上海中考模拟试卷试卷
2024届上海市长宁、金山区中考语文模拟精编试卷(含解析)

2024 届上海市长宁、金山区中考语文模拟精编试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、积累1.下列说法错误的是( )..A . “三元及第”的提法来源于中国古代的科举考试制度。
这里的三元指:解元、会元、状元。
B .中国地名的来源多种多样,有的以地理上的山河命名如河南,有的以政治因素命名如南宁。
C.正月十五元宵节是中华民族的传统节日,下列诗词描绘的就是此节的见闻感受:如“月上柳梢头,人约黄昏后”“蓦然回首,那人却在灯火阑珊处”“遥知兄弟登高处,遍插茱萸少一人”“正怜火树千春妍,忽见清辉映月阑”。
D .在中国古代,名、字与号是有区别的:前者由父亲或尊长取定,后者由自己取定。
字是为了便于他人称谓,对平辈或尊辈称字出于礼貌和尊敬;号又叫别号、表号,一般只用于自称,以显示某种志趣或抒发某种情感;对人称号也是一种敬称。
“青莲居士”就属于称“号”。
2.下列关于文学名著的说法不正确的一项是( )A .《海底两万里》是法国探险小说家凡尔纳的代表作,主人公是尼摩船长,反对殖民压迫也是这部小说的重要主题。
B .《骆驼祥子》除描写了主人公样子外,还描写了祥子周围的人物,如残忍霸道的车主刘四、一步步走向毁灭的小福子、离死亡只差一步的老马和小马祖孙俩等。
C .《儒林外史》刻画了众多奔走于科举道路上的土人形象,如被吹捧为能作“天地间之至文”,竟连北宋大文学家苏轼是谁都不知道的范进。
D .小说《简 ·爱》所述故事主要发生在桑菲尔德庄园,因为简 ·爱以家庭教师身份为罗切斯特的女儿阿黛勒授课,她的生活在桑菲尔德庄园与罗切斯特产生交集,但最终她与罗切斯特分道扬镳。
2024年上海中考数学模拟练习卷三及参考答案

上海2024年中考模拟练习试卷3数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=+D .211y x =+3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC=B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数11y x =-的定义域为.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB =.(用a 和b表示)16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是三、解答题(共78分)19.(本题612282-.20.(本题8分)解不等式组:2832x x x <⎧⎨->⎩.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移()0m m>个单位得到新抛物线,且新抛物线仍经过点C,求m的值.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.2024年中考预测模拟考试一(上海卷)数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=【答案】C 【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.4442a a a +=,故该选项不正确,不符合题意;B.448a a a ⋅=,故该选项不正确,不符合题意;C.()1446a a =,故该选项正确,符合题意;D.844a a a ÷=,故该选项不正确,不符合题意;故选:C .【点评】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项的运算法则是解题的关键.2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=D .211y x =【答案】C【分析】设211x y x +=+,则原方程化为2760y y -+=,从而可得答案.【详解】解:()22611711x x x x +++=++,设211x y x +=+,3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定【答案】B【分析】根据平均数的求法求出平均数,再求出两组数据的方差,再比较即可解答.5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等【答案】C【分析】根据已知条件判断出平行四边形,再根据有一个角是直角判断矩形,最后根据矩形的性质判断正确选项即可.【详解】解:∵2AB CD ==,3BC AD ==,∴四边形ABCD 是平行四边形,∵有一个内角是直角,∴四边形ABCD 是矩形,∴对角线互相平分,对角相等,对角线相等,故A ,B ,D 正确,不合题意;对角线不一定互相垂直,故C 错误,符合题意;故选C .【点评】本题考查了矩形的判定和性质,解题的关键是根据已知条件判断出该四边形是矩形.6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC =B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=【答案】B【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形;②对角线相等的梯形是等腰梯形;③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【详解】解:A 、∵四边形ABCD 为梯形,且AD //BC ,AB DC =,∴四边形ABCD 是等腰梯形,故本选项不符合题意;B 、∠DAB =∠ABC ,不能推出四边形ABCD 是等腰梯形,故本选项符合题意;C 、∵四边形ABCD 为梯形,且AD //BC ,∠ABC =∠DCB ,∴四边形ABCD 是等腰梯形,故本选项不符合题意;D 、∵四边形ABCD 为梯形,且AD //BC ,AC DB =,∴四边形ABCD 是等腰梯形,故本选项不符合题意.故选:B .【点评】本题考查了等腰梯形的判定定理,等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.