七年级下几何证明题46084
七年级数学几何证明题[1]
![七年级数学几何证明题[1]](https://img.taocdn.com/s3/m/59087309b8f67c1cfbd6b8c0.png)
七年级数学几何证明题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学几何证明题(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学几何证明题(word版可编辑修改)的全部内容。
七年级数学几何证明题1。
如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形, 求证:(1)DE=AB ,(2)∠EDB=60°2。
如图,在ΔABC 中,AD 平分∠BAC ,DE||AC ,EF ⊥AD 交BC 延长线于F 。
求证: ∠FAC=∠B3.已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若∠B=30∠C=50°求:(1),求∠DAE 的度数。
(2) 试写出 ∠DAE 与 ∠C — ∠B 有何关系?(不必证明)BACD4、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
C5、如图,已知DF ∥AC,∠C=∠D ,你能否判断CE ∥BD ?试说明你的理由6、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。
7、如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 、CF 交于G , 若∠BDC = 140°,∠BGC = 110°,则∠A ?G FEDCB AE DCBA8、如图,AD ⊥BC 于D,EG ⊥BC 于G,∠E =∠1,求证AD 平分∠BAC 。
七年级下几何证明题

几何证明题专项练习1. 已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.2. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.3.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______4321A CDB4. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数5.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.DEBCAH G21FEDC BA6. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.7.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.8.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
9.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数10.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba3412ABCD EEDC BAED BAC21FEDBA C11,如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.12.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.13.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.14.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.15.如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.NMG F EDCBAABCDE第18题图ENMCD16.如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE D CB A17.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F E21DCBA18.如图5-28,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2 ABECFDH G119如图,CD 是∠ACB 的平分线,∠EDC=025,∠DCE=025, ∠B=070① 证:DE//BC ②求∠BDC 的度数。
七年级几何证明题训练(含答案)

1. 已知:如图11所示,∆ABC 中,∠=C 90于E ,且有AC AD CE ==。
求证:DE =122. 已知:如图 求证:BC =3. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。
设M 为BC 的中点。
求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14【试题答案】1. 证明:取AC ADAF CDAFC =∴⊥∴∠= 又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。
“截长”即将长的线段截CB CE BCD ECD CD CD CBD CEDB EBAC B BAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==ADE E AD AEBC CE ,3. 证明:延长PM CQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线AD BC AD AEBC AE AD⊥∴<∴=>,22()AB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。
七年级数学典型几何证明50题

七年级数学典型几何证明50题初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)A BC DEF 21 ADBC∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF =CG ∠CGD=∠EFD又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE6、如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
初一几何证明题及答案

初一几何证明题及答案【篇一:七年级数学几何证明题(典型)】3.已知,如图,在△ abc中,ad,ae分别是△ abc的高和角平分线,若∠b=30dc4、一个零件的形状如图,按规定∠a=90o ,∠c=25o,∠b=25o,检验已量得∠bdc=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
db5、如图,已知df∥ac,∠c=∠d,你能否判断ce∥bd?试说明你的理由 aebc8、如图,ad⊥bc于d,eg⊥bc于g,∠e =∠1,求证ad平分∠bac。
e3gdc10、如图,将一副三角板叠放在一起,使直角的顶点重合于o,则∠aoc+∠dob11、如图,将两块直角三角尺的直角顶点c叠放在一起. (1)若∠dce=35,求∠acb的度数;(2)若∠acb=140,求∠dce的度数;(3)猜想:∠acb与∠dce有怎样的数量关系,并说明理由12、已知:直线ab与直线cd相交于点o,∠boc=45,(1)如图1,若eo⊥ab,求∠doe的度数;(2)如图2,若eo平分∠aoc,求∠doe的度数.13、已知?aob,p为oa上一点.(1)过点p画一条直线pq,使pq∥ob;(2)过点p画一条直线pm,使pm⊥oa交ob于点m;(3)若?aob?40?,则?pmo? ?adecodbad cob16、已知:线段ab=5cm,延长ab到c,使ac=7cm,在ab的反向延长线上取点d,使bd=4bc,设线段cd的中点为e,问线段ae 是线段cd的几分之一?【篇二:初中数学几何证明经典试题(含答案)】题(一)1、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二).如下图做gh⊥ab,连接eo。
由于gofe四点共圆,所以∠gfh=∠oeg, 即△ghf∽△oge,可得eogf=gogh=cocd,又co=eo,所以cd=gf得证。
eadofb2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二) a.如下图做gh⊥ab,连接eo。
初一下册几何证明题(完整版)

