主板时钟电路工作原理
时钟电路基本原理

1时钟供电组成时钟电路主要由时钟发生器(时钟芯片)、、、和等组成。
● 时钟芯片时钟芯片主要有S. Winbond、 PhaseLink. C-Media、IC. IMI等几个品牌,主板上见得最多的是ICS和Winbond两种,如图6-1、图6-2所示。
● 晶振时钟芯片通常使用的晶振,如图6-3所示。
晶振与组成一个谐振回路,从晶振的两脚之问产生的输入到时钟芯片,如图6-4所示。
判断品振是否工作,可以用测量晶振两脚分别对地是否有(以上),这是晶振工作的前提条件,再用示波器测量晶振任意一脚是否有与标称频率相同的振荡正弦波输出(这是最准确的方法)。
在没有示波器的情况下,可以直接更换新的晶振和谐振电容,用替换法来排除故障。
2 时钟电路工作原理时钟电路的1=作原理图,如图6-5所示。
时钟芯片有电压输入后(有的时钟芯片还有一组电压),再有一个好信号,表示主板各部位所有的供电止常,于是时钟芯片开始工作。
晶振两脚产生的基本频率输入到时钟芯片内部的,从振荡器出来的基本频率经过“频率扩展锁相网路”进行频率扩展后输入到各个,最后得到不同频率的时钟输出。
初始默认输出频率由频率选择锁存器输入引脚FS(4:0)设置,之后可以通过IIC总线再进行设置。
多数时钟芯片都支持IIC总线控制,通过一根双向的数据线(SD ATA)和一根时钟线( SCLK)对芯片的时钟输出频率进行设置。
图6-5中:48MHz USB与48MHz DOT为固定48MHz时钟输出;3V66(3:1)共3组为的66MHz时钟输出:CPUCLKT (2:0)共3组为CPU时钟输出;CPUCLKC (2:0)共3组为CPU时钟输出,与CPUCLKT互为;CLK (6:0)共7组为 33MHz 的PCI时钟输出,输出到PCI插槽,有多少个PCI插槽就使用多少组。
主板的时钟分布如图6-6所示,内存总线时钟由北桥供给,部分主板电路设计有独立的内存时钟发生器,如图中虚线所示。
电脑主板时钟电路

系统时钟电路还负责协调 不同硬件模块之间的通信 和同步。
总线时钟电路
01
总线时钟电路是电脑主板上用于 驱动系统总线(如PCI、PCIe等 )的时钟电路。
02
它通过将系统时钟信号分频或倍 频,产生适合不同总线规范的时
钟信号。
总线时钟电路对于确保总线数据 传输的稳定性和正确性至关重要 。
03
总线时钟电路还支持总线上的设 备之间的通信和同步操作。
电脑主板时钟电路
目录
CONTENTS
• 电脑主板时钟电路概述 • 电脑主板时钟电路的类型 • 电脑主板时钟电路的元件与组件 • 电脑主板时钟电路的故障诊断与维修 • 电脑主板时钟电路的未来发展
01 电脑主板时钟电路概述
定义与功能
定义
电脑主板时钟电路是电脑主板上负责 产生和管理时钟信号的电路,为电脑 各部分提供稳定的时钟基准。
故障排除的关键
在电脑故障排除中,主板时钟电路的 检测是关键步骤之一,因为很多故障 可能与时钟电路有关。
02 电脑主板时钟电路的类型
实时时钟(RTC)电路
01
实时时钟(RTC)电路是电脑主板上用于提供系统当前时间和日期的 电路。
02
它通常由石英晶体振荡器驱动,以提供稳定的计时基准。
03
RTC电路通常具有后备电池,以在系统断电时保持时钟的连续运行。
高精度时钟电路的发展将推动相关领域的技术进步,例如通信协议、数据 处理算法等。技术进步Fra bibliotek创新01
随着材料科学、微电子学和封 装技术的发展,电脑主板时钟 电路的性能将得到进一步提升 。
02
新的设计理念和算法将不断涌 现,例如基于人工智能的时钟 同步算法、基于云计算的时钟 服务等等。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机主板上的一个重要组成部分,它负责产生和分配各个硬件设备所需的时钟信号,确保计算机系统的正常运行。
本文将详细介绍主板时钟电路的工作原理。
二、主板时钟电路的组成主板时钟电路主要由以下几个部分组成:1. 晶体振荡器:晶体振荡器是主板时钟电路的核心部件,它通过振荡产生稳定的时钟信号。