【答案】(9)(9)m m +-【分析】利用平方差公式22()()a b a b a b -=+-进行因式分解即可.【详解】解:281(9)(9)m m m -=+-,故答案为:(9)(9)m m +-.【点评】本题主要考查因式分解,掌握平方差公式是解题的关键.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数1y x =-的定义域为.【答案】1x ≠【分析】求函数的定义域就是找使函数有意义的自变量的取值范围.【详解】解:函数要有意义,则10x -≠,解得:1x ≠,故答案为:1x ≠.【点评】本题考查的知识点是函数的定义域,关键要知道函数有意义的自变量的取值范围.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.【答案】±2【分析】一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac =0,建立关于k 的等式,求出k 的值.【详解】由题意知方程有两相等的实根,∴△=b 2-4ac =k 2-4=0,解得k =±2,故答案为:±2.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.【答案】21y x =-(答案不唯一)【分析】根据二次函数的性质,抛物线开口向下a >0,与y 轴负半轴由交点c <0,然后写出即可.【详解】解:开口向上,并且与y 轴交点在y 轴负半轴,∴抛物线的表达式可以是:y =x 2﹣1.故答案为y =x 2﹣1(答案不唯一).【点评】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与y 轴的交点得到解析式.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB = .(用a 和b 表示)【答案】b a-【分析】根据题意,作出图形,由向量减法运算的三角形法则即可得到答案.【详解】解:如图所示:根据向量减法运算的三角形法则可得DB AB AD b a =-=- ,故答案为:b a - .【点评】本题考查向量的加法运算,熟练掌握向量运算法则是解决问题的关键.16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点评】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.【答案】30︒/30度18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是【答案】15r ≤≤【分析】求得B 在O 内部且有唯一公共点时B 的半径和⊙O 在B 内部且有唯一公共点时B 的半径,根据图形即可求得.【详解】解:如图,当B 在O 内部且有唯一公共点时,B 的半径为:321-=,当O 在B 内部且有唯一公共点时,B 的半径为325+=,∴如果B 与O 有公共点,那么B 的半径r 的取值范围是15r ≤≤,故答案为:15r ≤≤.【点评】本题考查了圆与圆的位置关系,注意掌握数形结合和分类讨论思想的应用.三、解答题(共78分)19.(本题612-.【答案】2【分析】根据二次根式的加减计算法则和负整数指数幂计算法则求解即可.20.(本题8分)解不等式组:2832x x x<⎧⎨->⎩.【答案】14x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由28x <得:4x <,由32x x ->得:1x >,则不等式组的解集为:14x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?【答案】(1)()6200y x x =-+>(2)6千米【分析】(1)根据高出的温度=地面温度-上升后降低的温度,列式即可得到答案;(2)把16y =-代入函数关系式进行计算即可得到答案.【详解】(1)解: 海拔高度每上升1千米,温度下降6℃,上海地面温度为20℃,()6200y x x ∴=-+>,∴y 与x 之间的函数关系式为:()6200y x x =-+>;(2)解:根据题意可得:当16y =-时,62016x -+=-,解得:6x =,∴此刻飞机离地面的高度为6千米.【点评】本题考查了一次函数的应用,读懂题目信息,根据高出的温度=地面温度-上升后降低的温度,得出函数关系式,是解题的关键.23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定等知识,相似三角形的判定与性质的运用是解题的关键.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x 轴向左平移()0m m >个单位得到新抛物线,且新抛物线仍经过点C ,求m 的值.【答案】(1)265y x x =-+,点C 的坐标是()0,5(2)6【分析】(1)用待定系数法求出二次函数的解析式,进而求出点C 的坐标;(2)把二次函数配方得到顶点式,根据题目进行平移解题即可.【详解】(1)解:把()1,0A 和()5,0B 代入2y x bx c =++010255b c b c=++⎧⎨=++⎩,解得65b c =-⎧⎨=⎩∴抛物线的表达式为265y x x =-+∴当0x =时,5y =∴点C 的坐标是()0,5(2)()226534y x x x =-+=--设平移后的抛物线表达式为()234y x m =-+-把()0,5C 代入得()25034m =-+-解得126,0m m ==∵0m >,∴6m =【点评】本题考查二次函数的解析式和抛物线的平移,掌握二次函数的图象和性质是解题的关键.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.方法二:连接OD=OB OD∴∠=∠OBD ODBDE AC⊥∴∠+∠=︒EDC C90AB AC=∴∠=∠ABC C∴∠=∠ODB C∴∠+∠=︒90 EDC ODBODE∴∠=︒.90∴⊥OD DE的半径 是OOD的切线∴是ODE方法三:连接OD=OB OD∴∠=∠OBD ODBAB AC=∴∠=∠ABC ACB∴∠=∠ODB ACB∴∥OD AC⊥DE AC方法二:、连接AM MB的直径 是OAB∴∠=︒AMB90MN AB⊥。
2024年上海市中考数学模拟试卷及答案

