10.列方程解应用题──有趣的行程问题(含答案)+
列方程解应用——有趣的行程问题10

列方程解应用——有趣的行程问题10列方程解应用——有趣的行程问题10假设有两个人,小明和小红,他们分别从A地和B地出发,目的地是C地。
从A地到C地的距离为x公里,从B地到C地的距离为y公里。
他们以相同的速度旅行,小明在起点A地停留了t分钟后出发,小红在起点B地停留了s分钟后出发。
设小明的速度为v公里/分钟,则小红的速度也为v公里/分钟。
在行程中,如果小明和小红相遇了,则他们一起继续前进,直至到达C地;如果他们没有相遇,则两人各自独立行进到达各自的终点。
问题一:小红在起点B地的停留时间是小明在起点A地的停留时间的两倍,求小明和小红一起旅行的时间。
解答一:设小明在起点A地停留的时间为t分钟,则小红在起点B地的停留时间为2t分钟。
设小明和小红一起旅行的时间为T分钟。
如果他们相遇了,则相遇的位置距离C地的距离为x-v*t公里(即小明在起点A地行进的距离),同时也是小红在起点B地行进的距离。
因此,小红行进的时间为(2t)*v/v=2t分钟。
则小明行进的时间为t分钟,小红行进的时间为2t分钟,相遇后共同行进的时间为T-t-2t=T-3t分钟。
如果他们没有相遇,则小明行进的距离为x公里,小红行进的距离为y公里,小明行进的时间为t分钟,小红行进的时间为(2t+s)分钟。
因此,小明行进的速度为x/t公里/分钟,小红行进的速度为y/(2t+s)公里/分钟。
由于小明和小红以相同的速度旅行,由速度=距离/时间,我们可以得到x/t=y/(2t+s)。
综上所述,我们可以列出方程组:x - vt = 2v(2t)x/t=y/(2t+s)通过求解这个方程组,可以求得小明和小红一起旅行的时间T。
问题二:在问题一的条件下,求小红从起点B地到达终点C地的时间。
解答二:根据问题一的条件,我们已经知道小明和小红一起旅行的时间为T分钟。
如果他们相遇了,则小红从起点B地到达终点C地的时间为2t分钟。
如果他们没有相遇,则小红行进的距离为y公里,小红行进的时间为(2t+s)分钟。
列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。
求汽车行驶的时间x。
- 解析:汽车行驶的路程为速度乘以时间,即60x千米。
总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。
可列方程60x=230,解得x = 23/6小时。
2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。
经过x小时两车相遇,求x的值。
- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。
经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。
3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。
- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。
小明每秒比小亮多跑5 - 3 = 2米。
可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。
4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。
- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。
5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。
一元一次方程应用行程问题含答案

(1)求甲从A到B地所需要的时间.
10.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,火车的长度为180 m,求隧道的长度和火车的速度.
11.东南中学租用两辆小轿车(设速度相同)同时送二名带队老师及 名七年级的学生到育才中学参加数学竞赛,每辆车限坐 人(不包括司机).其中一辆小轿车在距离育才中学 的地方出现故障,此时距离竞赛开始还有 分钟,唯一可利用的交通工具是另一辆小轿车,且这辆车的平均速度是 ,人步行的速度是 (上、下车时间忽略不计).
8.双“11”期间,某快递公司的甲、乙两辆货车分别从相距335km的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2h时,甲车先到达配货站C地,此时两车相距35km,甲车在C地用1h配货,然后按原速度开往B地;乙车继续行驶0.5h时,乙车也到C地,但未停留直达A地.
(1)乙车的速度是_____km/h,B、C两地的距离是____km.
5.小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人)。小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为___________.