初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。
又因为fq=fp,em=en.fq=2dj,en=2hd。
又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。
所以do=hd+jd。
因为x=do,=h,z=dj.所以x=+z。
在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠bon=108°时。
bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。
七年级下几何证明题精华版

34ﻩ33ﻩ32
33.如图,AB//CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=370,
求∠D的度数.
34.如图,AB//CD,EF⊥AB于点E,EF交CD于点F,
已知∠1=600.求∠2的度数.
35.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=500,∠C=600,
29.如图所示,AB∥ED,∠B=48°,∠D=42°,BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.
30.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,
∠ACB=50°,求∠EDC和∠BDC的度数.
31.AD∥BC,AB∥DC,∠1=100º,求∠2,∠3的度数
ﻩ14.13.
14.AB//CD,EF⊥AB于点E,EF交CD于点F,
已知∠1=600.求∠2的度数.
15.如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.
15.
16. 如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系, 请你从所得的四个关系中任选一个加以说明.
38.如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数。38
39.如图,∠C=48°,∠E=25°,∠BDF=140°,求∠A与∠EFD的度数。
40.如图△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=________。
40
41.如图所示,已知∠A=∠1,∠E=∠2,且AC⊥EC,试证明:AB∥DE.
25、如图5,AO⊥CO,BO⊥DO,且∠AOB= ,求∠COD的度数。
七年级下册数学期末考试几何大题证明必考题精选

