离散数学定义必须背
考试必备离散数学概念总结

1.1、单个命题变项和命题常项是合式公式, 称作原子命题公式2.1、若等价式A↔B是重言式,则称A与B等值,记作A⇔B,并称A⇔B是等值式2.2、(1) 文字——命题变项及其否定的总称2.3、设C1=l∨C1', C2=lc∨C2', C1'和C2'不含l和lc, 称C1∨'C2'为C1和C2(以l和lc为消解文字)的消解式或消解结果, 记作Res(C1,C2)2.4、设S是一个合取范式, C1,C2,⋯,Cn是一个简单析取式序列. 如果对每一个i(1≤i≤n), Ci是S的一个简单析取式或者是Res(Cj,Ck)(1≤j<k<i), 则称此序列是由S导出Cn的消解序列. 当Cn=λ时, 称此序列是S的一个否证.3.1、设A1, A2, …, Ak, B为命题公式. 若对于每组赋值,A1∧A2∧…∧Ak为假,或当A1∧A2∧…∧Ak为真时,B也为真,则称由前提A1, A2, …, Ak推出结论B的推理是有效的或正确的, 并称B是有效结论.4.1、个体词——所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域(论域)——个体变项的取值范围4.2、谓词——表示个体词性质或相互之间关系的词谓词常项:如, F(a):a是人谓词变项:如, F(x):x具有性质F一元谓词(n=1)——表示性质多元谓词(n≥2)——表示事物之间的关系0元谓词——不含个体变项的谓词, 即命题常项或命题变项4.3、设L是一个非逻辑符集合, 由L生成的一阶语言L 的字母表包括下述符号:非逻辑符号(个体常项符号、函数符号、谓词符号)和逻辑符号(个体变项符号、量词符号、联结词符号、括号与逗号)4.4、设R(x1, x2, …, xn)是L的任意n元谓词,t1, t2, …, tn 是L的任意n个项,则称R(t1,t2, …, tn)是L的原子公式.4.5、在公式∀xA 和∃xA 中,称x为指导变元,A为相应量词的辖域. 在∀x和∃x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现.4.6、若公式A中不含自由出现的个体变项,则称A为封闭的公式,简称闭式.6.1、A⊆B⇔∀x ( x∈A →x∈B )6.2、A = B⇔A⊆B∧B⊆A6.3、A⊂B⇔A⊆B∧A≠BA⊈B⇔∃x ( x∈A ∧x∉B )6.4、幂集:P(A)={ x | x ⊆A } (一定包含空集)6.5、并A⋃B = {x | x∈A∨x∈B}交A⋂B = {x | x∈A∧x∈B}相对补A-B = {x | x∈A∧x∉B}对称差A⊕B = (A-B)⋃(B-A)绝对补~A = E-A6.6、广义并⋃A = { x | ∃z ( z∈A∧x∈z )}广义交⋂A= { x | ∀z ( z∈A →x∈z )}7.1、设A,B为集合,A与B的笛卡儿积记作A⨯B,且A⨯B = {<x,y>| x∈A∧y∈B}.7.2、设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B时则叫做A上的二元关系.(计数:|A|=n, |A×A|=n^2, 所以A上有2^(n^2)个不同的二元关系。
离散的数学定义

离散的数学定义
离散数学是数学的一个分支,主要研究离散对象和离散结构之间的关系,重点关注离散的整数值、集合和图论等。
以下是离散数学的一些主要概念和定义:
1. 集合论:
- 集合是离散数学中最基本的概念之一,表示一组独立对象的总体。
集合论研究集合之间的关系、运算和性质。
2. 逻辑:
- 逻辑是研究命题和推理的学科,离散数学中的逻辑主要包括命题逻辑和谓词逻辑,用于研究命题的真假和推理规则。
3. 图论:
