系,称为A×B上的二元关系。

如果A=B,则称为A上的二元关系。

定义2.1.5(恒等关系):设I x是X上的二元关系,I x={〈x,x〉|x∈X},则称I x是X上的恒等关系。

定义2.1.7(定义域、值域):若S是一个二元关系,则称D(S)={x|存在y,使〈x,y〉∈S}为S的定义域。

R(S)={y|存在x,使〈x,y〉∈S}为S的值域。

定义2.1.8(自反):设 R 是集合上 X 的关系,若对于任何..x∈X,都有 xRx 即〈x,x〉∈R则称R关系是自反的。

定义2.1.9(反自反):设R 是集合上 X 的关系,若对于任何x∈X,都满足〈x,x〉∈R,即xRx对任何x∈X都不成立,则称关系R是反自反的。

定义2.1.10(对称):设R 是集合上 X 的关系,若对于任何x,y∈X,只要xRy,就有yRx,那么称关系R是对称的。

定义2.1.11(反对称):设R 是集合上 X 的关系,若对于任何x,y∈X,只要xRy并且yRx时,就有x=y,那么称关系R是对称的。

定义2.1.11(传递)设R 是集合上 X 的关系,若对于任何x,y∈X,只要xRy并且yRz时,就有xRz,则称关系R是传递的。

定理2.1.1设R 是集合上 X 的关系,若R是反自反的和传递的,则R是反对称的。

2.2 关系矩阵和关系图定义无定理无2.3 关系的运算定义2.3.1(连接):设 R 为X×Y上的关系,S为Y×Z上的关系,则定义关系R∘S={〈x,z〉|存在y,使〈x,y〉∈R且〈y,z〉∈S}R∘S称为关系R和S的连接或复合,有时也记为R∙S.定义2.3.2(逆关系):设 R 为X×Y上的关系,则定义R的逆关系为R−1为Y×X上的关系:R−1={〈y,x〉|〈y,x〉∈R}.定理2.3.1设R和S都是X×Y上的二元关系,则下列各式成立(1)(R−1)−1=R(2)(R∪S)−1=R−1∪S−1(3)(R∩S)−1=R−1∩S−1(4)(R′)−1=(R−1)′(5)(R−S)−1=R−1−S−1定理2.3.2设R为X×Y上的关系,S为Y×Z上的关系,则(R∘S)−1=S−1∘R−12.4 闭包运算定义2.4.1(自反闭包): 设R 是集合X 上的二元关系,如果R 1是包含R 的最小自反关系,则称R 1是关系R 的自反闭包,记为r (R ).定义2.4.2(对称闭包): 设R 是集合X 上的二元关系,如果R 1是包含R 的最小对称关系,则称R 1是关系R 的对称闭包,记为s (R ).定义2.4.3(传递闭包): 设R 是集合X 上的二元关系,如果R 1是包含R 的最小传递关系,则称R 1是关系R 的传递闭包,记为t (R )或R +.定理2.4.1 设R 是集合X 上的二元关系,则(1) R 是自反的,当且仅当r (R )=R .(2) R 是对称的,当且仅当r (R )=R .(3) R 是传递的,当且仅当t (R )=R .定理2.4.2 设R 是集合X 上的二元关系,则r (R )=R ∪I x . “R ∪恒等关系” 定理2.4.3 设R 是集合X 上的二元关系,则s (R )=R ∪R −1. “R ∪逆关系”定理2.4.4 设R 是集合X 上的二元关系,则R +=R ∪R 2∪R 3∪…=⋃R i ∞i=1.“R ∪幂集” 定理2.4.5 设X 是一个n 元集,R 是X 上的二元关系,则存在一个正整数k ≤n ,使得 R +=R ∪R 2∪R 3∪…R k .2.5 等价关系和相容关系定义2.5.1(覆盖、划分): S 是一个集合,A i ⊆S,i =1,2,…,n ,如果⋃A i n i=1=S ,则称a ={A 1,A 2,…,A n }是S 的一个覆盖。