2024年上海市中考数学模拟试卷及答案(一)一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果函数是二次函数,则m的取值范围是()A.m=±2 B.m=2C.m=﹣2 D.m为全体实数2.(4分)已知点M(2,n)在抛物线y=﹣(x+1)(x﹣2)上,则n的值为()A.﹣1 B.0 C.2 D.33.(4分)如图,在△ABC中,AD是BC边上的高,cosC=,AB=6,AC=6,则BC的长为()A.12 B.12C.9 D.94.(4分)在Rt△ABC中,∠A=90°,AC=12,BC=13,那么tanB的值是()A.B.C.D.5.(4分)如果=,那么下列结论中正确的是()A.||=|| B.与是相等向量C.与是相反向量D.与是平行向量6.(4分)已知两条直线被三条平行线所截,截得线段的长度如图所示,则的值为()A.B.C.D.二.填空题(共12小题,满分48分,每小题4分)7.(4分)已知:=,则=.8.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c >0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论有个.9.(4分)已知抛物线y=(x+1)2向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为.10.(4分)若点A(m﹣3,y1),B(m,y2),C(m+4,y3)都在二次函数y=(x﹣m)2+1(m为常数)的图象上,则y1,y2,y3的大小关系是.11.(4分)如图,抛物线的对称轴为直线x=1,点P、Q是抛物线与x轴的两个交点,点P在点Q 的右侧,如果点P的坐标为(4,0),那么点Q的坐标为.12.(4分)在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,BC=8,CD=5,则tan∠ACD =.13.(4分)如图,在梯形ABCD中,AD平行于BC,AC⊥AB,AD=CD,cos∠DCA=0.8,BC=10,边AB的长为.14.(4分)如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部的俯角为60°,热气球A与楼的水平距离为120m,这栋楼的高度BC是m.(≈1.732,结果取整数)15.(4分)如图,在平行四边形ABCD中,对角线AC和BD相交于点O.已知=,=,那么=(用含有、的式子表示).16.(4分)如图,l1∥l2∥l3,AB=2,AC=5,DF=10,则DE=.17.(4分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,若BD=2,AD=8,则=.18.(4分)如图,已知△ABC中,∠C=90°,AB=6,CD是斜边AB的中线.将△ABC绕点A旋转,点B、点C分别落在点B′、点C′处,且点B′在射线CD上,边AC'与射线CD交于点E.如果=3,那么线段CE的长是.三.解答题(共7小题,满分78分)19.(10分)计算:(1)cos45°+sin30°•tan60°;(2)sin45°•cos45°+.20.(10分)已知:二次函数y=x2+bx+c的图象过点(﹣2,5)和(2,﹣3)两点.(1)求此二次函数的表达式,并用配方法将其化为y=a(x﹣h)2+k的形式;(2)求出函数图象与x轴、y轴的交点坐标.(3)当x取何值时,y随x的增大而增大.21.(10分)如图所示,延长平行四边形ABCD一边BC至点F,连结AF交CD于点E,若.(1)若BC=2,求线段CF的长;(2)若△ADE的面积为3,求平行四边形ABCD的面积.22.(10分)某校数学实践小组利用所学数学知识测量某塔的高度.下面是两个方案及测量数据:项目测量某塔的高度方案方案一:借助太阳光线构成相似三角形.测量:标杆长CD,影长ED,塔影长DB.方案二:利用锐角三角函数,测量:距离CD,仰角α,仰角β.测量示意图测量项目第一次第二次平均值测量项目第一次第二次平均值测量数据CD 1.61m 1.59m 1.6m β26.4°26.6°26.5°ED 1.18m 1.22m 1.2m α37.1°36.9°37°DB 38.9m 39.1m 39m CD 34.8m 35.2m 35m(1)根据“方案一”的测量数据,直接写出塔AB的高度为m;(2)根据“方案二”的测量数据,求出塔AB的高度;(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.(12分)如图,△ABC中,AB=AC,点D在BC边上,CE⊥AD延长线于E,且BC=2AE (1)求证:AD=CD;(2)求证:AB2=AD•BC.24.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2x+c(c为常数)与一次函数y=﹣x+b (b为常数)交于A、B两点,其中A点坐标为(﹣3,0).(1)求B点坐标;(2)点P为直线AB上方抛物线上一点,连接PA,PB,当S△PAB=时,求点P的坐标;(3)将抛物线y=﹣x2﹣2x+c(c为常数)沿射线AB平移5个单位,平移后的抛物线y1与原抛物线y=﹣x2﹣2x+c相交于点E,点F为抛物线y1的顶点,点M为y轴上一点,在平面直角坐标系中是否存在点N,使得以点E,F,M,N为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.25.(14分)【问题背景】如图(1),△ABC中,AB=AC,△ADE中,AD=AE,且∠BAC=∠DAE,求证:BD=CE;【变式迁移】如图(2),△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,将点A绕点D 顺时针旋转90°得到DE,连接CD、BE,求的值;【拓展创新】如图(3),△ABC中,∠ACB=90°,∠ABC=α,点D为△ABC外一点,AD⊥BD,连接CD,求线段AD、CD、BD之间的数量关系.(用含α的式子表示)参考答案一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果函数是二次函数,则m的取值范围是()A.m=±2 B.m=2C.m=﹣2 D.m为全体实数【答案】C2.(4分)已知点M(2,n)在抛物线y=﹣(x+1)(x﹣2)上,则n的值为()A.