Lcd液晶显示屏6大显示技术原理

合集下载

lcd屏原理

lcd屏原理

lcd屏原理LCD(Liquid Crystal Display)是一种通过电压控制液晶分子排列来实现图像显示的平面显示技术。

它广泛应用于电子设备的屏幕,如电视、计算机显示器、手机、平板电脑等。

下面是关于LCD屏幕的原理的参考内容。

一、基本原理1. 构造:LCD屏由两片平行的透明电极板组成,中间夹层有液晶分子。

每个液晶分子有一个极性主轴。

2. 分子排列:液晶分子具有两种排列方式,平行排列和垂直排列,取决于电场的作用。

当正常情况下,液晶分子处于扭曲排列状态。

3. 光的偏振性:液晶分子的扭曲排列会改变光的偏振性,使得光通过液晶分子的过程中会有相位差。

4. 电场作用:当电压施加到液晶屏上时,电场会改变液晶分子的排列状态,从而改变光的偏振性。

5. 偏振板:液晶屏上的偏振板可以控制光的传播方向。

液晶屏夹层的两侧分别有两片偏振板,它们的振动方向垂直,只有当两个偏振面的方向平行时,光才能够通过。

二、液晶屏的工作原理1. 无电压状态下:当没有电场作用时,液晶分子扭曲排列,不会改变光的偏振性,光无法通过第二片偏振板,显示器呈现黑色。

2. 施加电压:当电压施加到液晶分子上时,液晶分子排列发生改变,光的偏振性也会发生改变。

- TN(Twisted Nematic)液晶:液晶分子在无电场时呈螺旋排列,施加电场后,液晶分子变直,光能够通过。

根据电场的不同强度,液晶分子的排列也不同,显示的颜色也会有所变化。

- STN(Super Twisted Nematic)液晶:增加了螺旋角度,可以使得液晶分子的排列发生更大的变化,显示效果更加明显。

- IPS(In-Plane Switching)液晶:液晶分子的排列与面板平行,可以提供更大的视角范围和更好的色彩还原。

3. 光源:液晶屏幕背部通常还有一片或多片光源,如冷阴极荧光灯或LED灯条,它们提供背光以增强显示效果。

三、液晶屏的优势1. 能耗较低:与传统显像管显示器相比,液晶屏幕的功耗较低,可显著减少能量消耗。

LCD结构及显示原理

LCD结构及显示原理

LCD结构及显示原理液晶显示屏(LCD,Liquid Crystal Display)是一种采用液晶材料作为显示介质的平面显示技术。

下面将详细介绍LCD的结构和显示原理。

一、LCD结构液晶显示屏的基本结构由以下几个部分组成:1.增宽基板:液晶显示屏的彩色滤光片和透明电极等元件放置在增宽基板上。

增宽基板通常由玻璃或塑料制成。

2.前段板:位于增宽基板的前侧,主要涉及颜色滤光片和像素电极。

3.后段板:位于增宽基板的后侧,主要涉及液晶分子和对应的驱动电路。

4.密封剂:用于将前段板和后段板固定在一起,并且防止进入空气和水分。

5.液晶材料:液晶材料位于前段板和后段板之间,作为显示介质。

二、LCD显示原理液晶显示屏的显示原理基于液晶分子的性质以及电场的驱动。

液晶分子是一种有机化合物,具有类似液体和固体的特性。

液晶显示原理主要包括以下几个步骤:1.偏振:液晶显示屏的前段板和后段板上分别设置了交错放置的偏振片,第一个偏振片可将光线只允许通过一个方向的振动,而第二个偏振片则将只允许满足特定条件(如振动方向与第一个偏振片相同)的光通过。

2.像素控制:液晶分子是具有排列结构的,通过电场的控制可以改变液晶分子的排列方式,进而改变光线通过液晶材料的能力。

液晶材料可以分为向列或平行两种排列方式。

3.光调节:当液晶分子以不同排列方式存在时,从后段板上发出的光与前段板上的彩色滤光片交互后会发生变化,由此形成不同的光亮度和颜色。

通过上述的步骤,液晶显示屏可以显示出不同的图像和颜色。

液晶显示屏有许多优点,包括薄、轻、视角大、耗电低等。

它们被广泛应用于电视、电脑显示屏、手机等电子产品中。

在未来的发展中,液晶显示技术将进一步提高分辨率、颜色表现和能耗等方面的性能,使得液晶显示屏在各个领域中得到更广泛的应用。

单片机之LCD显示原理

单片机之LCD显示原理

单片机之LCD显示原理LCD,全称为液晶显示屏(Liquid Crystal Display),是一种广泛应用于电子产品中的显示技术,它以液晶(Liquid Crystal)的光学特性来实现图像显示。