- 图论是离散数学的一个重要分支,研究图(vertices 和edges组成的结构)之间的关系和性质,包括图的遍历、连通性、最短路径等问题。
4. 离散结构:
- 离散结构指的是离散对象之间的关系和结构,如排列组合、树、图等。
离散数学研究这些结构的性质和应用。
5. 组合数学:
- 组合数学是离散数学的一个重要分支,研究离散对象的排列组合方式,包括排列、组合、二项式定理等。
6. 概率论:
- 离散概率论研究离散随机变量的概率分布和性质,包
括概率空间、随机变量、概率分布等。
7. 离散数学的应用:
- 离散数学在计算机科学、信息技术、密码学、通信等领域有着广泛的应用,如算法设计、数据结构、网络设计等。
总的来说,离散数学是研究离散对象和结构的数学分支,涉及集合论、逻辑、图论、组合数学等内容,在计算机科学和信息技术等领域具有重要的理论和实际应用。
离散数学必备知识点总结资料

离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。
它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。
以下是离散数学必备的一些知识点总结。
一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。
2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。
3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。
4. 集合与运算:集合是指不同元素组成的一个整体。
基本的集合运算包括并、交、差等。
5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。
6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。
划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。
二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。
包括度、路径、连通性等概念。
2. 图的表示方法:邻接矩阵和邻接表。
3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。
4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。
最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。
三、代数系统1. 代数结构:包括群、环、域等概念。
2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。
四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。
2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。
3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。
离散数学复习要点

离散数学复习要点离散数学是数学的一个分支领域,主要研究离散的结构和离散情形下的数学对象及其相关性质。
它与连续数学不同,离散数学的对象是离散的,如集合、图、布尔代数等。
在计算机科学、信息科学、通信工程等领域中,离散数学的理论和方法被广泛应用。
以下是离散数学的一些重要的复习要点:1.集合论:集合是离散数学的基础,集合的基本运算如交、并、差等,以及集合的基本性质如并集和交集的结合律、分配律等,都是需要复习的内容。
