椭圆的简单几何性质(时)资料
椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。
椭圆的简单几何性质

2.2 椭圆2.2.2椭圆的简单几何性质 第一课时 椭圆的简单几何性质【学习目标】1、理解椭圆的范围、对称性、顶点、长轴长及短轴长;2、掌握椭圆的离心率及c b a ,,的几何意义。
【重难点】重点:椭圆的简单几何性质 难点:求椭圆的离心率 【学习过程】复习引入:1、椭圆的定义我们把平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹叫做椭圆。
这两个定点21,F F 叫做椭圆的焦点,两焦点21,F F 间的距离||21F F 叫做椭圆的焦距。
2、椭圆的标准方程焦点在x 轴上:12222=+b y a x )0(>>b a 焦点在y 轴上:12222=+ay b x )0(>>b a3、重要结论:222c b a +=知识点一:椭圆的简单几何性质 1、范围由图形及椭圆的标准方程12222=+b y a x 可知,122≤a x 且122≤by ,即⎩⎨⎧≤≤-≤≤-by b ax a 故椭圆12222=+by a x 位于直线a x ±=和b y ±=所形成的矩形框里。
2、对称性观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形。
在椭圆12222=+by a x 中,用y -代替y ,方程不变,所以椭圆关于x 轴对称;用x -代替x ,方程不变,所以椭圆关于y 轴对称;用x -代替x ,用y -代替y ,方程不变,所以椭圆关于原点对称。
结论:椭圆关于x 轴和y 轴都对称,所以x 轴、y 轴叫做椭圆的对称轴;对称轴的交点原点,叫做椭圆的对称中心。
3、顶点椭圆与对称轴的交点,叫做椭圆的顶点。
显然12222=+by a x 有四个顶点,其中在x 轴上有)0,(),0,(21a A a A -,在y 轴上有),0(),,0(21b B b B -。
线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别和a 2和b 2,b a ,分别叫做椭圆的长半轴长和短半轴长。
椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
3.2.2 椭圆的简单几何性质

椭圆的离心率 e= .
范围: 0<e<1
e越接近1,c越接近a, = 2 − 2 越小,因
此椭圆越扁平;
e越接近0,c越接近0, = 2 − 2 越大,因
此椭圆越接近于圆;
当且仅当a=b时,c=0,这时两个焦点重合,
图形变为圆,方程为 2 + 2 = 2 .
典型例题
典型例题
例2 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=
4
比是常数 ,求动点M的轨迹.
5
25
的距离的
4
轨迹方程
轨迹上任意的点 M 的坐标(x , y)所满足的条件
点M所满足的条件
点M与定点F(4,0)的距离和M到定
25
4
直线l:x= 的距离的比是常数
4
转化
5
两点间距离和点到直线的距离
6 − 91 = 0内切,求动圆圆心的轨迹方程,并说明它是什么曲线?
圆 2 + 2 + 6 + 5 = 0
圆心1 (− 3,0),半径r1=2
椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,
经过旋转椭圆面反射后集中到另一个焦点F2.已知 ⊥ 1 2 , 1 = 2.8cm,
1 2 = 4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程.
椭圆的方程
求a,b
建立关于a,b的方程
典型例题
2
4.12
+
2
3⋅4 2
= 1.
方
程
思
想
典型例题
例1 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲
椭圆的简单几何性质

由课本一道例题的推广
[课本 47页例6]点M与定点F ( 4,0)的距离和它到直线l : x 4 的距离的比是常数 ,求点M的轨迹. 5
解后反思:这个定点是什么点?这个常数是什么值? 这个定直线l与椭圆有什么联系?由此,能否得到一 个更一般的猜想?
25 4
a2 推广:点M与定点F (c ,0)的距离和它到直线l : x 的距离 c c 的比是常数 ,求点M的轨迹. a
(7 )在x轴的一个焦点与短轴的 两端点连线互相垂直, 且这个焦点与较近的长 轴端点的距离是 10 5 .
离心率的理解和运用
2.已知椭圆的焦距是长轴 长和短轴长的等比中项 ,求离心率 . x2 y2 1 3.若椭圆 1的离心率为 ,求k的值. k 8 9 2 3 4.已知椭圆x (m 3) y m(m 0)的离心率e ,求 2 m的值及椭圆的长轴和短 轴的长 .
c
与准线有关问题
x2 y2 11.椭圆 1上有一点P,它到左准线的距离为 10, 100 36 求P到右焦点的距离及 P点坐标 . 12.根据下列条件,求椭圆 的标准方程: (1)长轴长为 12,两焦点恰为两准线间 距离的三等分点 ; 3 50 (2)离心率为 ,一条准线方程为 x ; 5 3 (3) P是椭圆上一点, P与两焦点的连线互相垂 直,且 P到两准线的距离分别为 6和 12.
请写出焦点在y轴上时的范围
6 5
10
8
6
B1
4
4
3
2
2
1
-8
-6
A1
-4
F1
-2
O
-1
2
-15
F2
4
A2
6
8
椭圆的几何性质(简单性质)