﹣1 B.0 C.2 D.3【答案】B3.(4分)如图,在△ABC中,AD是BC边上的高,cosC=,AB=6,AC=6,则BC的长为()A.12 B.12C.9 D.9【答案】A4.(4分)在Rt△ABC中,∠A=90°,AC=12,BC=13,那么tanB的值是()A.B.C.D.【答案】B5.(4分)如果=,那么下列结论中正确的是()A.||=|| B.与是相等向量C.与是相反向量D.与是平行向量【答案】B6.(4分)已知两条直线被三条平行线所截,截得线段的长度如图所示,则的值为()A.B.C.D.【答案】A二.填空题(共12小题,满分48分,每小题4分)7.(4分)已知:=,则=7 .【答案】见试题解答内容8.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c >0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论有 4 个.【答案】解:抛物线开口向下,因此a<0,对称轴为x=1>0,因此a、b异号,所以b>0,抛物线与y轴交点在正半轴,因此c>0,所以abc<0,于是①正确;抛物线的对称轴为直线x=﹣=1,因此有2a+b=0,故④正确;当x=﹣1时,y=a﹣b+c<0,而2a+b=0,所以3a+c<0,故②不正确;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,即b2>4ac,故⑤正确;抛物线的对称轴为x=1,与x轴的一个交点在﹣1与0之间,因此另一个交点在2与3之间,于是当x=2时,y=4a+2b+c>0,因此③正确;综上所述,正确的结论有:①③④⑤,故答案为:4.9.(4分)已知抛物线y=(x+1)2向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为y=(x﹣1)2+1 .【答案】y=(x﹣1)2+1.10.(4分)若点A(m﹣3,y1),B(m,y2),C(m+4,y3)都在二次函数y=(x﹣m)2+1(m为常数)的图象上,则y1,y2,y3的大小关系是y2<y1<y3.11.(4分)如图,抛物线的对称轴为直线x=1,点P、Q是抛物线与x轴的两个交点,点P在点Q 的右侧,如果点P的坐标为(4,0),那么点Q的坐标为(﹣2,0).【答案】见试题解答内容12.(4分)在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,BC=8,CD=5,则tan∠ACD=.【答案】.13.(4分)如图,在梯形ABCD中,AD平行于BC,AC⊥AB,AD=CD,cos∠DCA=0.8,BC=10,边AB的长为 6 .【答案】解:∵AD=CD,∴∠DAC=∠DCA,∵AD∥BC,∴∠DAC=∠ACB,∴∠ACB=∠DCA,∵AC⊥AB,cos∠ACD=0.8=,BC=10,∴∠CAB=90°,cos∠ACB==,解得,AC=8,∴AB===6,故答案为:6.14.(4分)如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部的俯角为60°,热气球A与楼的水平距离为120m,这栋楼的高度BC是277 m.(≈1.732,结果取整数)【答案】277m.15.(4分)如图,在平行四边形ABCD中,对角线AC和BD相交于点O.已知=,=,那么=(用含有、的式子表示).【答案】.16.(4分)如图,l1∥l2∥l3,AB=2,AC=5,DF=10,则DE= 4 .【答案】4.17.(4分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,若BD=2,AD=8,则=.【答案】.18.(4分)如图,已知△ABC中,∠C=90°,AB=6,CD是斜边AB的中线.将△ABC绕点A旋转,点B、点C分别落在点B′、点C′处,且点B′在射线CD上,边AC'与射线CD交于点E.如果=3,那么线段CE的长是.【答案】.三.解答题(共7小题,满分78分)19.(10分)计算:(1)cos45°+sin30°•tan60°;(2)sin45°•cos45°+.【答案】(1);(2)2+.20.(10分)已知:二次函数y=x2+bx+c的图象过点(﹣2,5)和(2,﹣3)两点.(1)求此二次函数的表达式,并用配方法将其化为y=a(x﹣h)2+k的形式;(2)求出函数图象与x轴、y轴的交点坐标.(3)当x取何值时,y随x的增大而增大.【答案】(1)y=x2﹣2x﹣3,y=(x﹣1)2﹣4;(2)函数图象与x轴的交点坐标为(﹣1,0)和(3,0),与y轴的交点坐标为(0,﹣3);(3)当x>1时,y随x的增大而增大.21.(10分)如图所示,延长平行四边形ABCD一边BC至点F,连结AF交CD于点E,若.(1)若BC=2,求线段CF的长;(2)若△ADE的面积为3,求平行四边形ABCD的面积.【答案】(1)6;(2)24.22.(10分)某校数学实践小组利用所学数学知识测量某塔的高度.下面是两个方案及测量数据:项目测量某塔的高度方案方案一:借助太阳光线构成相似三角形.测量:标杆长CD,影长ED,塔影长DB.方案二:利用锐角三角函数,测量:距离CD,仰角α,仰角β.测量示意图测量项目第一次第二次平均值测量项目第一次第二次平均值测量数据CD 1.61m 1.59m 1.6m β26.4°26.6°26.5°ED 1.18m 1.22m 1.2m α37.1°36.9°37°DB 38.9m 39.1m 39m CD 34.8m 35.2m 35m(1)根据“方案一”的测量数据,直接写出塔AB的高度为52 m;(2)根据“方案二”的测量数据,求出塔AB的高度;(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)【答案】(1)52;(2)塔AB的高度约为52.5m.23.(12分)如图,△ABC中,AB=AC,点D在BC边上,CE⊥AD延长线于E,且BC=2AE (1)求证:AD=CD;(2)求证:AB2=AD•BC.【答案】证明:(1)过点A作AF⊥BC于点F,如图所示.∵AB=AC,∴BC=2CF.∵BC=2AE,∴CF=AE.在Rt△ACE和Rt△CAF中,,∴Rt△ACE≌Rt△CAF(HL),∴AD=CD.(2)∵AB=AC,∴∠ACB=∠B.