晶体振荡器通常由一个晶体谐振器和振荡电路组成,晶体谐振器的振荡频率决定了时钟信号的频率。
2. 时钟发生器:时钟发生器负责将晶体振荡器产生的时钟信号进行分频和倍频处理,以产生不同频率的时钟信号,供不同硬件设备使用。
3. 时钟分配器:时钟分配器将时钟信号分配给各个硬件设备,确保它们能够按照正确的时序进行工作。
三、主板时钟电路的工作原理主板时钟电路的工作原理如下:1. 晶体振荡器工作原理:当外部施加一个电场时,晶体谐振器中的晶体会发生压电效应,产生机械振动,并将这种振动转化为电信号。
晶体振荡器的振荡频率由晶体的物理特性和谐振器的电路参数决定。
晶体振荡器产生的时钟信号非常稳定,可以提供高精度的时钟信号。
2. 时钟发生器工作原理:时钟发生器接收晶体振荡器产生的时钟信号,通过分频和倍频的方式,将时钟信号的频率调整到不同的倍数。
例如,将晶体振荡器产生的1MHz时钟信号经过倍频处理,可以得到2MHz、4MHz等频率的时钟信号。
时钟发生器的倍频和分频比例可以根据不同的硬件设备的需求进行调整。
3. 时钟分配器工作原理:时钟分配器将时钟信号分配给各个硬件设备,确保它们能够按照正确的时序进行工作。
时钟分配器通常采用多级分配结构,将时钟信号从主时钟线上分配到各个从时钟线上,以减小时钟信号的延迟和失真。
时钟分配器还可以根据不同硬件设备的需求,提供不同的时钟相位和时钟频率。
四、主板时钟电路的优化措施为了提高主板时钟电路的性能和稳定性,可以采取以下优化措施:1. 选择高质量的晶体振荡器:晶体振荡器的质量对时钟信号的稳定性有很大影响,选择质量好的晶体振荡器可以提供更稳定的时钟信号。
主板各电路工作原理

主板各电路工作原理主板是计算机中最重要的硬件设备之一,它充当着其他硬件设备之间的连接器,起到传输信号、供电、数据处理等重要功能。
主板中的各个电路起着关键作用,下面将对主板的几个重要电路进行详细介绍。
1.电源电路:主板上的电源电路负责将电源转换为各个部件所需要的电压和电流。
一般来说,电源电路主要由电源插槽、变压器、整流电路、滤波电路、稳压电路等组成。
电源插槽用于连接电源,变压器用于将电源的交流电转换为适合主板工作的直流电,整流电路将交流电转换为直流电,滤波电路消除电源中的杂波,稳压电路则确保主板上各个部件获得稳定的电压。
2.时钟电路:时钟电路是主板上的一个重要部分,它负责产生和分发时钟信号,为其他设备提供稳定的时钟信号。
主板的时钟电路通常由晶体振荡器和时钟发生器组成。
晶体振荡器负责产生基础时钟信号,时钟发生器则将基础时钟信号分频、倍频,并进行相应的调整与校准,以确保主板各个部件工作在正确的频率下。
3.CPU电路:CPU电路是主板上最为复杂的电路之一,它主要负责将处理器与其他部件连接起来。
CPU电路由前端总线电路、复位电路、时序电路、存储器控制电路、数据总线电路、地址总线电路等组成。
前端总线电路负责将处理器与其他硬件设备连接,复位电路在启动或者重新启动时将处理器初始化为初始状态,时序电路根据时钟信号控制数据传输的时序,存储器控制电路负责管理存储器操作,数据总线电路负责传输数据,地址总线电路负责传输内存地址等。
4.显卡电路:显卡电路是用于处理显示输出的电路,它负责将计算机内部的图形数据转换为显示器可识别的信号进行显示。
显卡电路主要由图形芯片、显存、DAC(数字到模拟转换器)等组成。
图形芯片负责生成和处理图像数据,显存用于存储图形数据,DAC将数字信号转换为模拟信号以供显示器显示。
5.声卡电路:声卡电路是用于处理声音输入和输出的电路,它主要负责将声音信号转换为计算机可识别的数字信号或者将数字信号转换为声音信号。
主板时钟电路工作原理

主板时钟电路工作原理主板时钟电路是计算机硬件中的一个重要组成部分,它负责产生和管理计算机系统中的各种时钟信号,确保各个硬件设备能够按照统一的时间基准进行工作。
本文将详细介绍主板时钟电路的工作原理。
一、主板时钟电路的作用主板时钟电路的主要作用是为计算机系统提供统一的时钟信号,以保证各个硬件设备之间的协调工作。