(完整版)列方程解决问题—行程问题

小学数学图形计算公式1正方形 C 周长S 面积a 边长 C=4a S=a X a 周长S 面积a 边长 周长=(长+宽)X 2 C=2(a+b)面积=长乂宽S=ab 3三角形 s 面积a 底h 高 面积=底乂咼* 2 s=ah * 2三角形高=面积X 2 +底 三角形底=面积 X 2+高6平行四边形 s 面积a 底h 高 面积=底乂咼s=ah 7梯形 s 面积a 上底b 下底h 高面积=(上底+ 下底)X 咼* 2s=(a+b) X h * 2一、列方程解应用题的基本步骤 1. 设未知数 应认真审题,分析题中的数量关系,用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要 漏写。
教学内容一般运算规则 1每份数X 份数=总数 2 1倍数X 倍数=几倍数 3速度X 时间=路程 程 甲的路程一乙的路程 4单价X 数量=总价 5工作效率X 工作时间=工作总量 工作效率 加数+加数=和 被减数-减数=差 因数X 因数=积被除数十除数=商 总数十每份数=份数 几倍数十1倍数=倍数 路程*速度=时间 路程*时间=速度=多走的路程总价*单价=数量 总价*数量=单价 工作总量十工作效率=工作时间 总数十份数=每份数几倍数十倍数=1倍数甲的路程+乙的路程=总路工作总量*工作时间=和—一个加数=另一个加数 被减数-差=减数 积十一个因数=另一个因数 被除数十商=除数差+减数=被减数商X 除数=被除数 周长=边长X 4 面积=边长X 边长 2长方形C2.寻找相等关系可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。
3.列方程列方程应满足三个条件:各类是同类量,单位一致,两边是等量。
4.解方程方程的变形应根据等式性质和运算法则。
5.写出答案检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。
二、解行程问题的应用题要用到路程、速度、时间之间的关系,如果用s、v、t分别表示路程、速度、时间,那么s、V、t三个量的关系为s= vt ,或V= S宁t,或t= S宁V 。
行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。
乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
一元一次方程解应用题-行程问题专项练习 含答案)

一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。
一元一次方程应用题专题——行程问题——学生版

一元一次方程应用题专题——行程问题——学生版解:设快车开出x小时后与慢车相距600公里,由题意得,140x-90x+480=600解这个方程,50x=120∴x=2.4答:快车开出2.4小时后与慢车相距600公里。
4)分析:等量关系为:快车所走路程=慢车所走路程+480公里。
解:设快车开出x小时后追上慢车,由题意得,140x=90x+480解这个方程,50x=480∴x=9.6答:快车开出9.6小时后追上慢车。
5)分析:等量关系为:快车追上慢车所用的时间=快车比慢车快的速度所需时间。
解:设快车开出x小时后追上慢车,由题意得,140(x-1)=90x解这个方程,x=6答:快车开出6小时后追上慢车。
7千米,几小时后两人相遇?B.提高训练1.两辆车从相距720千米的两地出发相向而行,甲车先出发,每小时行80千米,2小时后乙车出发,每小时行100千米,几小时后两车相遇?2.两船从A、B两地同时出发,相向而行,两船相遇后,A船行驶了120千米,B船行驶了180千米,已知两船的速度之比为2:3,求A、B两地之间的距离。
3.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了4千米,B行驶了6千米。
已知A的速度是B的2倍,求A、B两地之间的距离。
4.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了3千米,B行驶了5千米。
已知A的速度是B的3倍,求A、B两地之间的距离。
5.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了12千米,B行驶了15千米。
已知A的速度是B的4倍,求A、B两地之间的距离。
4.甲和乙分别从两地出发,相向而行,甲先出发1小时。
当他们相距9千米时,乙行了多长时间?(改写并删除明显有问题的段落)甲和乙从两地相向而行,甲先出发1小时。
当他们相距9千米时,乙已经行驶了多长时间呢?假设他们的相遇点距离甲出发点x千米,则乙出发时距离甲出发点45-x千米。
根据题意,甲和乙的总路程为45千米,且甲的速度等于乙的速度加上9千米/小时(即他们相向而行的速度)。
黄东坡数学培优新方法详细解析第十节列方程解应用题有趣的行程问题

七年级 第十节列方程解应用题 有趣的行程问题 24题扫描二维码,下载客户端,随时随地做题支持iPhone/Android手机1.设计方案:学生乙先步行,老师带学生甲乘摩托车走出一定路程,让学生甲步行,老师返回接学生乙,然后老师带乘学生乙,与学生甲步行同时到达博物馆即可要确定摩托车中途接乙的返回点.分)设两个学生为甲、乙二人.学生乙先步行,老师带学生甲乘摩托车走了千米,共用了小时.他们比乙多行了千米)。
这时老师让甲步行前进,而自己返回接乙,中途遇到学生乙时,用了小时)。
乙遇到老师时,已经步行了千米),离博物馆还有千米)。