又∵∠DAC=∠ACD,∴∠CAD=∠B,∴△ACD∽△BCA,∴AC2=CD•BC.∵∠DAC=∠ACD,∴AD=CD,∴AB2=AD•BC.24.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2x+c(c为常数)与一次函数y=﹣x+b (b为常数)交于A、B两点,其中A点坐标为(﹣3,0).(1)求B点坐标;(2)点P为直线AB上方抛物线上一点,连接PA,PB,当S△PAB=时,求点P的坐标;(3)将抛物线y=﹣x2﹣2x+c(c为常数)沿射线AB平移5个单位,平移后的抛物线y1与原抛物线y=﹣x2﹣2x+c相交于点E,点F为抛物线y1的顶点,点M为y轴上一点,在平面直角坐标系中是否存在点N,使得以点E,F,M,N为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)B(2,﹣5);(2)P(﹣,);(3)N的坐标为:N1(6,﹣),N2(﹣2,﹣7),N3(﹣2,﹣3),N4(2,3).25.(14分)【问题背景】如图(1),△ABC中,AB=AC,△ADE中,AD=AE,且∠BAC=∠DAE,求证:BD=CE;【变式迁移】如图(2),△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,将点A绕点D 顺时针旋转90°得到DE,连接CD、BE,求的值;【拓展创新】如图(3),△ABC中,∠ACB=90°,∠ABC=α,点D为△ABC外一点,AD⊥BD,连接CD,求线段AD、CD、BD之间的数量关系.(用含α的式子表示)【答案】【问题背景】:证明见解析答;【变式迁移】:;【拓展创新】:.(二)一、选择题(本大题共6小题,共24.0分。
2024年上海市中考数学模拟押题预测试题

2024年上海市中考数学模拟押题预测试题一、单选题1x 的取值范围是( )A .x ≥12B .x ≥-12C .x >12D .x ≠122.若关于x 的一元二次方程 220kx x +-=有两个实数根,则实数k 的取值范围是( )A .18k ≤-B .18k >-且0k ≠C .18k ≥-且0k ≠D .14k ≥-且0k ≠3.对于抛物线()213y x =-+-,下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标是()13-,;④1x >-时,y 随x 的增大而减小.其中正确结论的个数为( ) A .1B .2C .3D .44.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .295.有21名同学参加学校组织的几何画板比赛,已知他们所得的分数互不相同,共设10个获奖名额.某同学知道自己的比赛成绩后,要判断自己能否获奖,在下列关于这21名同学成绩的统计量中只需知道一个量,它是( ) A .方差B .平均数C .众数D .中位数6.如图,E ,F 是正方形ABCD 的边BC 上两个动点,BE CF =.连接AE ,BD 交于点G ,连接CG ,DF 交于点M .若正方形的边长为2,则线段BM 的最小值是( )A .1B 1C 1D 1二、填空题7.已知3m a =,9n a =,则3m n a -=. 8.分解因式:22xy x y -=. 9.不等式11132x x +-<+的解集为.10x =的解是.11.2024年3月12日是我国第46个植树节,截至2023年,全国完成新增种植和低产林改造10180000亩,将数据10180000用科学记数法表示为.12.为了估计水塘中的鱼数,老张从鱼塘中捕获100条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,过一段时间,他再从鱼塘中随机打捞200条鱼,发现其中25条有记号,则鱼塘中鱼的总条数大约为.13.《孙子算经》是中国古代重要的数学著作,成书于大约1500年前,其中一道题的原文:“今三人共车,两车空;两人工车,九人步.问人与车各几何?”意思是:现有若干人乘车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各有多少?上述问题中车有辆.14.如图,在Rt ABC △中,90ACB ∠=︒,点D 、E 、F 分别是三边中点,若5CD =,则EF 的长是.15.如图,已知O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,则图中阴影部分的面积是.16.如图,在正方形ABCD 中,O 为对角线AC 、BD 的交点,E 、F 分别为边BC 、CD 上一点,且OE OF ⊥,连接EF .若150∠=︒AOE ,DF =EF 的长为.17.如图,在平面直角坐标系中,平行四边形OABC 的顶点O 是坐标原点,点A 在x 轴的正半轴上,点C 在函数()20y x x =>的图象上,点B 在函数()0k y x x=>的图象上.若OC AC =,则k 的值为.18.如图,已知线段13AB =.①分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,Q ;②画直线PQ 交AB 于点O ,以O 为圆心,OA 为半径画圆;③在O e 上取一点C ,连接BC 交PQ 于点D ,连接AC ,AD .当5tan 12B =时,ACD V 的周长是.三、解答题19.计算:()112024π12-⎛⎫-- ⎪⎝⎭20.解方程:2124x x x x -=--.21.如图,一次函数y kx b =+与反比例函数my x=的图象交于点(,4)A a 和点(2,2)B --,连接OA ,OB .(1)求一次函数的表达式; (2)求AOB V 的面积.22.如图,某处有一座塔AB ,塔的正前方有一平台DE ,平台的高5DG =米,斜坡CD 的坡度5i =:12,点A ,C ,G ,F 在同一条水平直线上.某数学兴趣小组为测量该塔的高度,在斜坡C 处测得塔顶部B 的仰角为54.5︒,在斜坡D 处测得塔顶部B 的仰角为26.7︒,求塔高AB .(精确到0.1米)(参考数据:tan54.5 1.40︒≈,sin54.50.81︒≈,cos54.50.58︒≈,tan26.70.50︒≈,sin26.70.45︒≈,cos26.70.89︒≈)23.