而在单片机中使用LCD显示的原理主要包括以下几个方面。

1.液晶显示原理:液晶是一种介于固体与液体之间的物质状态,具有既像固体一样有一定的结构性,又像液体一样能随外界条件产生微小的变化。

对于LCD来说,主要使用了向列型液晶显示原理。

LCD由背光源、液晶层和偏振片等组成。

当电压施加到液晶层时,液晶层会变为各向异性,并且可以通过控制外界电压,改变液晶层中分子的方向,使光线透过的方向发生偏转。

然后通过偏振片的作用,将偏转的光线产生可见的图像。

2.单片机与LCD的连接:通常情况下,单片机与LCD之间需要连接一系列控制信号线(如宣传片、读/写、使能等)和数据信号线(如数据总线),以实现对LCD显示内容的控制。

在连接时需要严格按照LCD的数据手册进行引脚的对应和电平的匹配。

3.单片机对LCD的驱动:单片机对LCD的驱动主要分为两个步骤:初始化和数据写入。

在初始化过程中,需要将LCD的控制引脚设置为相应的工作状态,例如设置读/写使能使能、字符显示等。

在数据写入过程中,需要向LCD的数据寄存器中写入相应的数据,以实现对LCD显示内容的控制。

4.字库存储与显示:LCD显示内容通常包括文字、图形等,为了实现显示,需要将这些内容事先存储在单片机的字库中。

字库存储可以通过手动编写字符的像素点阵,也可以通过使用一些专门的字库转换软件实现自动生成。

5.屏幕刷新与更新:在LCD显示过程中,屏幕的刷新和更新是非常重要的环节。

在刷新过程中,液晶层的分子会根据新的电压变化而改变方向,从而实现显示内容的变化。

而在更新过程中,单片机需要将新的显示内容写入LCD的显存中,然后通过刷新来实现显示。

6.电源控制:由于LCD屏幕的背光通常需要消耗较大的功率,因此需要使用转换电源等来为其供电。

显示屏的原理

显示屏的原理

显示屏的原理
显示屏是一种用于显示图像和文字的设备。

它的工作原理基于光学和电学的相互作用。

显示屏通常由许多小像素组成,每个像素都具有特定的颜色和亮度。

下面将介绍几种常用的显示屏原理。

1. 液晶显示屏(LCD):液晶显示屏利用液晶材料的特性来控制
光的透过程度。

液晶屏幕中,每个像素都由液晶作为光开关来控制。

当在液晶屏幕中的电场作用下,液晶分子会重新排列,改变光的透过程度,从而实现显示效果。

2. 有机发光二极管显示屏(OLED):OLED显示屏由许多有机
发光二极管组成。

当电流通过发光二极管时,它们会释放出光。

每个像素都包含一个红、绿和蓝的发光二极管,通过控制三原色的亮度和组合方式,可以产生丰富的颜色和图像。

3. 阴极射线管显示屏(CRT):CRT显示屏工作原理基于阴极射
线管的原理。

CRT显示屏由一个电子枪、一个阴极和一个荧
光屏组成。

电子枪会发射出电子束,通过改变电子束的位置和强度,可以在荧光屏上生成不同的亮度和颜色,形成图像。

4. 平面显示屏(LED):平面显示屏使用了一种称为发光二极管
的电子元件。

每个像素都由一个发光二极管组成,通过控制每个像素的亮度和颜色,可以实现图像的显示。

这些仅是几种主要的显示屏原理,实际上还有许多其他的显示
技术和原理,如电子墨水显示屏等。

不同的显示屏原理有着各自的优缺点,适用于不同的应用场景。

lcd显示屏显示原理

lcd显示屏显示原理

lcd显示屏显示原理
LCD(液晶显示器)是一种常见的平面显示技术,它使用液晶分子的光学特性来显示图像和文字。

LCD显示屏的显示原理可以简单地描述为以下几个步骤:
1. 偏振:在LCD显示屏的顶部和底部分别放置一对偏振片,它们的偏振方向相互垂直。