3
则 C 的离心率为 3
.
y
BF 2FD
B
(c, b) 2( x c, y)
x
3 2
c,
y
b 2
.
OF
x
D
(
3 2
c
a2
)2
(
b 2
)2
b2
1,
c2 a2
1 3
,
e
3 3
.
主页
【4】(09·江苏)如图,在平面直角坐标系
xOy中, A1, A2, B1, B2为椭圆
x2 a2
y2 b2
1 (a>b>0)的四
PF1 PF2 ,求离心率的取值范围.
y
P
解:当点 P 在椭圆短轴端点时, F1PF2 最大.
F1
o
F2
x
≥ 45 sin ≥
2 2
c a
sin
≥
2 2
又0e1
2 2
≤
e
1
主页
例 3.已知 P 是椭圆上一点, F1, F2 分别是椭圆的左右焦点,且 PF1 PF2 ,求离心率的取值范围.
(Ⅱ)设 PF1 m, PF2 n , 构造方程、不等式
解解解解:::易:易易易知知知知aaa=a解===2:22,易,2,,b知bb===ba1=1=1,,,12cc,=c,==cb==333,,,1,3,c= 3, 所所所所以以以以FFFF11(1(1-(-(-所-3以33,,3,F0,00)1),(),0-,)FF,F22(23(F(,3233,(,0,)03,00),).).F.02().3,0). 设设设设PPP((x((xx,x,,,yy)y设)y,),,),P(x,y),
椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。
这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。
对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。
若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。
这两种特殊情况,同学们必须注意。
(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。
同学们想一想 其中的道理。
(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。
不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。
椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。
(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。
1.椭圆的几何性质(简单性质)