此外,还需要了解集合的基数和幂集等概念。
2.命题逻辑:命题是一个可以判断真假的陈述句,命题逻辑是研究命题及其逻辑关系的数学体系。
需要复习的内容包括命题的逻辑运算,如非、与、或、异或等,以及逻辑等价、逻辑推理等。
3.谓词逻辑:谓词逻辑是对自然语言中的谓词进行形式化表示和推理的系统。
复习重点包括一阶谓词逻辑的基本概念,如谓词、量词、域、项等,以及谓词的合取、析取、全称量词和存在量词等逻辑联结词的语义。
4.图论:图论是研究图及其性质的数学分支。
需要复习的内容包括图的基本概念,如顶点、边、路径、圈等,以及图的表示方法、图的遍历算法、连通图、树等。
5. 网络流模型:网络流模型是研究流动网络的数学方法,主要包括最大流、最小割等问题。
需要复习的内容包括网络的基本概念,如容量、割、流等,以及Ford-Fulkerson算法等解决网络流问题的方法。
6.布尔代数:布尔代数是一种关于逻辑运算的代数系统,常用于电路设计和逻辑推理。
需要复习的内容包括布尔代数的基本运算,如与、或、非等,以及布尔函数的最小项与最大项表示、卡诺图等。
7.组合数学:组合数学是研究离散中的计数问题的数学分支。
需要复习的内容包括排列、组合、多元排列组合等的计数方法,如乘法原理、加法原理、排列组合的顺序问题等。
8.代数系统:代数系统是研究代数结构及其性质的数学分支,包括群、环、域等。
需要复习的内容包括群的基本概念和性质,如封闭性、结合律、单位元、逆元等。
离散数学定义(必须背)

命题逻辑▪(论域)定义:论域是一个数学系统,记为D。
它由三部分组成:•(1)一个非空对象集合S,每个对象也称为个体;•(2) 一个关于D的函数集合F;•(3)一个关于D的关系集合R。
▪(逻辑连接词)定义•设n>0,称为{0,1}n到{0,1}的函数为n元函数,真值函数也称为联结词。
•若n =0,则称为0元函数。
▪(命题合式公式)定义:•(1).常元0和1是合式公式;•(2).命题变元是合式公式;•(3).若Q,R是合式公式,则(⌝Q)、(Q∧R) 、(Q∨R) 、(Q→R) 、(Q↔R) 、(Q⊕R)是合式公式;•(4).只有有限次应用(1)—(3)构成的公式是合式公式。
▪(生成公式)定义1.5 设S是联结词的集合。
由S生成的公式定义如下:•⑴若c是S中的0元联结词,则c是由S生成的公式。
•⑵原子公式是由S生成的公式。
•⑶若n≥1,F是S中的n元联结词,A1,…,A n是由S生成的公式,则FA1…A n 是由S生成的公式。
▪(复杂度)公式A的复杂度表示为FC(A)•常元复杂度为0。
•命题变元复杂度为0,如果P是命题变元,则FC (P)=0。
•如果公式A=⌝B,则FC (A)=FC(B)+1。
•如果公式A=B1∧ B2,或A=B1∨ B2,或A=B1→B2,或A=B1↔ B2,或A=B1⊕ B2,或则FC (A)=max{FC(B1), FC(B2)}+1。
▪命题合式公式语义•论域:研究对象的集合。
•解释:用论域的对象对应变元。
•结构:论域和解释称为结构。
•语义:符号指称的对象。
公式所指称对象。
合式公式的语义是其对应的逻辑真值。
▪(合式公式语义)设S是联结词的集合是{⌝,∧,∨,⊕,→,↔}。
由S生成的合式公式Q在真值赋值v下的真值指派v(Q)定义如下:•⑴v(0)=0, v(1)=1。
•⑵若Q是命题变元p,则v(A)= pv。
•⑶若Q1,Q2是合式公式▪若Q= ⌝Q1,则v(Q)= ⌝v(Q1)▪若Q=Q1 ∧ Q2,则v(Q)=v(Q1)∧ v(Q2)▪若Q=Q1∨Q2,则v(Q)=v(Q1)∨v(Q2)▪若Q=Q1→ Q2,则v(Q)=v(Q1)→ v(Q2)▪若Q=Q1 ↔ Q2,则v(Q)=v(Q1)↔ v(Q2)▪若Q=Q1⊕ Q2,则v(Q)=v(Q1)⊕ v(Q2)▪(真值赋值)由S生成的公式Q在真值赋值v下的真值v(Q)定义如下:•⑴若Q是S中的0元联结词c,则v(Q)=c。