当没有电流通过时,偏振片之间的光会被第一个偏振片阻挡,因此屏幕上没有显示。

2. 液晶分子排列:在两个偏振片之间,涂覆了一层液晶材料。

液晶分子会根据电场的方向来改变它们的排列方式。

液晶材料通常是在两个玻璃基板之间形成的,其中一个基板上有一组透明电极。

3. 电场控制:当LCD显示屏接收到电信号时,液晶分子会根据电场的方向进行排列。

这些电场是通过透明电极产生的,电极的位置由驱动芯片控制。

通过改变电场的方向和强度,液晶分子的排列方式也会相应地发生变化。

4. 光的旋转:当电场施加在液晶分子上时,它们会旋转偏振光的方向。

当光通过第一个偏振片时,如果液晶分子的排列方向与偏振方向一致,那么光将能够通过第二个偏振片并显示在屏幕上。

5. 显示图像:通过控制驱动芯片的电信号和电场方向,可以精确地控制液晶分子的排列,从而实现像素级的图像控制。

通过在不同的像素位置上创建不同的电场,液晶分子的旋转程度也会有所不同,从而形成图像或文字。

总结起来,LCD显示屏的显示原理主要涉及了偏振、液晶分子排
列、电场控制和光的旋转等步骤。

通过这些步骤的组合和控制,LCD 显示屏可以实现高质量的图像和文字显示。

LCD显示器的六个技术指标

LCD显示器的六个技术指标

LCD显示器的六个技术指标LCD显示器的六个技术指标1.分辨率LCD显示器的分辨率是指最佳分辨率,是能达到最好显示效果的一个分辨率。

LCD显示器的面板是由液晶做成的,液晶的特性决定了LCD显示器在其他分辨率下的显示效果会变得很差。

LCD显示器在出厂时,它的分辨率就已经固定了,只有在这个分辨率状态下才能达到最佳显示效果。

2.亮度亮度是LCD显示器重要的性能指标之一。

亮度越高决定画面显示的层次也就越丰富,从而提高画面的显示质量。

理论上显示器的`亮度是越高越好,不过太高的亮度对眼睛的刺激也比较强,因此没有特殊需求的用户最好不要过于追求高亮度。

普通LCD显示器的亮度为250cd/m2,这个亮度已经能满足普通用户的需求了。

3.对比度LCD显示器的对比度越高,图像的锐利程度就越高,显示的效果也越好。

人眼可以接受的对比度一般在250:1左右,低于这个对比度就会感觉模糊或有灰蒙蒙的感觉。

通常液晶显示器的对比度为300:1,做文档处理和办公应用已经足够了,但玩游戏和看影片时为了得到更好的效果就需要更高的对比度。

4.响应时间响应时间是LCD显示器的一个重要性能指标,它以ms(毫秒)为单位,是指一个亮点转换为暗点的速度。

响应时间过长,则用户会看到显示屏有拖尾的现象,从而影响整个画面的效果。

在响应时间不大于16ms时,一般的多媒体娱乐就不容易感觉到拖尾现象了。

5.可视角度所谓可视角度是指站在位于屏幕边某个角度时,仍可清晰看见屏幕影像的最大角度。

可视角度分为水平可视角度和垂直可视角度。

由于LCD显示器的特性,当人眼与显示屏之间的角度稍大一点儿时,就无法看清显示的内容。

因此在选购LCD显示器时,要尽量选择可视角度大的产品。

6.坏点数坏点数是衡量LCD显示器液晶面板质量好坏的一个重要指标。

所谓坏点是指颜色不发生任何变化的点。

坏点可分为亮点和暗点两类,检测坏点时,可以让显示屏显示全白或全黑的图像。

当在全白的图像上出现了黑点,表明该坏点是暗点,如在全黑的图像上有白点,则表明该坏点为亮点。

LCD显示屏的原理和应用

LCD显示屏的原理和应用1. LCD显示屏的基本原理LCD(Liquid Crystal Display,液晶显示器)是一种常见的平面显示技术,广泛应用于电子产品中。