如图,AB 是O e 的直径,点C ,E 在O e 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF 与O e 相切;(2)若45BF AFE =∠=,求BC 的长. 24.以x 为自变量的两个函数y 与g ,令h y g =-,我们把函数h 称为y 与g 的“相关函数”例如:以x 为自变量的函数2y x =与21g x =-它们的“相关函数”为221h y g x x =-=-+.()222110h x x x =-+=-≥恒成立,所以借助该“相关函数”可以证明:不论自变量x 取何值,y g ≥恒成立.(1)已知函数2y x mx n =++与函数41g x =+相交于点()1,3--、()3,13,求函数y 与g 的“相关函数”h ;(2)已知以x 为自变量的函数3y x t =+与2g x =-,当1x >时,对于x 的每一个值,函数y 与g 的“相关函数”0h >恒成立,求t 的取值范围;(3)已知以x 为自变量的函数2y ax bx c =++与2g bx c =--(a 、b 、c 为常数且0a >,0b ≠),点1,02A ⎛⎫⎪⎝⎭,点()12,B y -、()21,C y 是它们的“相关函数”h 的图象上的三个点,且满足212c y y <<,求函数h 的图象截x 轴得到的线段长度的取值范围.25.已知AB 是半圆O 的直径,C 是半圆O 上不与A 、B 重合的点,将弧AC 沿直线AC 翻折,翻折所得的弧交直径AB 于点D ,E 是点D 关于直线AC 的对称点.(1)如图,点D 恰好落在点O 处.①用尺规作图在图中作出点E (保留作图痕迹),连接AE 、CE 、CD ,求证:四边形ADCE 是菱形;②连接BE ,与AC 、CD 分别交于点F 、G ,求FGBE的值; (2)如果101AB OD ==,,求折痕AC 的长.。
2024年上海市中考英语模拟试卷及答案

2024年上海市中考英语模拟试卷及答案(一)Part1 Listening(第一部分听力)I. Listening Comprehension(听力理解)(本大题共20题, 共25分)A. Listen and choose the right picture (根据你听到的内容, 选出相应的图片)(5分)1. ________2. ___________3. _________4. ___________5. __________B. Listen to the dialogues and choose the best answer to each question your hear (根据你听到的对话和问题, 选出最恰当的答案)(5分)6. A)Fish. B)Vegetables. C)Chicken. D)Beef.7. A)Science fiction B)Horror stories. C)Love stories D)Fables8. A)In a market. B)In a bookstore C)In a restaurant. D)At a theater.9. A)By bus. B)By bike C)On foot D)By car.10. A)She thought the ticket price for the movie was too high.B)She thought the movie was too long.C) She enjoyed every minute of the movie.D)She thought the movie was not good at all.C. Listen to the passage and tell whether the following statements are true or false (判断下列句子是否符合你听到的短文内容, 符合的用“T”表示, 不符合的用“F”表示)(5分)11. Franz Kafka was a kind gentleman with three children of his own.12. The little girl lost her favorite doll in the park in Berlin.13. Kafka and the girl were successful in finding the doll on their first search.14. Kafka wrote letters pretending to be the doll and described its adventures.15. The story tells us that love can be rediscovered in unexpected ways.D. Listen to the passage and complete the following sentences (听短文, 用听到的单词完成下列句子。
2024年上海市中考第一次模拟考试语文试题(附参考答案)

2024年上海市中考第一次模拟考试语文试题(附参考答案)(考试时间:100分钟试卷满分:150分)一、古诗文(35分)(一)默写与运用。
(13分)1.默写(1)长风破浪会有时,。
(《行路难·其一》)(2)但愿人长久,。
(《水调歌头》)(3),锦鳞游泳。
(《岳阳楼记》)(4)山水之乐,。
(欧阳修《醉翁亭记》)(5)《酬乐天扬州初逢席上见赠》一诗中既是对友人关怀的感谢,也是和友人共勉,表现诗人坚定的意志和乐观的精神的句子是,。
(二)阅读下面短文,完成下面小题(22分)阅读下面的古诗文,完成下面小题。
【甲】石壕吏(节选)听妇前致词:三男邺城成。
一男附书至,二男新战死。
存者且偷生,死者长已矣!室中更无人,惟有乳下孙。
有孙母未去,出入无完裙。
老妪力虽衰,请从吏夜归。
急应河阳役,犹得备展炊。
【乙】醉翁亭记(节选)至于负者歌于途,行者休于树,前者呼,后者应,伛偻提携,往来而不绝者,滁人游也。
临溪而渔,溪深而鱼肥,酿泉为酒,泉香而酒冽,山肴野蔌,杂然而前陈者,太守宴也。
宴酣之乐,非丝非竹,射者中,弈者胜,觥筹交错,起坐而喧哗者,众宾欢也。
苍颜白发,颓然乎其间者,太守醉也。
【丙】欧阳修传(节选)范仲淹以言事①贬,在廷多论救②,司谏高若讷独以为当黜。
修贻书责之,谓其不复知人间有羞耻事。
若讷上其书,坐贬夷陵令,稍徙乾德令、武成节度判官。
久之,复校勘,进集贤校理。
庆历三年,知谏院。