离散数学知识点

离散数学知识点离散数学是计算机科学中一门非常重要的基础课程,它涵盖了众多的知识点。
在本文中,我将为大家介绍离散数学中的几个关键知识点,包括集合论、逻辑、数论和图论。
首先,我们来讨论集合论。
集合是离散数学中最基本的概念之一,它由一组互不相同的元素组成。
在集合论中,有许多重要的操作,如并集、交集和补集。
并集指的是将两个或多个集合的元素合并在一起,交集指的是两个或多个集合中共有的元素,而补集指的是与给定集合不相交的所有元素的集合。
掌握这些操作对于解决实际问题非常关键,例如在数据库中进行查询等。
接下来,逻辑是离散数学中另一个重要的知识点。
逻辑关注的是命题和它们之间的关系。
在逻辑中,常用的连接词有“与”、“或”和“非”。
通过应用逻辑运算,我们能够推导出更复杂的命题,如条件语句和双条件语句。
逻辑还包括谓词逻辑和命题逻辑,它们用于描述和推导具体的命题。
除了集合论和逻辑,数论也是离散数学中的一个重要分支。
数论研究的是整数及其性质。
这个领域的研究对于密码学和安全性技术等领域具有重要意义。
在数论中,有许多重要的概念和定理,如质数、最大公约数和同余等。
研究数论有助于我们理解数字间的关系,并通过运用数学中的方法解决实际问题。
最后,让我们来探讨离散数学中的图论。
图论是研究图及其性质的学科。
图由节点和连接节点的边组成。
图可以用来描述各种关系,如社交网络中的朋友关系、城市之间的交通路线等。
在图论中,有许多重要的定理和算法,如欧拉定理、哈密顿定理和最短路径算法等。
通过应用图论的知识,我们可以解决旅行推销员问题、网络优化问题等实际难题。
综上所述,离散数学是计算机科学中不可或缺的一部分。
在这篇文章中,我们简要介绍了离散数学中的几个关键知识点,包括集合论、逻辑、数论和图论。
这些知识点为我们理解和解决实际问题提供了强大的工具和方法。
通过深入学习离散数学,我们能够拓宽思维,提高问题解决能力,并为日后的计算机科学研究打下坚实基础。
高三离散数学知识点归纳

高三离散数学知识点归纳离散数学是一门重要的数学学科,它针对离散对象及其相互关系展开研究,对于培养学生的逻辑思维能力和抽象思维能力具有重要作用。
在高三阶段,学生需要系统学习离散数学的知识点,为高考备战做好准备。
本文将对高三离散数学知识点进行归纳,包括集合论、命题逻辑、组合数学等内容。
一、集合论1. 集合的基本概念集合是由确定的、无序的、互异的对象组成的总体。
集合的元素可以是数字、字母、符号等。
2. 集合的运算交集、并集、差集和补集是集合的四种基本运算,它们分别表示两个集合的共有元素、所有元素和剩余元素。
3. 集合的关系包含关系、相等关系和互斥关系是集合之间的三种常见关系,它们描述了集合之间的包含、相等和互斥的关系。
二、命题逻辑1. 命题与命题联结词命题是陈述句,它可以为真或者为假。
命题联结词包括非、与、或、蕴含和等价等,用于描述命题之间的逻辑关系。
2. 命题的真值表和逻辑运算真值表是描述命题与命题联结词之间关系的表格,通过真值表可以确定复合命题的真假性。
3. 命题的等价和蕴含两个命题等价表示它们具有相同的真值,而一个命题蕴含另一个命题表示当前者为真时,后者一定为真。
三、组合数学1. 排列与组合排列是从一组元素中取出若干元素进行排序,组合是从一组元素中取出若干元素不考虑排序。
排列和组合分别具有不同的计算公式。
2. 二项式定理二项式定理描述了两个数的幂展开的结果,它在组合数学中有重要应用。
四、图论1. 图的基本概念图由顶点和边组成,可以分为有向图和无向图。
顶点之间的边表示两个顶点之间的联系。
