有限元-三杆桁架地优化设计

合集下载

利用ANSYS有限元分析软件对三杆组成的桁架结构进行数值模拟.

利用ANSYS有限元分析软件对三杆组成的桁架结构进行数值模拟.

利用 ANSYS 有限元分析软件对三杆组成的桁架结构进行数值模拟,并根据计算结果,建立优化设计数学模型,在优化处理器指定分析文件, 对三根横截面积为
A1A2A3基本尺寸 B 为变量进行分析对比, 通过数值迭代模拟主要的到如下结论
(1横截面积迭代进行 ANSYS 优化分析时,在分析得到的重量,应力,横截面,三个图中当寻优迭代进行到第 16次主动变量被调整到相同的优化效率时 A1为 1
10
7056
. 4-
⨯A2为 4
10
0000
. 6-
⨯A3为 2
10
3055
. 3-
⨯, 桁架重量取得最小值 130370kg 与初始设计重量 481520.422kg 相比,得到了很大程度的减轻。

符合最优化准则 (2根据计算结果,改进的桁架明显好于其他情况, ansys 软件数值模拟得到最优解,其计算误差很小,完全能满足工程精度要求
ANSYS 程序中进行优化的方法是成功的 , 方法本身收敛速度快 , 精度高 , 稳定性强。

本文使用迭代法得到的最优解都非常接近于或优于所求问题的最优解 , 这表明将迭代法一类的高效优化方法用 APDL 语言嵌套到 AnSYS 程序中来求解优化问题的方法既可行又简便 , 结构优化设计领域具有很好的应用前景。

桁架结构的有限元法

桁架结构的有限元法

桁架结构的有限元法单元坐标系下的单元平衡方程为单元坐标系下的单元平衡方程为图1. i u v {u v u v u u v v {}u v e u v q u v图2.与位移不同的是,杆的轴向力U 和总体系下的力{,}TU V 是等价的(如图U V eU V U Vq ee K q P K l所示的简单桁架结构。

进行整体桁架结构分析?为说明分析方法,考虑图3所示的简单桁架结构。

总体系下的节点位移和力向量为总体系下的节点位移和力向量为总体平衡方程具有如下形式:总体平衡方程具有如下形式:是数学上定义的,它的重要性质是:只于坐标, (1+注意,本问题中的坐标, (1,,)ix i n = 相当于函数()u x 的定义区间图4 解:单元1的单刚的单刚113133333[]413133333e EA K l éù--êú--êú=êú--êúêú--ëû单元2的单刚的单刚213133333[]413133333e EA K l éù--êú--êú=êú--êúêú--ëû 总刚阵总刚阵1313330033001313[]4003333131320333306EA K l éù--êú--êúêú--êú=êú--êúêú---êú---ëû节点位移向量节点位移向量33{}{0000}T u u v =节点力向量节点力向量22{}{}22T P PP =´´´´故有故有332020642u P EA v P l ìüéùìü=íýíýêúëûîþîþ2Pl62)62)36262) 3。

弹性力学与有限元分析第二章-平面桁架有限元分析及程序设计

弹性力学与有限元分析第二章-平面桁架有限元分析及程序设计

x
由单元①的刚度方程:
Fj

k
① ji
i

k
① jj
j

k
① ji
2
k
① jj
1
由单元③的刚度方程:
Fj

k
③ ji
i

k
③ jj
j

k
③ ji
3
k
③ jj
1
§2.3 结点平衡与整体刚度矩阵的集成
代入结点1的平衡条件:
k
l
xi
)
(dx j
dxi
)
(
yj
l
yi )
(dy j
dyi )
(dx j dxi ) (dy j dyi )
cos sin
由于杆件的变形产生位移:
ui dxi vi dyi
u j dxj v j dy j
因此,杆件应变为:
dl l
l
(ui
uj)
l
(vi
vj)
杆件轴力为:
(2k1 k2 )v4 P
结构的整体刚度系数
v4
P 2k1
k2
12 3
l2 l1 l1
4 P
N1
N1y
cos
k1v4
cos
k1P
(2k1 k2 ) cos
N2
k2v4
k2P 2k1 k2
位移法求解超静定结构。
§2.1 平面桁架单元的离散
结构的离散化:尽量将结构离散成数量最少的等截面直 杆单元
kki③ ③jii
ki③j
k
③ jj
3 3 3 3
§2.3 结点平衡与整体刚度矩阵的集成

桁架杆机构的优化设计

桁架杆机构的优化设计

OCCUPATION2013 08108案例CASES桁架杆机构的优化设计文/宋育红摘 要:桁架结构优化设计中普遍存在约束的作用,现有优化设计一般采用满应力法、遗传优化或直接实验法搜索等优化方法,但其时间周期长、优化复杂。