时仁宗更用大臣,杜衍、富弼、韩琦、范仲淹皆在位,增谏官员,用天下名士,修首在选中。
每进见,帝延问执政,咨所宜行。
既多所张弛③,小人翕翁不便④。
修虑善人必不胜,数为帝分别言之。
初,范仲淹之贬饶州也,修与尹洙、余靖皆以直仲淹见逐,目之曰“党人”。
自是,朋党之论起,修乃为《朋党论》以进。
其略曰:“君子以同道为朋,小人以同利为朋,此自然之理也。
故为君但当退小人之伪朋,用君子之真朋,则天下治矣。
”(《宋史·欧阳修传》)【注释】①言事:直陈时弊。
2024年上海市浦东新区中考二模语文试卷含详解

浦东新区2023学年度第二学期初三年级模拟考试语文试卷(满分150分,考试时间100分钟)考生注意:1.本试卷共25题。
2.请将所有答案做在答题纸的指定位置,做在试卷上一律不计分。
一、文言文(35分)(一)(13分)1.默写与运用(1)谈笑有鸿儒,__________。
(《陋室铭》)(2)夕阳西下,__________。
(《天净沙·秋思》)(3)__________,病树前头万木春。
(《酬乐天扬州初逢席上见赠》)(4)小明竞赛失利一蹶不振,作为他的好友,你可以引用《游山西村》中的名句“__________,__________”来鼓励他重燃斗志。
(二)(22分)阅读下列诗文,完成各题【甲】江城子·密州出猎老夫聊发少年狂,左牵黄,右擎苍,锦帽貂裘,千骑卷平冈。
为报倾城随太守,亲射虎,看孙郎。
酒酣胸胆尚开张,鬓微霜,又何妨?持节云中,何日遣冯唐?会挽雕弓如满月,西北望,射天狼。
【乙】曹刿论战十年春,齐师伐我。
公将战,曹刿请见。
其乡人曰:“肉食者谋之,又何间.焉?”刿曰:“肉食者鄙,未能远谋。
”乃入见。
问:“何以战?”公曰:“衣食所安,弗敢专也,必以分人。
”对曰:“小惠未遍,民弗从也。
”公曰:“牺牲玉帛,弗敢加也,必以信。
”对曰:“小信未孚,神弗福也。
”公曰:“小大之狱,虽不能察,必以情。
”对曰:“忠之属也,可以一战。
战则请从。
”公与之乘,战于长勺。
公将鼓之。
刿曰:“未可。
”齐人三鼓。
刿曰:“可矣!”齐师败绩。
公将驰之。
刿曰:“未可。
”下视其辙,登轼而望之,曰:“可矣。
”遂逐齐师。
【丙】梁君出猎得善言梁君①出猎,见白雁群。
梁君下车,彀弓欲射之。
道有行者,梁君谓行者:“止!”。
行者不止,白雁群骇。
梁君怒,欲射行者。
其御②公孙袭下车,抚矢曰:“君止!”梁君忿然作色而怒曰:“袭不与③其君而顾他人,何也?”公孙袭对曰:“昔齐景公之时,天大旱三年,卜之,曰:‘必以人祠④,乃雨。
’景公下堂顿首曰:‘凡吾所以求雨者,为吾民也;今必使吾以人祠,乃且雨,寡人将自当之。
2024年中考第三次模拟考试语文(上海卷)(考试版A4)

2024年中考第三次模拟考试(上海卷)语文(考试时间:100分钟试卷满分:150分)考生注意:1.本场考试时间100分钟,试卷共7 页,满分150分。
2.作答前,在答题纸指定位置填写姓名、报名号、座位号。
将核对后的条形码贴在答题纸指定位置。
3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位。
在试卷上作答一律不得分。
4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题。
5.考试结束后,将本试卷和答题卡一并交回。
一、古诗文(35分)(一)默写与运用。
(13分)1.默写(1)二十余年如一梦,。
(陈与义《临江仙·夜登小阁忆洛中旧游》)(2),路转溪桥忽见。
(辛弃疾《西江月·夜行黄沙道中》)(3),人皆有之。
(孟子《鱼我所欲也》)(4)《江城子·密州出猎》中诗人运用典故,表达渴望得到重用的诗句是:“ ,”(二)阅读下面短文,完成下面小题(22分)【甲】登幽州台歌前不见古人,后不见来者。
念天地之悠悠,独怆然而涕下!【乙】出师表(节选)①先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明,故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭鸷钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
①愿陛下托臣以讨贼兴复之效;不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎。
陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜.受恩感激。
今当远离,临表涕零,不知所言。
【丙】季布为.河东守,孝文①.时,人有言其贤者,孝文召,欲以为御史大夫。
复有言其勇,使酒②.难近。
至,留邸一月,见罢。
季布因进曰:“臣无功窃宠,待罪河东。
陛下无故召臣,此人必有以臣欺陛下者:今臣至,无所受事,罢去,此人必有以毁臣者。
夫陛下以一人之誉而召臣,一人之毁而去臣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
B
A
O 上海中考数学模拟试卷
(完成时间:100min 分钟 满分:150分 )
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分) 1、下列实数中,是有理数的为 ( )
A 、2;
B 、34;
C 、π;
D 、0.
2.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭与上月比较的一个月的节水情况统计:
那么这10个家庭的节水量(3
m )的平均数和中位数分别是( )
(A )0.42和0.4 (B )0.4和0.4 (C )0.42和0.45 (D )0.4和0.45
3、如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是……………………………………( ) A 、AD =BD ; B 、OD =CD ; C 、∠CAD =∠CBD ; D 、∠OCA =∠OCB .
4. 三角形ABC 中,∠C=90°, AC=5 ,三角形周长为12,求三角形内切圆的半径( ) A.1 B.2 C.
3
1
D.0.5 5. 如图,在梯形ABCD 中,AD ∥BC ,AB =6,BC=9,CD =4,DA =3,则分别以AB 、CD 为直径的⊙P 与⊙Q 的位置关系是(▲)
(A )内切; (B )相交; (C )外切; (D )外离.