LCD显示屏的原理基于液晶材料的光学特性和电场控制效应,通过电场控制液晶材料中液晶分子的排列来实现图像显示。

LCD显示屏由多个像素组成,每个像素包含一个红、绿、蓝三个亚像素。

LCD显示屏的工作原理可以分为两个基本步骤:通过横向的彩色滤光片和纵向的铜线排列形成液晶像素,然后通过上下两个透明导电层之间的液晶材料控制液晶的排列状态。

具体来说,LCD显示屏内部主要包括以下几个关键组件:•液晶层:液晶层由液晶分子组成,液晶分子具有特殊的排列能力,能够根据电场的控制改变排列状态。

•彩色滤光片:彩色滤光片用于吸收不同波长的光,通过叠加红、绿、蓝三个亚像素的光来显示不同的颜色。

•导电层:导电层通常由透明的氧化铟锡(ITO)材料制成,用于在液晶层上建立电场。

•后光源:后光源用于照亮液晶层,常见的后光源有冷阴极荧光灯(CCFL)和LED背光等。

液晶显示屏的原理是通过控制电场来改变液晶分子的排列状态,从而调节通过液晶层的光的穿透程度,实现亮暗的变化,进而显示出不同的图像。

2. LCD显示屏的应用由于LCD显示屏具有体积小、重量轻、功耗低、视角广等优点,因此在各种电子产品中得到广泛应用。

2.1 电子产品中的应用•手机和平板电脑:LCD显示屏是手机和平板电脑最常用的显示技术,为用户提供清晰、细腻的观看体验。

•电视和显示器:LCD技术在电视和显示器领域得到广泛应用,提供更真实、高清的视觉效果。

•数码相机:LCD显示屏在数码相机中作为即时预览和参数调节的界面,方便用户操作和观察拍摄结果。

•游戏机和手持游戏机:LCD显示屏作为游戏机的显示输出设备,给予用户沉浸式的游戏体验。

2.2 工业和科学领域的应用•仪器仪表:LCD显示屏广泛应用于仪器仪表中,为用户提供清晰的数据显示。

lcd断码屏显示原理

lcd断码屏显示原理
LCD(Liquid Crystal Display)断码屏是一种液晶显示技术,
它利用液晶材料的光电效应和电致变色效应来控制光的透过与阻止。

LCD断码屏的显示原理如下:
1. 前背光照射:LCD断码屏背后有一个光源(通常是冷光源
或LED背光),它会照射到整个显示区域。

2. 主要组件:LCD断码屏的主要组件有两层平行的玻璃基板,中间填充有液晶材料。

3. 液晶材料:液晶材料是一种特殊的有机化合物,它的分子结构可以通过施加电场而改变。

4. 液晶分子排列:在断码状态下,液晶分子是随机排列的。

光线通过液晶层时,液晶分子不会改变光线的方向或偏振。

5. 施加电场:当施加电场到液晶层时,液晶分子会根据电场方向重新排列。

液晶材料的光电效应和电致变色效应会改变光线的透过和阻止。

6. 偏振光:LCD断码屏也包含一层偏振片,用于控制光的方向。

当液晶分子排列时,它会与偏振片相互作用并改变光的透射性。

7. 控制电压:通过控制施加到液晶层的电压大小和方向,可以
改变液晶分子排列和光线的透过与阻止,从而实现图像的显示。

总结来说,LCD断码屏的显示原理是通过施加电场改变液晶
分子排列,进而改变光线的透过与阻止,从而显示图像。

电场的施加由控制电压来实现。

lcd显示电路原理

lcd显示电路原理液晶显示器(LCD)是一种广泛应用于计算机显示、电视和其他设备的平面显示技术。

LCD 显示电路的原理涉及多个组件和层次,下面是一个简单的液晶显示电路的基本原理:1. 液晶显示原理:•液晶显示的基本原理是通过改变液晶分子的排列来控制光的透过。