2. 图的遍历算法深度优先搜索和广度优先搜索是两种常见的图的遍历算法,用于查找图中的特定路径或者寻找与某个顶点相关的其他顶点。
五、数理逻辑1. 数理逻辑的基本概念数理逻辑是研究逻辑的形式系统化的学科,主要包括语言、公式、推理规则等内容。
2. 形式系统和推导规则形式系统是由一组公理和一组推导规则组成的,通过推导规则可以从公理出发推导出其他命题。
离散数学必备知识点总结汇总

离散数学必备知识点总结汇总
1.集合论:集合的概念、元素、子集、交集、并集、差集、补集、空集、集合的运算、集合的等价关系、集合的序关系等。
2.命题逻辑:命题的概念、命题的联接词(与、或、非)、命题的否
定形式、命题的蕴涵、等价命题、命题的充分条件和必要条件、命题的合
取范式和析取范式、蕴涵式、逻辑等价式、命题的否定形式的推理。
3.谓词逻辑:谓词的概念、谓词的量化、全称量化和存在量化、谓词
逻辑的等价式和推理规则、归纳定理和应用。
4.关系:关系的概念、关系的性质、关系的运算、关系的性质和关系
的代数结构。
5.图论:图的概念、图的表示、连通图、树、度数和定理、欧拉图、
哈密顿图、图的平面性质等。
6.混合图:有向图、无向图、有向图和无向图的表示、混合图的回路、可达矩阵、连通度、强连通图等。
7.布尔代数:布尔运算、布尔函数、布尔代数的运算规则、完备性和
最小化。
8.代数结构:半群、群、环、域的定义和性质、同态和同构。
9.组合数学:排列组合、二项式系数、排列、组合、分配原理、鸽巢
原理、生成函数、容斥原理等。
10.图的着色:图的着色问题、邻接矩阵、边界点、图的着色问题的
算法、四色定理等。
11.概率论:基本概念、概率的性质、条件概率、独立事件、贝叶斯定理、随机变量、概率分布函数、期望、方差、协方差、相关系数、大数定理和中心极限定理等。
12.递归:递归关系、递归函数、递归算法、递归树、递归求解等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题逻辑▪(论域)定义:论域是一个数学系统,记为D。
它由三部分组成:•(1)一个非空对象集合S,每个对象也称为个体;•(2) 一个关于D的函数集合F;•(3)一个关于D的关系集合R。
▪(逻辑连接词)定义•设n>0,称为{0,1}n到{0,1}的函数为n元函数,真值函数也称为联结词。
•若n =0,则称为0元函数。
▪(命题合式公式)定义:R)A n•结构:论域和解释称为结构。
•语义:符号指称的对象。
公式所指称对象。
合式公式的语义是其对应的逻辑真值。
▪(合式公式语义)设S是联结词的集合是{⌝,∧,∨,⊕,→,↔}。
由S生成的合式公式Q在真值赋值v下的真值指派v(Q)定义如下:•⑴v(0)=0, v(1)=1。
•⑵若Q是命题变元p,则v(A)= pv。
•⑶若Q1,Q2是合式公式▪若Q= ⌝Q1,则v(Q)= ⌝v(Q1)▪若Q=Q1 ∧ Q2,则v(Q)=v(Q1)∧ v(Q2)▪若Q=Q1∨Q2,则v(Q)=v(Q1)∨v(Q2)▪若Q=Q1→ Q2,则v(Q)=v(Q1)→ v(Q2)▪若Q=Q1 ↔ Q2,则v(Q)=v(Q1)↔ v(Q2)▪若Q=Q1⊕ Q2,则v(Q)=v(Q1)⊕ v(Q2)▪(真值赋值)由S生成的公式Q在真值赋值v下的真值v(Q)定义如下:•⑴若Q是S中的0元联结词c,则v(Q)=c。
•⑵若Q是命题变元p,则v(Q)= pv。
•⑶若Q是FQ1…,Qn,其中n≥1,F是S中的n元联结词,Qi是公式,则v(Q)=v(FQ1…Qn)=Fv(Q1)…v(Qn)。
▪(可满足与有效)定义1.7 设Q是公式。
•⑴如果真值赋值v使得v(Q)=1,则称v满足Q。
中F。
A1Bn▪(逻辑推论)定义:•若真值赋值v满足公式集合Γ中的每个公式,则称v满足Γ。
若有真值赋值满足Γ,则称Γ是可满足的,否则称Γ是不可满足的。