图①DA EC B Fl图②ABEF C lD 七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
(1)如图1, 连结DF 、BF ,说明:DF =BF ;(2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
A EB 图1D CG FA BD C GFE 图2练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE 交点记为点F . (1)BD 与CE 相等吗?请说明理由.(2)你能求出BD 与CE 的夹角∠BFC 的度数吗?(3)若将已知条件改为:四边形ABCD 与四边形AEFG 都是正方形,连结BE 、DG 交点记为点M (如图).请直接写出线段BE 和DG 之间的关系?例3、正方形四边条边都相等,四个角都是90.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由;②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由;(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;A BC FDE GP32M F G A B C DE F EAB C D②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度α,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C图 2H FG D A NM B C E 图 1H F G D A MN B C E外.(1)请探究:图(2)--(5)中,h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论. (4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为:;图(4)与图(6)中的等式有何关系?练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中,点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又 F A B C D EP M (4) A B C DE P M (3) A B C D EP M (2) A B C D EM (P )(1) A B C D E P M (5) FAB C DEP M (6) R SC B APDEFC B HGADE 因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中,h1、h2、h3、h之间的关系;(直接写出结论)⑵⑶⑷⑸(2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.例2、已知△ABC 是等边三角形,将一块含30角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.(B)ACDE F图1F ABC DEP M (4)ABCDEPM(3)ABCDE P M (2)ABCDEM (P ) (1)ABCDEP M(5)练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.填空完成推理过程:如图,∵AB ∥EF ( 已知 )∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( ) ∠ADE= ( )2.已知:如图,∠ADE =∠B ,∠DEC =115°.求∠C 的度数.3. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.4.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______4321A CDB5. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数ACD E FBDEB CAH G21FEDC BA6.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.7.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.8.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.9.如图,已知:21∠∠=,ο50=D ∠,求B ∠的度数。
10.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数ABCDEE BAEDBAC21FEDBAC11.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba341212.已知等腰三角形的周长是16cm .(1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长.13.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.14.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.15.叙述并证明“三角形的内角和定理”(要求根据下图写出已知、求证并证明)16.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.17.如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你对四个图形中的关系加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)NMG F EDC BA18.如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.19.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.20.如图,AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.21.如图,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBAABCDEENMCDBA22.如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F 21DCBA23.如图,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .B24.如图,已知:AB //CD ,AB =CD ,求证:AC 与BD 互相平分.25.如图,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2 ABECFD HG 1⊥于E,求26.如图,已知:在∆ABC中,∠=︒C90,AC=BC,BD平分∠CBA,DE AB证:AD+DE=BE.27.如图,已知:AB//CD,求证:∠B+∠D+∠BED=360︒(至少用三种方法)A BEC D28.直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.29.如图,EF∥AD,∠1 =∠2,∠BAC = 70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2 = .又因为∠1 = ∠2,所以∠1 = ∠3.所以AB∥.所以∠BAC + = 180°.又因为∠BAC = 70°,所以∠AGD = .30.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.31.如图所示,AB∥ED,∠B=48°,∠D=42°, BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.AB CD E32.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.33.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。
34.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。
35.已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。
B DE /FCA 2G3BDCABD /PCAO2336. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。
37. 已知∠1=∠2,∠2=∠3,求证:CD ∥EB 。
38.如图∠1=∠2,求证:∠3=∠4。
39. 已知∠A=∠E ,FG ∥DE ,求证:∠CFG=∠B 。
40.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a ∥b ,c ∥d 。
BD/PCO2BDE /CO 23B D /C A 234B DE FCA G 213a c d b41.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。
42.如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。
43.如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。
44.如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。
45.如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。
A B C D F E 21l l l 3412345l 21A B C D 34E BC D O A B C D F E AG H46.如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900,求证:AE ⊥DE ,AB ∥CD 。
47.如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE 。
48.已知,∠D=900,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。
49.如图,AB ∥CD ,∠1=∠2,∠B=∠3,AC ∥DE ,求证:AD ∥BC 。
50.如图,AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数ABC D321B C D E A B C D EA 21B C DF3E A 21B C D 3E AH G21FEDC BAGFEDA CFE DB AC51.如图,已知:21∠∠=,ο50=D ∠,求B ∠的度数。
52.如图,已知:∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与 ∠CBA 的外角平分线AG 所在的直线交于一点D ,则:(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由。
53.阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等。
”简称“等角对等边”,如图,在ABC V 中,已知∠ABC 和∠ACB 的平分线上交于点F ,过点F 作BC 的平行线分别交AB 、AC 于点D 、E,请你用“等角对等边”的知识说明DE=BD+CE.EDBAC21FEDBAC54.如图,AB//CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=370,求∠D的度数.55.如图,AB//CD,EF⊥AB于点E,EF交CD于点F,已知∠1=600.求∠2的度数.56.如图8,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,求证:DE=BD+CE.57.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.58.已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。
求证:(1)AB=CE;(2)AD21(AB + AC) AB D CE59.如图,已知ΔABC中,AB=AC,E是AB的中点,延长AB到D,使BD=BA,求证:CD=2CE60.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的关系;(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN•的形状,并证明你的结论。
NMCBOA61.如图,在ΔABC中,AD平分∠BAC,DE||AC,EF⊥AD交BC延长线于F。
求证:∠FAC=∠B62.如图,ΔABC中,过A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE,D,E为垂足。
求证:(1)ED||BC;(2)ED=12(AB+AC+BC);(3)若过A分别作∠ABC,∠ACB的平分线的垂线AD,AE,垂足分别为D,E,结论有无变化?请加以说明。
63.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.FEDCBA64.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=500,∠C=600,求∠DAC及∠BOA。
65.如图,△ABC中,高AD与CE的长分别为4㎝、6㎝,求AB与BC的比是多少?66.在△ABC中,AB=2BC,AD、CE分别是BC、AB边上的高,试判断AD和CE的大小关系,并说明理由。
67.如图7-1-6,△ABC的周长为18 cm,BE、CF分别为AC、AB边上的中线,BE、CF 相交于点O,AO的延长线交BC于D,且AF=3 cm,AE=2 cm,求BD的长。