如果甲、乙二人搭乘摩托车的路程相同,那么,解得千米分)这样,在路上学生甲共计用的时间为小时),学生乙共计用的时间为小时分)因此,上述方案可使师生人同时出发后只用小时就可同时到达博物馆.设甲每分钟走米,乙每分钟走米,丙每分钟走米,甲出发分钟后追上乙车,由题意,得,老师带着两个学生到离学校千米的博物馆参观.老师开一辆摩托车,速度为千米小时.这辆摩托车后坐可带乘一名学生,带人后速度为千米小时.学生如果步行,速度为千米小时.请你设计一种方案,使得师生人同时出发后用个小时同时到达博物馆.2.甲、乙、丙三辆车都匀速从地驶往地.乙车比丙车晚分钟出发,出发后分钟追上丙车;甲车比乙车晚分钟出发,出发后分钟追上丙车,则甲车出发后______分钟追上乙车.3.①②③A. 上设甲的速度是每小时千米,则乙的速度是每小时千米,由题意得.检验:当时,是原方程的解.,,.此时是上午点分.故选.设乙车上的乘客看见甲车在他窗口外经过的时间是秒.由题意,有,解得.经检验,是原方程的解.即乙车上的乘客看见甲车在他窗口外经过的时间是秒.故答案为:.9.甲、乙两列客车的长分别为米和米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是___秒.10.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为千11. 3.6设火车的速度是则解得:答:这列火车的车身长为米(1)出发后___分钟时,甲乙两人第一次在正方形的顶点处相遇;(1)a=1或a=7;(2)t 的值为0.5、2、8或9.5.正确答案: B DA 边上设、两地之间的距离为千米,若在的上游时:动点Q 从B 出发,以3 cm/s 的速度,按同样的方向运动.设运动时间为t (s),当t = 5时,动点P 、Q 第一次相遇.(1)求a 的值;(2)若a > 3,在P 、Q 第二次相遇前,当动点P 、Q 在轨道上相距12cm 时,求t 的值.如图,甲、乙两人沿着边长为90米的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度同时行走,当乙第一次追上甲时在正方形的( )A AB 边上B DA 边上C BC 边上D CD 边上23.某人乘船由地顺流而下到地,然后又逆流而上到地,共乘船小时,已知船在静水中的速度为每小时千米,水流速度为每小时千米,若、两地的距离为千米,求、两地的距离.24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.列方程解应用题──有趣的行程问题知识纵横数学是一门具有广泛应用性的科学,我国著名数学家华罗庚先生曾说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学”. 数学应用题的类型很多,比较简单的是方程应用题,又以一元一次方程应用题最为基础,方程应用题种类繁多,以行程问题最为有趣而又多变.行程问题的三要素是:距离(s)、速度(v)、时间(t),•行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.熟悉相遇问题、追及问题等基本类型的等量关系是解行程问题的基础;而恰当设元、恰当借助直线图辅助分析是解行程问题的技巧.例题求解【例1】某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A 、C 两地的距离为10千米,则A 、B 两地的距离为_____千米. (重庆市竞赛题) 思路点拨 等量关系明显,关键是考虑C 地所处的位置. 解:20或203提示:C 可在AB 之间或AB 之外 【例2】如图,某人沿着边长为90米的正方形,按A →B →C →D →A ……方向,•甲以A 以64米/分的速度,乙从B 以72米/分的速度行走,当乙第一次追上甲时在正方形的(• ). A.AB 边上 B.DA 边上C.BC 边上D.CD 边上 (安徽省竞赛题)思路点拨 本例是一个特殊的环形的追及问题,注意甲实际在乙的前面 3×90=270(米)处.乙甲DCBA解:选B 提示:乙第一次追上甲用了2707分钟,72×2707=7×360+267×90【例3】父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑7步的距离与父亲跑4步的距离相等.现在儿子站在100米的中点处,•父亲站在100米跑道的起点处同时开始跑,问父亲能否在100米的终点处超过儿子?并说明理由. (2002年重庆市竞赛题)思路点拨:把问题转化为追及问题,即比较父亲追上儿子时,•儿子跑的路程与50的大小,为了理顺步长、路程的关系,需增设未知数,这是解题的关键.解:设儿子每步跑x 米,父亲每步跑y 米,单位时间内儿子跑5步,父亲跑6步,设t 个单位时间父亲追上儿子,则有5tx+50=6ty,把4y=7x 代入得5tx+50=6t ·74x,解得tx=505.5,•则赶上时,儿子跑了5tx=505.5×5 =501.1<50,故父亲能够在100米的终点前赶上儿子. 【例4】钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分? (2000年湖北省数学竞赛选拨赛试题)思路点拨 先画钟表示意图,运用秒针分别与时针、•分针所成的角相等建立等量关系,关键是要熟悉与钟表相关的知识.解:14401427分 提示:设经过x 分钟秒针第一次将分针和时针所夹的锐角平分,因为秒针、分针、时针的速度分别为360度/分、6度/分、0.5度/分,显然x 的值大于1•小于2,所以有6x-360(x-1)=360(x-1)-0.5x,解得x=14401427. 