•设Γ是公式的集合,A是公式。
如果每个满足Γ的真值赋值都满足A,则称A 是Γ的逻辑推论,记为Γ|=A。
若Γ|=A不成立,记为Γ|≠A。
谓词逻辑▪(论域)定义:论域是一个数学系统,记为D。
它由三部分组成:•(1)一个非空对象集合D;•(2) 一个关于D的函数集合,也称运算;•(3)一个关于D的关系集合。
▪(一阶谓词逻辑语言)简称一阶逻辑语言•逻辑符号:包括变元、联接词、量词;•非逻辑符号:包括常元、函词、谓词;•仅有个体变元;•按形成规则构成的合式公式集合•(字符集)定义:▪逻辑符号,包括变元、联接词、量词、逗号以及括号等,表示如下:▪(自由变元)定义:•如果变元x在公式Q中的出现不是约束出现,则称x在Q中为自由出现。
在公式Q中有自由出现的变元称为Q的自由变元,将Q中自由变元的集合记为Var(Q)。
▪定义:不出现变元的项称为基项。
▪定义:没有自由变元的公式称为语句。
▪解释(定义):设D是论域,一个解释I 由以下四部分组成:•(1) 对于每个常元c,指派D 中一个元素c。
•(2) 对于每个n元函词f,指派一个D 上的一个n元运算f。
•(3) 对于每个n元谓词Q,指派一个D 上的一个n元关系Q。
▪(结构)定义:•给定一阶语言L以及论域D和解释I,偶对<D, I>称为L的结构,记为S=<D, I>。
▪(赋值)定义:•从变元到论域D 的函数称为I中的赋值,记为σ:V→D。
▪(模型)定义:•给定一阶语言L以及它的结构S和赋值σ,偶对<S,σ>称为L的模型,记为M=<S,σ>。
▪(项的语义)定义:设L是一阶语言,U是论域,I是解释,语言L的项t的语义是D中一个对象,记为σI(t),简记为σ(t) 。
•(1) 若t是常元a,则σ(t) =aI。
•(2) 若t是变元x,则σ(t) = σ(x)。
•(3) 若t是f (t1, t2, …, tn),则σ(t) = f I(σ(t1), σ(t2), …, σ(tn))。
▪(谓词合式公式意义)定义给定一阶语言L,结构S=<D, I>和赋值函数σ:V→D,t1, t2, …, t n是项。
在模型M=<S, σ>下,公式P,Q,R的语义是确定的逻辑真值。
•(1) 若P是Q(t1, t2, …, tn),则σ(P) = QI(σ(t1), σ(t2), …, σ(tn))。
•(2) 若P是⌝Q,则σ(⌝Q) = ⌝σ(Q)。
•(3) 若P是Q∧R,则σ(Q∧R) =σ(Q) ∧σ(R)。
•(4) 若P是Q∨R,则σ(Q∨R) =σ(Q) ∨σ(R)。
•(5) 若P是Q→R,则σ(Q→R) =σ(Q) →σ(R)。
•(6) 若P是Q↔R,则σ(Q↔R) =σ(Q) ↔σ(R)。
•(7) 若P是Q⊕R,则σ(Q⊕R) =σ(Q) ⊕σ(R)。
•(8) 若P是∀xQ(x),则•(9) 若P是∃xQ(x),则▪(可满足性)定义:•定义:给定一阶语言L和它的公式Q,如果存在模型M=<S, σ>,使得σ(Q)=1成立,则称公式Q关于模型<S, σ>是可满足的,简称Q可满足,也称模型<S, σ>满足Q,记为╞M Q。
•定义:给定一阶语言L和它的公式Q,如果不存在模型M=<S, σ>,使得σ(Q)=1成立,则称公式Q关于模型<S, σ>是不可满足的,也称模型<S, σ>不满足Q,记为|≠M Q。
•定义:给定一阶语言L和它的公式集合Γ= {Q1,...,Qn},如果存在模型M=<S, σ>,使得对于每个公式Qk,Qk∈Γ,有σ(Qk)=1成立,则称公式集合Γ关于模型<S, σ>是可满足的,简称Γ可满足,也称模型<S, σ>满足Γ,记为╞MΓ,也记为σ(Γ)=1。
▪(有效性)定义•定义:若合式公式Q对于一阶语言L的任意模型M=<S, σ>均可满足,即对任意结构S和任意赋值σ成立,则称公式集合Q是永真的或有效的,记为╞Q。