时钟信号的产生和分配是计算机系统中非常重要的一个环节,它直接影响到计算机的稳定性和性能。
二、主板时钟电路的组成主板时钟电路由时钟发生器、时钟分频器和时钟分配器三部分组成。
1. 时钟发生器时钟发生器是主板时钟电路中的核心部件,它负责产生基准时钟信号。
基准时钟信号的频率通常为几十兆赫兹,它是计算机系统中所有时钟信号的参考。
时钟发生器可以采用晶体振荡器或者压控振荡器等元件来产生高精度的时钟信号。
2. 时钟分频器时钟分频器用于将基准时钟信号进行分频,得到不同频率的时钟信号,以满足各个硬件设备的工作需求。
分频器通常采用计数器和锁存器等元件来实现,它可以将基准时钟信号分频为CPU时钟、内存时钟、总线时钟等不同频率的时钟信号。
3. 时钟分配器时钟分配器负责将分频后的时钟信号分配给各个硬件设备。
它通过时钟总线将时钟信号传输到不同的硬件设备上,确保它们按照统一的时间基准进行工作。
时钟分配器通常采用多路选择器和缓冲器等元件来实现,它可以根据不同的时钟信号需求将时钟信号分配给不同的硬件设备。
三、主板时钟电路的工作原理主板时钟电路的工作原理可以分为时钟信号的产生、分频和分配三个步骤。
1. 时钟信号的产生主板时钟电路首先通过时钟发生器产生基准时钟信号。
时钟发生器可以根据晶体振荡器或者压控振荡器的工作原理,产生稳定的时钟信号。
基准时钟信号的频率通常为几十兆赫兹,它是计算机系统中所有时钟信号的参考。
2. 时钟信号的分频基准时钟信号经过时钟分频器进行分频,得到不同频率的时钟信号。
时钟分频器通常采用计数器和锁存器等元件,根据预设的分频系数将基准时钟信号进行分频。
主板时钟电路工作原理

主板时钟电路工作原理标题:主板时钟电路工作原理引言概述:主板时钟电路是计算机主板中的一个重要部份,它负责控制计算机系统中各个部件的时序和频率,确保它们能够正常运行。
了解主板时钟电路的工作原理对于维护和升级计算机系统非常重要。
本文将详细介绍主板时钟电路的工作原理。
一、时钟信号的生成1.1 晶振振荡器:主板时钟电路中通常采用晶振振荡器来产生稳定的时钟信号。
1.2 分频器:晶振振荡器输出的时钟信号经过分频器进行分频,得到不同频率的时钟信号。
1.3 时钟信号输出:分频后的时钟信号通过时钟发生器输出到主板的各个部件。
二、时钟信号的分配2.1 CPU时钟信号:主板时钟电路会将时钟信号分配给CPU,以控制CPU的运行速度。
2.2 内存时钟信号:时钟信号还会被分配给内存模块,确保内存能够按照正确的时序读写数据。
2.3 其他部件时钟信号:主板时钟电路还会将时钟信号分配给其他重要的部件,如显卡、硬盘等。
三、时钟信号的同步3.1 时钟同步电路:为了确保各个部件能够同步运行,主板时钟电路中会设置时钟同步电路。
3.2 时序控制:时钟同步电路会控制各个部件的时序,确保它们按照正确的顺序进行数据处理。
3.3 时钟分频:时钟同步电路还会根据各个部件的需要对时钟信号进行分频,以满足不同部件的工作频率要求。
四、时钟信号的调节4.1 时钟频率调节:主板时钟电路中通常会设置时钟频率调节器,可以根据需要调节时钟频率。
4.2 时钟延迟调节:时钟电路还会设置时钟延迟调节器,用于调节时钟信号的延迟时间。
4.3 时钟相位调节:时钟电路还会设置时钟相位调节器,用于调节时钟信号的相位。
五、时钟信号的稳定性5.1 电源稳定性:主板时钟电路对于电源的稳定性要求很高,确保时钟信号的稳定性。
5.2 温度影响:温度的变化会影响晶振振荡器的频率稳定性,主板时钟电路会采取措施来降低温度对时钟信号的影响。
5.3 信号干扰:主板时钟电路还会采取屏蔽措施,减少外部信号对时钟信号的干扰,确保时钟信号的稳定性。
主板时钟电路工作原理

主板时钟电路工作原理一、引言主板时钟电路是计算机主板上的一个重要组成部分,它负责产生和分配时钟信号,为计算机的各个组件提供同步的时钟信号。
本文将详细介绍主板时钟电路的工作原理。
二、主板时钟电路的作用主板时钟电路的主要作用是产生稳定的时钟信号,并将其分配给计算机的各个组件,以保证它们能够按照预定的频率和时间序列进行工作。