【例5】七年级93年同学在4位老师的带领下准备到离学校33千米处的某地进行社会调查,可是只有一辆能坐25人的汽车.为了让大家尽快地到达目的地,•决定采用步行与乘车相结合的办法.如果你是这次行动的总指挥,你将怎样安排他们乘车,•才能使全体师生花最短的时间到达目的地?最短的时间是多少?(师生步行的速度是5千米/时,汽车的速度是55千米/时,上、下车时间不计).思路点拨 人和车同时出发,由车往返接运,如能做到人车同时到达目的地,•则时间最短,而实现同时到达目的地的关键在于平等地享用交通工具,这样,•各组乘车的路程一BA样,步行的路程也就一样.解:要使全体师生到达目的地花的时间最短,就应让每一个学生或老师都乘到汽车,并且使他们乘车的时间尽可能地长. 97人分成四组①、②、③、④.实线表示汽车行驶路线,虚线表示步行路线.设允许每组乘车的最长时间为t•小时.图中AC=55t,CB=33-55t.汽车从C 到D(E 到F,G 到H 也一样) 用去的时间为555555t t -+=56t(小时)汽车到达C 处后,三次回头,又三次向B 处开.共用去时间3×56t+36t=112t. 这也是第一组从C 到B 步行所用的时间,所以有33-5t=112t ×5 解得t=25小时.所以全体师生从学校到目的地去的最短时间为25+2335515555-⨯=(小时).学力训练一、基础夯实1.甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,则经过________小时,甲、乙两人相距32.5•千米. 2.某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/•小时的速度从乙地返回甲地,那么此人往返一次的平均速度是_____千米/小时.3.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员揿一声嗽叭,4•秒后听到回响,已知声音的速度是每秒340米,•听到回响时汽车离山谷的距离是______米. (第15届江苏省竞赛题)4.现在是4点5分,再过_____分钟,分针和时针第一次重合.5.甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲先用2v•的速度到达中点,再用12v的速度到达B地,则下列结论中正确的是( ).A.甲、乙两人同时到达B地B.甲先到B地C.乙先到B地D.无法确定谁先到6.甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达( ).A.31层B.30层C.29层D.28层7.小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况,你能确定小明在12:00时看到的里程表上的数吗?8.如图,是某风景区的旅游路线示意图,其中B、C、D为风景点,E•为两条路的交叉点,图中数据为两相应点间的距离(单位:千米),一学生从A处出发,以2千米/•时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由.(不考虑其他因素). (2001年江西省中考题)9.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,•现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?(湖北省孝感市竞赛题)二、能力拓展10.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,•已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,•那么乙车上的乘客看见甲车在他窗口外经过的时间是______秒. (“希望杯”邀请赛试题)11.甲、乙两地相距70千米,有两辆汽车同时从两地相向出发,•并连续往返于甲、乙两地,从甲地开出的为第一辆汽车,每小时行30千米,•从乙地开出的汽车为第二辆汽车,每小时行40千米,当从甲地开出的第一辆汽车第二次从甲地出发后与第二辆汽车相遇,这两辆汽车分别行驶了______千米和______千米. (武汉市选拨赛试题)12.某商场有一部自动扶梯匀速由下而上运动,甲、乙两人都急于上楼办事,•因此在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登楼级数是甲的2倍),他登了60级后到达楼上,那么,•由楼下到楼上自动扶梯级数为________.(北京市竞赛题)13.•博文中学学生郊游,•沿着与笔直的铁路线并列的公路匀速前进,•每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A.2075B.1575C.2000D.1500 (“五羊杯”邀请赛试题)14.上午九点钟的时候,时针与分针成直角,•那么下一次时针与分针成直角的时间是( ).(第13届“希望杯”邀请赛试题)A.9时30分B.10时5分C.10时5511分 D.9时32811分15.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/小时,骑车人速度为10.8千米/小时,如果有一列火车从他们背后开过来,•它通过行了用了22秒,通过骑车人用26秒,问这列火车的车身长为多少米? (河北省竞赛题)16.2001年亚洲铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:•运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,•接着骑自行车40千米到第二项换点,再跑步10千米到终点.