•定义:若合式公式集合Γ对于一阶语言L的任意模型M=<S, σ>均可满足,即对任意结构S和任意赋值σ成立,称公式集合Γ是永真的或有效的,记为╞Γ。
•定义:若公式Q对于一阶语言L的任意模型M=<S, σ>均不可满足,即对任意结构S和任意赋值σ都不成立,称公式集合Q是永假的,记为|≠ Q。
▪(相等关系与推论关系)定义:•定义:给定一阶语言L及它的两个公式Q,R,如果存在模型M=<S, σ>,使得σ(Q) = σ(R), 则称Q与R是在模型M等值,记为Q⇔MR。
•定义:如果对于任意模型模型M=<S, σ>,都有σ(Q) = σ(R), 则称Q与R 是逻辑等价,记为Q⇔R。
•定义:给定一个语言L , Γ是一个公式集合, Q 是一个公式。
若存在模型M=<S,。
代公理系统▪(形式系统)一个形式系统应当包括以下几部分。
•(1)各种初始符号。
初始符号是一个形式系统的“字母”,经解释后其中一部分是初始概念。
•(2)形成规则。
规定初始符号组成各种合适符号序列的规则。
经解释后合式符号序列是一子句,称为系统里的合式公式或命题。
•(3)公理。
把某些所要肯定的公式选出,作为推导其它所要肯定的公式的出发点,这些作为出发点的公式称为公理。
•(4)变形规则。
变形规则规定如何从公理和已经推导出的一个或几个公式经过符号变换而推导出另一公式。
经过解释,变形规则就是推理规则。
▪(公理系统)定义:•从一些公理出发,根据演绎法,推导出一系列定理,形成的演绎体系叫作公理系统。
•公理系统的组成:•符号集;•公式集:公式是用于表达命题的符号串;•公理集:公理是用于表达推理由之出发的初始肯定命题;•推理规则集:推理规则是由公理及已证定理得出新定理的规则;•定理集:表达了肯定的所有命题。
称•6).逗号:, ;•7).括号:(, )•(2).项定义:•1).个体常元是项;•2).个体变元是项;•3).若是t1,…,t n项,则是f k n (t1,…,t n)项。
•(3).公式集合:•1).若是t1,…,t n项,则Q k n (t1,…,t n)是公式。
•2).若Q是公式,则(⌝Q)是公式;•3).若Q和R是公式,则(Q→R)是公式;•4).若Q是公式,则(∀xQ)是公式。
•(4).公理集合:•1).公理模式A 1:Q→ (R→Q)•2).公理模式A 2:(P→ (Q→R)) → ((P→Q) → (P→R))•3).公理模式A 3:(⌝Q→⌝R) → (R→Q)•4).公理模式A4:∀xQ(x)→Q(x)[x/t] 其中,项t对于Q中的x是可代入的。
•5).公理模式A5:∀x(Q→R(x)) →(Q→∀xR(x)) 其中x不是Q中自由变元。
•(5).推理规则•1).分离规则(简称MP规则):从Q和Q→R推出R。
•├Q→((Q→R)→ R)•├Q∧(Q→R)→R•├(P→Q) →((Q →R) →(P →R))•├(⌝Q→R) →((⌝Q→⌝R) →Q)•├(Q→R) →((Q→⌝R) →⌝Q)•├(⌝Q→R ∧⌝R) →Q•├(P∧Q →R) →(P →(Q →R))•├Q→(R→(Q∧R))•├(P→Q) ∧(P→R) →(P→Q ∧ R)•├(P→R) →((Q→R) →((P∨Q) →R))•├∀xR(x) ↔∀y R(y)•├∃xR(x) ↔∃y R(y)•├Q(c) →∃xQ(x)•├⌝Q(c) →⌝∀xQ(x)•├∀xR(x) →∃xR(x)•├∀x∀y R(x,y) ↔∀y∀xR(x,y)•├∃x∃y R(x,y) ↔∃y∃xR(x,y)•├∃x∀yR(x,y) →∀y∃x R(x,y)•├∀x∀yR(x,y) →∀xR(x,x)•├∃xR(x,x) →∃x∃yR(x,y)•├∀x(P(x) →Q(x)) →(∀xP(x) →∀x Q(x))M。