e =
c a
a2=b2+c2
已知椭圆方程为16x =400, 例1、已知椭圆方程为16x2+25y2=400,则 它的长轴长是: 10 ;短轴长是 短轴长是: 8 ; 它的长轴长是 短轴长是
焦距是: 焦距是
6
;离心率等于 离心率等于: 离心率等于
焦点坐标是: 焦点坐标是
(±3, 0) ;顶点坐标是 (±5, 0) (0, ±4) ; 顶点坐标是: 顶点坐标是
x2 y2 + = 1 的两个焦点为 1 、F2 ,过左焦点作 的两个焦点为F 椭圆 45 20
直线与椭圆交于A, 两点, 的面积为20, 直线与椭圆交于 ,B 两点,若△ AB F2 的面积为 , 求直线的方程。 求直线的方程。
y
(x1 , y1) A
o
(x2 , y2) B F1 F2
x
作业
1.已知椭圆的中心在原点,焦点在坐标轴上,长 已知椭圆的中心在原点,焦点在坐标轴上, 已知椭圆的中心在原点 轴是短轴的三倍,且椭圆经过点P( , ), ),求 轴是短轴的三倍,且椭圆经过点 (3,0),求 椭圆的方程. 椭圆的方程 2 2 x + 2 y = 4 的左焦点作倾斜角为 30 0 2.过椭圆 过椭圆 的直线AB, 求线段AB的长度 的长度. 的直线 , 求线段 的长度
B2
A1
b F1
a F2
A2
o c
B1
3、椭圆的顶点 、
x a
2 2
y2 + = 1( a > b > 0 ) 2 b
顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。 长轴、短轴:线段 长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短 轴。 a、b分别叫做椭圆的长半轴长和短半轴长。 a、b分别叫做椭圆的长半轴长和短半轴长。 分别叫做椭圆的长半轴长和短半轴长 y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当焦点在Y轴上时
y2 a2
x2 b2
1(a
b 0)
3.椭圆中a,b,c的关系: a2=b2+c2 ,(a b 0)
自主感知
1、椭圆
x a
2 2
y2 b2
1(a b 0) 的范围:
∴椭由圆ax位22 于 1直, 线byx22=±1得a,y:=
±
-a≤x≤a, -b≤y≤b b所围成的矩形中,
(3) 长轴是短轴的2倍, 且过点P(2,-6).
x2
y2
1或 y2
x2
1
148 37 52 13
(4)在x轴上的一个焦点与短轴两端点的连线互相垂直,
且焦距为6.
x2 y2 1
18 9
求椭圆的标准方程时, 应: 先定位(焦点), 再定量(a、b)
当焦点位置不确定时,要讨论,此时有两个解!
对点练:课本P48.3、4
①e 越e 越接接近近1,1,c 就c 就越越接接近近a,a,b请就问越:小此,时此椭时圆的椭变圆化就情越况扁?
②e 越e 越接接近近00,,c 就就越越接接近近0,0,请问b就:此越时大椭,圆此又时是椭如何圆变就化越的圆?
思考:当e=0时,曲线是什么?当e=1时曲线又是什么?
[3]e与a,b的关系:
情景导入 自主感知 合作探究 成果展示 当堂检测 2014数学备课组
情景导入
1.椭圆的定义:
平面内与两个定点F1、F2的距离之和为常数2a
(大于|F1F2 |)的动点M的轨迹叫做椭圆。
| MF1 | | MF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程:
当焦点在X轴上时
x2 y2 a2 b2 1(a b 0)
(2)把y换成-y方程不变,图象关于 x 轴对称;
(3)把x换成-x,同时把y换成-y方
P1(-x,y)
程不变,图象关于 原点 成中心对称。
坐标轴是椭圆的对称轴, 原点是椭圆的对称中心。
O
P2(-x,-y)
中心:椭圆的对称中心叫做椭圆的中心。
P(x,y)
X
合作探究
3、椭圆
x2 a2
y2 b2
令 x=0,得 y=?说明椭圆与
x2
y2
1
25 16
2、确定焦点的位置和长轴的位置.
对点练:课本P48.2,变为类似例1的填空
例题2.求适合下列条件的椭圆的标准方程
(1) a=6,e= , 焦1点在x轴上.
3
x2 y2 1 36 32
(2) 离心率 e=0.8, 焦距为8.
x2 y2 1或 y2 x2 1
25 9
25 9
(c,0)、(-c,0)
半轴长
离心率
a、b、c的关 系
长半轴长为a,短半轴 长为b. (a>b)
e c a
a2=b2+c2 (a b 0)
x2 y2 b2 a2 1(a b 0)
-a ≤ y ≤ a, - b≤ x ≤ b
关于x轴、y轴成轴对称; 关于原点成中心对称
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c)
B1 (0,-b)
它们的长分别等于2 a和2 b 。
a、b分别叫做椭圆的长半轴长和短半轴长。
合作探究
根据前面所学有关知识画出下列图形
(1) x2 y 2 1 25 16
(2) x2 y 2 1 25 4
y
A1
4 B2
3
2
1
A2
-5 -4 -3 -2 --11 0 1 2 3 4 5 x
-2
例3. (1)椭圆的一个焦点和短轴的两 端点构成一个正三角形,则该椭圆的 离心率是 3 .
2
例3. (2). 如图F2是椭圆的右焦点,
MF2垂直于x轴,且B2A1∥MO,求其离
心率.
y
B2 M
A1
O F2 x
成果展示
标准方程 范围
1(a b
y轴的交点为(
0)的顶点:
0, ±b),
令 y=0,得 x=?说明椭圆与 x轴的交点为( ±a, 0)。
y
*顶点:椭圆与它的对称轴的四个
B2 (0,b)
交点,叫做椭圆的顶点。
*长轴、短轴: 线段A1A2、B1B2分别
A1
(-a,0) F1
叫做椭圆的长轴和短轴。
b
oc
a A2(a,0) F2
长半轴长为a,短半轴 长为b.(a>b)
e c a
a2=b2+c2 (a b 0)
例1、已知椭圆方程为16x2+25y2=400,则
它的长轴长是: 10 ;短轴长是: 8 ;
3
焦距是: 6 ;离心率等于:
5
;
焦点坐标是: (3, 0);顶点坐标是:(5, 0) (0, 4);
解题步骤:
1、将椭圆方程转化为标准方程求a、b:
如图所示:
y
B2
A1
F1
b
oc
a
A2
F2
x
B1
2、椭圆
x2 a2
y2 b2
1(a b 0) 的对称性:
从图形上看,
椭圆关于x轴、y轴、原点对称。 Y
P1(-x,y)
P(x,y)
O
X
P2(-x,-y)
合作探究
x2 y2 从方程上看: a2 b2 1(a b 0)
(1)把x换成-x方程不变,图象关于 y 轴对称; Y
-3
-4 B1
y
4
3 2
B2
A1
1
A2
-5 -4 -3 -2 --11 0 1 2 3 4 5 x
-2 -3
B1
-4
4、椭圆的离心率(e用来刻画椭圆扁平程度的量)
离心率:椭圆的焦距与长轴长的比 c 叫做椭圆的离心率。
用e表示,即 e c
a
a
[1]离心率的取值范围:0<e<1
[2]离心率对椭圆形状的影响:
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. (a>b) e c a
a2=b2+c2 ,(a b 0)
标准方程 范围
x2 a2
y2 b2
1(a b 0)
-a ≤ x≤ a, - b≤ y≤ b
对称性 顶点坐标 焦点坐标
关于x轴、y轴成轴对称; 关于原点成中心对称
(a,0)、(-a,0)、 (0,b)、(0,-b)
y B1(0,b)
o
A2 x
B2(0,-b)
知识归纳
标准方程
范围 对称性
顶点坐标 焦点坐标 半轴长 离心率 a、b、c的关系
x2 y2 1(a b 0)
a2 b2
-a ≤ x≤ a, - b≤ y≤ b
关于x轴、y轴成轴对称;
关于原点成中心对称 (a,0)、(-a,0)、(0,b)、(0,-b)
c
a2 b2
b2
e a
a2 1 a2
课本P48.5.讲5(1);对点练5(2).
基本元素
{1}基本量:a、b、c、e、(共四个量)
{2}基本点:顶点、焦点、中心(共七个点)
{3}基本线:对称轴(共两条线)
请考虑:基本量之间、
基本点之间、基本线之
间以及它们相互之间的 关系(位置、数量之间
A1
的关系)