下表是2001年亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,•表内时间单位为秒).(1)填空(精确到0.01):第191号运动员骑自行车的平均速度是_______米/秒;第194号运动员骑自行车的平均速度是_______米/秒;第195号运动员骑自行车的平均速度是_______米/秒.(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?•如果不会,为什么?(3)如果运动员长跑也都是匀速的,那么在长跑途中这三名运动员有可能某人追上某人吗?为什么? (2001年徐州市中考题)三、综合创新17.某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4•分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,•以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆.问:第一辆出租汽车开出后,经过最少多少时间,•车站不能正点发车?(2002年重庆市竞赛题)18.今有12名旅客要赶往40千米远的汉口新火车站去乘火车,•离开车时间只有3小时,他们步行的速度为每小时4千米,靠走路是来不及了,惟一可以利用的交通工具只有一辆小汽车,但这辆汽车连司机在内最多只能乘5人,汽车的速度为每小时60•千米,若这12名旅客必须要赶上这趟火车,请你设计一种方案,帮助司机把这12•名旅客及时送到汉口火车站(不考虑借助其他交通工具).答案【学力训练】1.1或32.4.83.6404.169 11提示:设再过x分钟,分针与时针第一次重合,分针每分钟走6°,时针每分钟走0.5°,则6x=0.5x+90+0.5×5,解得x=169 11.5.C6.C 提示:54S VS V==甲甲乙乙7.168.(1)设CE长为x千米,则1.6+1+x+1=2×(3-2×0.5),解得x=0.4(千米)(2)若步行路线为A→D→C→B→E→A(或A→E→B→C→D→A)则所用时间为:12(1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A→D→C→E→B→E→A(•或A→E→B→E→C→D→A),则所用时间为:12(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时),因为4.1>4,4>3.9,所以,步行路线应为A→D→C→E→B→E→A(或A→E→B→E→C→D→A).9.提示:设此人从家里出发到火车开车的时间为x小时,由题意得:30(x-1560)=18(x+1560),解得x=1,此人打算在火车开车前10分钟到达火车站,骑摩托车的速度应为:151530()30(1)6060101016060xx⨯-⨯-=--=27(千米/小时)10.7.5 提示:先求出甲、乙两车速度和为20010=20(米/秒)11.150、200提示:设第一辆车行驶了(140+x)千米,则第二辆行驶了(140+x)•×43=140+(4623+43x)千米,由题意得:x+(4623+43x)=70.12.66 13.B14.D 提示:设经过x分钟后时针与分针成直角,则6x-12x=180,解得x=3281115.提示:设火车的速度为x米/秒,由题意得:(x-1)×22=(x-3)×26,解得x=14,•从而火车的车身长为(14-1)×22=286(米).16.(1)8.12;7.03;7.48.(2)191号能追上194号,这时离第一换项点有24037.96米,191号不会追上195号.(3)从第二换项点出发时,195号比191号提前216秒,且长跑速度比191号快,所以195号在长跑时始终在191号前面,而191号在长跑时始终在194号前面,故在长跑时,•谁也追不上谁.17.设回车数是x辆,则发车数是(x+6)辆,当两车用时相同时,则车站内无车,•由题意得4(x+6)=6x+2,解得x=11,故4(x+6)=68.即第一辆出租车开出,最少经过68分钟时,车站不能正点发车.18.设计方案一:如果在汽车送前一趟旅客的同时,让其他旅客步行,第一趟设汽车来回共用了xh,这时汽车和其他旅客的总路程为一个来回,所以4x+60x=40×2.解得x= 5 4此时,剩下8名旅客与车站的距离为40-54·4=35(km),同理,•第二趟汽车来回用时间约为1.09h,第三趟汽车来回用的时间为0.51h,共用时间为1.25+1.09+•0.•51=•2.85h,这批旅客能赶上火车.- 11 - 设计方案二:先让汽车把4名旅客送到途中某处,再让这4名旅客步行(•此时其他8名旅客也在步行);接着汽车回来再送4名旅客(剩下4名旅客继续步行),•追上前面4名旅客后也让他们下车一起步行;最后回来接剩下的4名旅客到火车站,•适当选取第一批旅客的下车地点,使送最后一批旅客的汽车与前面8名旅客同时到达火车站.设汽车送第一批旅客行驶xkm 后让他们下车步行,此时其他旅客步行了460x =15x km,•他们之间相差1415xkm,在以后的时间里,由于步行的速度相同,• 所以两批步行旅客之间始终相差1415x 千米, 而汽车要在这段距离间来回行驶两趟,每来回一趟的所用时间为14141151560460432x x x +=+- 而汽车来回两趟所用时间恰好是第一批旅客步行(40-x)km 的时间,即2×132x=404x - 解得x=32. 因此所需的总时间为3260+40324-≈2.53(h). 这样就用最省的时间把旅客送到火车站.。