时钟信号在计算机中起到了类似于心脏的作用,是计算机各个部件之间进行协调和同步的关键。
三、主板时钟电路的组成1. 晶体振荡器:主板时钟电路中的核心部件是晶体振荡器。
晶体振荡器由一个晶体和相关的电路组成,它能够产生稳定的振荡信号。
晶体振荡器的频率由晶体的物理特性决定,一般为几十兆赫兹(MHz)或更高。
晶体振荡器的输出信号经过分频电路进行分频后,得到计算机所需的各个频率的时钟信号。
2. 时钟分频电路:主板时钟电路中的另一个重要组成部分是时钟分频电路。
时钟分频电路能够将晶体振荡器输出的高频信号进行分频,得到计算机所需的各个频率的时钟信号。
例如,CPU常用的时钟频率有100MHz、133MHz等。
时钟分频电路一般采用锁相环(PLL)技术,通过调整分频比例来实现对时钟频率的精确控制。
3. 时钟分配电路:主板时钟电路还包括时钟分配电路,它负责将分频后的时钟信号分配给计算机的各个组件。
时钟分配电路一般采用时钟信号缓冲器和分配器,以确保时钟信号能够准确地传递给各个组件,并保持信号的稳定性和一致性。
四、主板时钟电路的工作原理主板时钟电路的工作原理可以分为以下几个步骤:1. 晶体振荡器产生振荡信号:晶体振荡器中的晶体受到外界的激励后,会产生一个稳定的振荡信号。
晶体振荡器的频率由晶体的物理特性决定。
2. 时钟分频电路进行分频:晶体振荡器的输出信号经过时钟分频电路进行分频,得到计算机所需的各个频率的时钟信号。
时钟分频电路通过调整分频比例来实现对时钟频率的精确控制。
3. 时钟分配电路分配时钟信号:分频后的时钟信号经过时钟分配电路的缓冲和分配,被传递给计算机的各个组件。
简述主板时钟电路的工作过程及检修流程

母板上的时钟电路就像大交响乐团的指挥器,协调了所有截肢者的和
谐操作。
这是系统的大师,确保CPU,记忆,和外围人物都跳到同一个节拍上。
你问它怎么工作的?嗯,一切都从水晶振荡器开始,一
个小的守时病毒,设置完美的节奏。
频率分配器步入调整节奏仅正
确的速度使截肢者跳动。
我们不要忘记控制逻辑——这个技术管弦
乐团的舞台管理者,确保所有信号在正确的时间发出,以保持整个系统的同步。
这是一次精细的表演让你的仆人能顺利地哼唱!
在修复母板的时钟电路时,重要的是要采取分步骤的方法。
检查水晶
振荡器任何物理损害或问题。
如果效果不好,就换一个符合规格的新型。
接下来,使用特殊工具来测试频率划分器和控制逻辑,以确保他
们完成任务。
如果任何部件有问题,就替换它们,使时钟电路回到轨
道上。
检查时钟电路与主板其他部分之间的连接,以了解任何松散或
损坏的电线,因为它们可以干扰时钟信号。
通过遵循这个计划,可以
发现并解决母板的时钟电路的任何问题。
本质上,母板的时钟电路在截肢器的操作中发挥着至关重要的作用,
促进了各种系统员的必要同步。
这个电路使一个晶体振荡器,频率划
分器,和控制逻辑共同工作,生成和分配稳定的时钟信号。
在处理时
钟电路问题时,必须彻底检查和测试每一方,以查明和纠正任何缺陷。
通过系统的方法,技术人员可以确保母板的时钟电路的正常运行,从
而对输出器系统的可靠操作作出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主板时钟电路工作原理
时钟电路工作原理:
DC3.5V电源经过二极管和L1(L1可以用0Ω电阻代替)进入分频器后,分频器开始工作,和晶体一起产生振荡。
在晶体的两脚均可以看到波形。
晶体的两脚之间的阻值在450-700Ω之间。
在它的两脚各有1V左右的电压,由分频器提供。
晶体两脚产生的频率总和是14.318M。
总频OSC在分频器出来后送到PCI槽的B16脚和ISA槽的B30脚(这两个脚叫OSC 测试脚)。
也有的还送到南桥,目的是使南桥的频率更加稳定。
在总频OSC的线上还有电容,总频线的对地电阻在450-700Ω之间。
总频的时钟波形幅度一定要大于2V。
如果开机数码卡上的OSC灯不亮,先查晶体两脚的电压和波形。
有电压有波形,在总频线路正常的情况下,为分频器坏。