6.如图,在Rt △ABC 中,︒=∠90C ,AB DF ⊥,垂足为F ,AC DG ⊥,垂足为G ,交AB 于点E ,5=BC ,
节水量(3m ) 0.2 0.3 0.4 0.5 0.6 家庭数(个)
1
2
2
4
1
A
B
C
D
第5题
C
E B
A
D
F
(第6题)
G
12=AC ,2.5=DE ,那么DF 等于( )
(A )8.4; (B )6.3; (C )2; (D )以上答案都不对.
二、填空题:(本大题共12题,每题4分,满分48分)
7、已知b 是a 、c 的比例中项,且a =9,c =5,那么b =_________。
8. 实数范围内因式分解:x ²+2x-1=
9.如图,底角为α的等腰△ABC 绕着点B 顺时针旋转,使得点A 与边BC 上的点D 重合,点C 与点E 重合,联结AD 、CE .已知tan α=3
4
,AB=5,则CE= .
10.从一副扑克牌中取出的两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,分别随机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是合数的概率是 .
11.如果一斜坡的坡度为i=1∶3,某物体沿斜面向上推进了10米,那么物体升高了 米. 12. 如图,E 为矩形ABCD 边BC 上自B 向C 移动的一个动点,AE EF ⊥交CD 边于F ,联结AF ,当△ABE 的面积恰好为△ECF 和△FDA 的面积之和时,量得2=AE ,1=EF ,那么矩形ABCD 的面积为 .
13.已知两圆相切,圆心距为2 cm ,其中一个圆的半径是6 cm ,则另一个圆的半径是 cm. 14. 如图,已知Rt △ABC ,︒=∠90ACB ,︒=∠30B ,D 是AB 边上一点,△ACD 沿CD 翻折, A 点恰好落在BC 边上的E 点处,则EDB cot ∠= .
15.如图,点G 是△ABC 的重心,AG ⊥GC ,AC =4,那么BG 的长为 ___________.
第14题图
A B
C
D E
F 第12题图
(第9题图)
α
C
B
A
16、如图,菱形ABCD 中,点E 、F 在对角线BD 上,
BE=DF=6
1
BD ,若四边形AECF 为正方形, 则tan ∠ABE=___________
17.两个等腰直角三角形ACB 和DCE 的位置如图4所示,点E C A 、、和点D C B 、、分别在一直线上,
︒=∠90ACB ,24=AE ,DE AB 3=,点H G 、分别是ACB ∆、DCE ∆的重心,联结GH ,那么=GH .
18. 将一副三角尺如图摆放,其中在Rt △ABC 中,90ACB ∠=︒,60B ∠=︒,在Rt △EDF 中,90EDF ∠=︒,
45E ∠=︒,点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C ,将△EDF 绕点D 顺时针方向旋转角α
(060α︒<<︒)后得到△E DF '',DE '交AC 于点M ,DF '交BC 于点N ,那么CN
PM 的值为 ;
三、(本大题共7题,19题8分,20、21每题10分,22、23、24每题12分,25题14分,满分78分)
G
C A
B
D E
H
(17题图)
第15题图
第16题图
19.(本题满分8分)
计算:(
)
1
2
121sin 45()12(31)cot 302o o
-+--⋅-+.
20. (本题满分10分)
如图,在陈海公路某直线路段MN 内限速60千米/小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C 从观测点C 测得一小车从点A 到达点B 行驶了5秒钟,已知45CAN ∠=︒,60CBN ∠=︒,200BC =米,此车超速了吗?请说明理由; (参考数据:2 1.41=,3 1.73=)
21、(本题满分10分)
如图,已知在四边形ABCD 中,BC AD //,对角线BD AC 、相交于点BD O ,平分ABC ∠,过点D 作AB DF //分别交BC AC 、于点F E 、。
求证:(1)四边形ABFD 是菱形;
(2)设AB AC ⊥,求证:EF AB OE AC ⋅=⋅。
22.(本题满分12分,第1小题5分,第2小题7分)
如图1,△ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D ; (1)求证:△ACD ∽△CBD ;
(2)如图2,延长DC 至点G ,联结BG ,过点A 作AF BG ⊥,垂足为F ,AF 交CD 于点E , 求证:2CD DE DG =⋅;
23. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)
如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.
(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.
(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).
(3)如果△PGH 是等腰三角形,试求出线段PH 的长.
24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)
如图,在平面直角坐标系xOy 中,已知抛物线2
y x bx c =++经过(0,3)A ,(1,0)B 两点,顶点为M . (1)求b 、c 的值;
(2)将OAB △绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y 轴的交点为1A ,顶点为1M ,若点P 在平移后的抛物线上,且满足△1PMM 的面积是△1PAA 面积的3倍,求点P 的坐标.
25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)
在梯形ABCD 中,AD//BC ,AB ⊥AD ,AB=4,AD=5,CD=5.E 为底边BC 上一点,以点E 为圆心,BE 为半径画⊙E 交直线DE 于点F .
H
M N
G P
O
A
B
图1
x
y
(1)
如图,当点F 在线段DE 上时,设BE x =,DF y =,试建立y 关于x 的函数关系式,
并写出自变量x 的取值范围; (2) 当以CD 直径的⊙O 与⊙E 与相切时,求x 的值;
(3) 联接AF 、BF ,当△ABF 是以AF 为腰的等腰三角形时,求x 的值。
A
B。