液晶屏由两片玻璃之间夹着液晶层构成。

液晶分子的排列状态决定了是否透过光。

在不同的电场作用下,液晶分子的排列状态发生变化,从而控制透过的光的亮度。

2. 液晶显示电路组成:•液晶显示电路通常由以下几个主要组件组成:•显示控制器(Display Controller):负责将输入信号转换成适合液晶显示的形式。

•行驱动器(Row Driver):控制液晶屏的行。

•列驱动器(Column Driver):控制液晶屏的列。

•像素数组:由液晶分子组成的像素阵列。

3. 工作原理:•显示控制器接收输入信号,将其转换为适合液晶显示的格式。

然后,行驱动器和列驱动器根据控制器的信号控制液晶屏上每个像素的液晶分子排列状态,从而控制每个像素的亮度。

4. 电压控制液晶(Voltage-Controlled Liquid Crystal):•液晶显示屏的液晶分子是通过施加电场来控制的。

通过改变电场的强度,可以改变液晶分子的排列状态。

液晶分子的不同排列状态会影响透过的光,从而实现像素的亮度变化。

5. 背光源(Backlight):•大多数液晶显示器需要一个背光源,以提供光源。

背光源通常由荧光灯或 LED 组成,通过液晶屏透过光线来形成图像。

总体而言,液晶显示电路的原理涉及控制液晶分子排列状态,从而实现对光的调节,进而形成图像。

这是一种基于光学和电学效应的先进显示技术。

lcd屏的结构和工作原理

lcd屏的结构和工作原理LCD(Liquid Crystal Display)屏是一种广泛应用于电子产品中的显示技术,其结构和工作原理是实现显示功能的关键。

一、LCD屏的结构LCD屏的结构主要包括液晶层、电极层、玻璃基板和偏光层等组成部分。

1. 液晶层:液晶层是LCD屏的核心部分,由液晶分子构成。

液晶分子具有特殊的光学性质,可以通过外界电场的作用改变其排列状态,从而实现光的传递和控制。

2. 电极层:电极层是液晶层的上下两个平行层,通过施加电压来控制液晶分子的排列状态。

电极层一般由ITO(Indium Tin Oxide)薄膜制成,具有优良的导电性能。

3. 玻璃基板:玻璃基板是液晶屏的支撑结构,承载着液晶层和电极层。

玻璃基板通常采用高度透明的玻璃材料,保证光线能够透过。

4. 偏光层:LCD屏中通常包含两个偏光层,分别位于玻璃基板的上下两侧。

偏光层的作用是过滤光线,使只有特定方向的光线能够通过。

二、LCD屏的工作原理LCD屏的工作原理基于液晶分子的光学特性和电场的作用,通过控制电场的变化来控制液晶分子的排列状态,从而实现光的传递和控制。

1. 液晶分子的排列:液晶分子在没有电场作用时呈现无序排列状态,无法传递光线。

当外界施加电场时,液晶分子会按照电场的方向进行排列,形成有序的结构。

2. 光的传递:液晶分子排列后,会改变光线的偏振方向。

经过第一个偏光层的滤波,只有特定方向的光线能够通过。

然后通过液晶层,光线的偏振方向会根据液晶分子的排列状态发生变化,进而控制光线的透过程度。

3. 电场控制:通过控制电极层施加的电压,可以改变液晶分子的排列状态。

当电压为零时,液晶分子呈现无序排列,光线无法透过,显示为黑色。

当施加适当的电压时,液晶分子排列有序,光线能够透过,显示为亮色。

4. 色彩显示:LCD屏通常采用三原色原理来显示彩色图像。

通过在液晶层中加入RGB(红、绿、蓝)三种颜色的滤光片,控制液晶分子的排列状态来实现不同颜色的显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lcd液晶显示屏6大显示技术原理
TN-扭曲向列型
一种基于表面对齐的液晶产品,液晶分子在每片玻璃表面呈90度定向。

以下面两种模式产生图像:正性和负性。

正性模式提供白色底色和黑色笔段。

负性模式提供黑色底色和白色笔段。

当两个偏光片沿垂直轴排列,如下左图,光线穿过导向层,并且沿着液晶分子的螺旋排列行进。

光线被扭曲90度,从而使它通过底层过滤器。

当施加电压后,液晶分子将改变它们的螺旋方式,光线就被底层过滤器阻挡,由于没有产生扭曲,这部分显示将呈现黑色。

复用率就是同时能显示的行数,比如,复用率为16,表示能同时显示16行的信息。

ETN-增强对比度的扭曲向列型
低成本的LCD技术,在LCD流体里面包含了染色剂,用于在负性模式下改进底色效果以增加显示对比度,像普通TN型的产品一样,只适用于1至1/4的低占空比的应用,最大可支持1/8的占空比,适用于宽温产品。