若无电压无波形,在分频器电源正常的情况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率,有了总频,南、北桥、内存、CPU、CACHE、I/O上不一定有频率。
总频一旦正常,可以说明晶体和分频器基本正常,主要是晶体的振荡电路已经完全正常,反之就不正常。
当分频产生后,分频器开始分频,R2经分频器过来的频率送到南桥,在南桥处理过后送到PCI槽的B39脚(PCICLK)和ISA槽的B20脚(SYSCLK),这两脚叫系统时钟测试脚。
这个测试脚可以反映主板上所有的时钟是否正常。
系统时钟的波形幅度一定要大于1.5V。
在主板上,RST和CLK都是由南桥处理的。
若总频正常,如果RST和CLK都没有,在南桥电源正常的情况下,为南桥坏。
主板不开机,RST灯不正常,要先查总频。
如果在数码卡上有OSC灯和RST灯,没有CLK灯的话,先查R3输出的分频有没有。
若没有,在线路正常的情况下,一般是分频器坏。
如果CLK的波形幅度不够,那得先查R3输出的幅度够不够。
若不够,一般为分频器坏。
若够,查南桥的电压够不够。
若够,南桥坏;不够,查电源电路。
R1将分频器分过来的频率送给CPU的第6脚(在CPU上RST较旁边,见图纸),这
个脚为CPU时钟脚。
CPU如果没有时钟,是绝对不会工作的。
CPU的时钟有可能由北桥提供。
如果南桥上有CLK信号而CPU上没有,就可能是分频器或南桥坏。
R4为I/O提供频率。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
频率发生偏移,是晶体电容所导致的。
它的现象是刚开机就死机,运行98出错,分频器本身坏了,会导致频率上不去,和晶体无关。
CPU的两边为控制处理(位置见图),控制南桥和分频器,当频率发生偏移,会自动调整。
当CACHE短路会引起不开机,开路不会导致不开机故障。
如果不读内存(C1、C6、D3、D4),多为CACHE内部或数据线坏。
如果应显示却无显示(2A、0D),一般也是CACHE 坏。
开机即死机,也是CACHE坏。
进入C盘慢或者运行windows死机,也多为CACHE 坏.若不进C盘,那一般为TAG或其电路有故障。
主板时钟电路工作原理
时钟电路工作原理:3.5电源经过二极管和电感进入分频器后,分频器开端工作,和晶体一同产生振荡,在晶体地两脚均能够看到波形。
晶体地两脚之间地阻值在450---700欧之间。
在它地两脚各有1V左右地电压,由分频器提供。
晶体两脚常生地频率总和是14.318M。
总频(OSC)在分频器出来后送到PCI槽地B16脚和ISA地B30脚。
这两脚叫OSC测试脚。
也有地还送到南桥,目地是使南桥地频率愈加稳定。
在总频OSC线上还电容。
总频线地对地阻值在450---700欧之间,总频时钟波形幅度肯定要大于2V电平。
假如开机数码卡上地OSC灯不亮,先查晶体两脚地电压和波形;有电压有波形,在总频线路正常地状况下,为分频器坏;无电压无波形,在分频器电源正常状况下,为分频器坏;有电压无波形,为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。
有了总频,也不肯定有频率。
总频肯定正常,能够说明晶体和分频器根本上正常,首要是晶体地振荡电路曾经完全正常,反之就不正常。
当总频产生后,分频器开端分频,R2将分频器分过来地频率送到南桥,在南桥处理过后送到PCI槽B8和ISA地B20脚,这两脚叫系统测试脚,这个测试脚能够反映主板上一切地时钟能否正常。
系统时钟地波形幅度肯定要大于1.5V,这两脚地阻值在450---700欧之间,由南桥提供。
在主板上RESET和CLK者是南桥处理地,在总频正常下,假如RESET和CLK都没有,在南桥电源正常状况下,为南桥坏。
主板不开机,RESET不正常,先查总频。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