如果⋃A i n i=1=S ,并且A i ∩A j (i,j =1,2,…,n,i ≠j ),则称a 是S 的一个划分,a 中的元称为S 的划分块。

定义2.5.2(等价关系):设R 是X 上的一个关系,如果R 具有自反性、对称性和传递性三个性质,则称R 是一个等价关系。

设R 是等价关系,若xRy 成立,则称x 等价于y .定义2.5.3(等价类):设R 是X 上的一个等价关系,则对任何x ∈X ,令[x]R ={y|y ∈X 且xRy},称[x]R 为x 关于R 的等价类,简称为x 的等价类,[x]R 也可以简记为[x].定义2.5.4(同余):对于整数a,b 和正整数m ,有关系式:a =mk 1+r 1(0≤r 1<m )b =mk 2+r 2(0≤r 2<m )如果r 1=r 2,则称a,b 对于模m 同余的,记作a ≡b (mod m )定义2.5.5(商集):设R 是X 上的一个等价关系,由R 引出的等价类组成的集合{[x ]|x ∈X }称为集合X 上由关系R 产生的商集,记为X/R . “等价类的集合”定理2.5.1 若是 X 上的一个等价关系,则由R 可以产生唯一的一个对 X 的划分。

“商集” 定义2.5.6(相容关系):设R 是X 上的一个关系,如果R 是自反的和对称的,则称R 是一个相容关系。

相容关系可以记为≈.所有的等价关系都是相容关系,但相容关系却不一定是等价关系。

定义2.5.7(最大相容块):设X 是一个集合,≈是定义在X 上的相容关系。

如果A ⊆X , A 中的任何两个元都有关系≈,而x −A 的每一个元都不能和A 中所有元具有关系≈,则称A 是X 的一个最大相容块。

2.6 偏序关系定义2.6.1(偏序关系):R 是定义在集合X 上的一个关系,如果它具有自反性、反对称性和传递性,则称R 是X 上的一个偏序关系,简称为一个偏序,记为≼.更一般地讲,若X 是一个集合,在X 上定义了一个偏序≼,则我们用符号 〈X,≼〉 来表示它,并称〈X,≼〉是一个偏序集。

定义2.6.2(全序/链):〈X,≼〉是一个偏序集,对任何x,y∈X,如果x≼y或y≼x这两者中至少有一个必须成立,则称〈X,≼〉是一个全序集或链,而称≼是X上的一个全序或线性序。

定义2.6.3(盖住):〈X,≼〉是一个偏序集,x,y∈X,若x≺y,并且不存在z∈X,使x≺z并且z≺y,则称y盖住x. “紧挨着”定义2.6.4(最小元、最大元):〈X,≼〉是一个偏序集,如果X中存在有元y,对任何x∈X都满足y≼x,则称y是〈X,≼〉的最小元。

如果X中存在有元z,对任何x∈X都满足x≼z,则称z是〈X,≼〉的最大元。

定义2.6.5(极小元、极大元):〈X,≼〉是一个偏序集,如果y∈X,而X中不存在元x,使x<y,则称y是〈X,≼〉的极小元。

如果z∈X,而X中不存在元x,使z<x,则称z是〈X,≼〉的极大元。

定义2.6.6(上界、下界、上确界、下确界):〈X,≼〉是一个偏序集,A⊆X,x,y∈X,如果对于所有的a∈A,都有a≼x,则称x是A的一个上界。

如果对于所有的a∈A,都有y≼a,则称y是A的一个下界。

如果x是A的一个上界,对于A的任一上界z,都有x≼z,则称x是A的最小上界(上确界). 如果y是A的一个上界,对于A的任一上界w,都有w≼y,则称y是A的最大下界(下确界).定义2.6.5(良序集):设〈X,≼〉是一个偏序集,对于偏序≼,如果X的每个非空子集都具有最小元,则称〈X,≼〉是一个良序集,而称≼是X上的一个良序。

相关文档
最新文档