ETN类型的产品是用于需要高可读性(比如音响、空调控制器等)电子产品的理想解决方案。

HTN-高扭曲向列型
一种基于表面对齐的液晶产品,液晶分子在每片玻璃表面呈110度定向。

以下面两种模式产生图像:
(1)正性和负性。

正性模式提供白色底色和黑色笔段。

(2)负性模式提供黑色底色和白色笔段。

当两个偏光片沿垂直轴排列,如下左图,光线穿过导向层,并且沿着液晶分子的螺旋排列行进。

光线被扭曲110度,从而使它通过底层过滤器。

当施加电压后,液晶分子将改变它们的螺旋方式,光线就被底层过滤器阻挡,由于没有产生扭曲,这部分显示将呈现黑色。

STN-超级扭曲向列型
一种通过使用两种光学模式下的可调节性来实现驱动更多路数的包含更多信息内容的LCD显示技术,它采用双折射模式,一种比普通TN更好的,可以实现更高对比度以及更广显示视角的改良过的扭曲向列流体。

下图展示了一个比较典型的普通TN与STN的电压与透射光曲线的对比(通常情况下,更大的扭曲角度意味着更强的多路驱动能力)。

图上的V90和V10分别代表了光线透过率从90%降到10%的电压变化。

如下图所示,STN显示比TN显示有着更陡峭的曲线,这将给STN显示带来更高的多路驱动能力。

(事实上,STN的开发主要就是为了克服TN显示在多路驱动时遇到的困难)。

复用率就是同时能显示的行数,比如,复用率为400,表示能同时显示400行的信息。

ESTN-增强的超级扭曲向列型
增强的超级扭曲向列型显示技术是用于增强STN的显示性能的,它比Double STN和Film STN的成本更低廉,却能在宽温工作条件下拥有与上述两种显示技术几乎一样的性能。

ESTN主要应用于负性显示,并且可以通过优化背光的颜色来获得更高的对比度。

对于一些对工作温度要求比较苛刻的车载及高端工业应用来说,这种显示技术是是一种理想的方案。

产品特点:
1.透射型负性模式
2.工作温度范围宽
3.超宽视角
4.高亮,高对比度
5.占空比:1/8 ~1/136
FSTN-带补偿膜超扭曲向列型
一种在盒外额外增加膜材以补偿在白色底色下从蓝/绿到黑色的颜色偏移的LCD显示技术。

这种膜材由带双折射能力的聚合物所组成,用于去除颜色的干扰以达到缺陷补偿。

膜材被放置在显示屏上,一般位于上偏光片的下面或者上面。

另有一些补偿系统使用两张膜材,一张在后面用于对准,另一张在前面作为分散膜用于拓宽视锥。

膜材的补偿增加了可视角度,但是并不影响转换时间。

FSTN就是在普通STN显示的基础上,在玻璃上增加一层作为玻璃补偿层的聚合物膜材,而不是基于DSTN的第二层盒。

这种更简单且很划算的显示技术提供了在白底黑字下更好的显示。

ASTN-增强的超扭曲向列型
一种在盒外额外增加特殊TEP(温度追随椭圆偏光片)补偿膜的LCD显示技术。

TEP膜作为一种补偿,可以增加显示对比度并且提供了白底黑色下更好的显示效果。

Features:
1.产品更加轻薄
2.容易制成薄片
3.通过减少反光以达到更高的亮度
4.需要温度补偿驱动---用以改善在低温下的转换时间
5.成本优势
BM STN-带黑色掩膜的超扭曲向列型
在盒内增加黑色掩膜的一种技术,电极空隙间的漏光将被BM层有效地阻隔。

这种BM层能够吸收/阻隔超过99%的光波以显著地增加对比度。

带字符显示的BM STN系列是适用于需要高可读性的显示产品的理想解决方案,另外,它还可以用于搭配不同颜色的背光以满足不同的需求,比如红色、白色、琥珀色,绿色和蓝色。

BM STN型显示屏被广泛地应用于医疗器械(血压监视器)与家用电器(咖啡机、音响等)上面。

相关文档
最新文档