波形地作用PCB上地任狠 条走线在通过高频信号地状况下都会对该信号造成时延时,蛇形走线地首要作用是补偿“同一组相关”信号线中延时较小地部分,这些部分通常是没有或比其它信号少通过另外地逻辑处理;最典型地就是时钟线,通常它不需经过任何其它逻辑处理,因而其延时会小于其它相关信号。
高速数字PCB板地等线长是为了使各信号地延迟差保持在一个范围内,保证系统在同一个星期期内读取地数据地有效性(延迟差超过一个时钟周期时会错读下一个星期期地数据),通常要求延迟差不超过1/4时钟周期,单位长度地线延迟差也是固定地,延迟跟线宽,线长,铜厚,
板层结构相关,但线过长会增大分布电容和分布电感,使信号质量,所以时钟IC引脚通常都接RC端接,但蛇形走线并非起电感地作用,相反地,电感会使信号中地上升元中地高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽地两倍,信号地上升时间越小就越易受分布电容和分布电感地影响.因为应用场所不同具不同地作用,假如蛇形走线在电脑板中出现,其首要起到一个滤波电感地作用,提高电路地抗干扰才能,电脑主机板中地蛇形走线,首要用在一些时钟信号中,如PCIClk,AGPClk,它地作用有两点:
1、阻抗匹配
2、滤波电感。
对一些重要信号,如INTEL HUB架构中地HUBLink,一共13根,跑233MHz,要求必需严格等长,以消除时滞造成地隐患,绕线是唯一地解决方法。
通常来讲,蛇形走线地线距>=2倍地线宽。
PCI板上地蛇行线就是为了顺应PCI 33MHzClock地线长要求。
若在通常通常PCB板中,是一个分布参数地LC 滤波器,还可作为收音机天线地电感线圈,短而窄地蛇形走线可做保险丝等等.
电脑主板时钟电路工作原理
时钟电路的工作原理:DC3.5V电源经过二极管和L1(L1可以用0欧电阻代替)进入分频器后,分频器开始工作。
,和晶体一起产生振荡,在晶体的两脚均可以看到波形。
晶体的两脚之间的阻值在450-700之间。
在它的两脚各有1V左右的电压,由分频器提供。
晶体产生的频率总和是14。
318M。
总频OSC在分频器出来后送到PCI的B16脚和ISA的B30脚,这两脚叫OSC测试脚。
也有的还送到南桥,目的是使南桥的频率更加稳定。
在总频OSC的线上还有电容,总频线的对地阻值在450-700欧之间。
总频的时钟波形幅度一定要大于2V。
如果开机数码卡上的OSC灯不亮,先查晶体两的电压和波形。
有电压有波形,在总频线路正常的情况下,为分频器坏;无电压无波形,在分频器电源正常的情况下,为分频器坏;有电压无波形为晶体坏。
没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。
有了总频,南、北桥、内存、CPU、CACHE、I/O上不一定有频率。
总频一旦正常,分频器开始分频,R2将分频器分过来的频率送到南桥,在面桥处理过后送到PCI的B39脚(PCICLK)和ISA的B20脚(SYSCLK),这两脚叫系统时钟测试脚。
这个测试脚可以反映主板上所有的时钟是否正常。
系统时钟的波形幅度一定要大于1。
5V,这两脚的阻值在450-700欧之间,由南桥提供。
在主板上,RST和CLK都是由南桥处理的,在总频正常,如果RST和CLK都没有,在南桥电源正常的情况下,为南桥坏。
主板不开,RST不正常,是先查总频。
在数码卡上有OSC灯和RST灯,没有CLK灯的故障:先查R3输出的分频有没有,没有,在线路正常的情况下,分频器坏。
CLK的波形幅度不够:查R3输出的幅度够不够,不够,分频器坏。
够,查南桥的电压够不够,够南桥坏;不够,查电源电路。
R1将分频器分过来的频率送给CPU的第六脚,这个脚为CPU时钟脚。
CPU如果没有时钟,是绝对不会工作的,CPU的时钟有可能是由北桥提供。
如果南桥上有CLK信号而CPU上没有,就可能是分频器或南桥坏。
R4为I/O提供频率。
在主板上,时钟线比AD线要粗一些,并带有弯曲。
频率发生偏移,是晶体电容所导致的,它的现象是,刚一开机就会死机,运行98出错。
分频器本身坏了,会导致频率上不上去。
和晶体无关。
CPU的两边为控制处,控制南桥和分频器,当频率发生偏移,会自动调整。