本文主要采用复合形法,建立了桁架结构优化设计的数学模型,利用Fortran优化程序对其进行优化并获得最优解。

关键词:桁架结构 优化设计 复合形法一、优化目标及设计原则1.优化目标在工程力学教学当中,笔者利用复合形法对桁架杆进行优化设计,以求得到其最优解。

桁架杆设计的优化可以选择多种目标,如尺寸最小、质量最轻、强度最高等,一般应根据不同的需要选定。

笔者以桁架杆为例,以其质量最小为优化目标。

2.设计原则在桁架杆设计时我们首先要求两杆同时满足强度条件,其次要满足几何条件约束,进而确定目标函数,并对其优化。

二、复合形法优化设计简述复合形法的基本思路是在n 维空间的可行域中选取K 个设计点(通常取n +1≤K ≤2n )作为初始复合形(多面体)的顶点。

然后比较复合形各顶点目标函数的大小,其中把目标函数值最大的点作为坏点,以坏点之外其余各点的中心为映射中心,寻找坏点的映射点。

一般说来,此映射点的目标函数值总是小于坏点的,也就是说映射点优于坏点。

这时,以映射点替换坏点与原复合形除坏点之外其余各点构成K 个顶点的新的复合形。

如此反复迭代计算,在可行域中不断以目标函数值低的新点代替目标函数值最大的坏点从而构成新复合形,使复合形不断向最优点移动和收缩,直至收缩到复合形的各顶点与其形心非常接近、满足迭代精度要求时为止。

最后输出复合形各顶点中的目标函数值最小的顶点作为近似最优点。

三、建立数学模型1.已知参数如桁架杆的结构,已知l =2m,x B =1m,载荷ρ=100kN桁架材料的密度 ρ=7.5×10-5N/mm 3,许用拉应力[σ+ ]=150MPa,许用压应力[σ- ]=100MPa,y B 的范围为:0.5m≤y B ≤1.5m,求桁架杆在满足强度的条件下,其质量的最小值。

有限元-三杆桁架的优化设计

有限元-三杆桁架的优化设计

有限元作业作业题目:三杆桁架的优化设计学生姓名:苏宏斌学号:200900403064专业:数控技术班级:机自Y094指导老师:王虎奇三杆桁架的优化设计题目描述::下图所示为一个有3根杆组成的桁架,承受纵向和横向载荷,杆件的横截面面积和基本尺寸B在指定范围内变化,要求桁架的每根杆件承受的最大应力小于(800+学号最后两位数)MPa,试对该结构进行优化设计,使得桁架重量最少。

弹性模量E=220GPa;泊松比:0.3;密度ρ=7800kg/m3材料最大许用应力:σ= 864 MPa横截面面积变化范围:0.01~10cm2(初始值为10)基本尺寸B变化范围:1~2m(初始值为2)前处理:(1)定义工作文件名:utility menu-file-change jobname,在弹出的change jobname对话框中输入文件名为: suhongbin 单击ok按钮。

(2)定义工作标题:utility menu-file-change tile,在弹出的change tile对话框中输入suhongbin ,单击ok按钮。

(3)定义参数的初始值:utility menu-parameters-scalar parameters命令,弹出对话框,在selection下的文本框中输入B=2,按下enter键;A1=0.001, 按下enter键;A2=0.001, 按下enter键;A3=0.001, 单击Close按钮。

参数将在菜单中显示。

(4)设置材料属性:main menu-preprocessor-material props-material model命令,设置EX=2.2e11 , PRXY=0.3 , DENS=7800。

(5)定义单元类型:main menu-preprocessor-element type-add/edit/delete命令,弹出element type对话框。

单击add按钮,弹出library of element type对话框,在左边列中选择structural link,在右边列中选择2D spar 1,单击ok。

ANSYS桁架优化分析实例

ANSYS桁架优化分析实例

ANSYS桁架优化分析实例优化分析的示例(GUI方法)在本例中,用一阶方法进行优化分析。

问题描述一个有三根杆组成的珩架承受纵向和横向载荷。

珩架的重量在最大应力不超过400psi最小化。

(因此重量为目标函数。

)三根梁的横截面面积和基本尺寸B在指定范围内变化。

结构的重量初始设计为109.10磅。

缺省允差(由程序计算)为初始重量的1%(11磅)。

但是,为了便于收敛,一阶方法的优化分析中将目标函数的允差定为2.0。

问题参数分析中使用如下材料特性:E=2.1E6psiRHO=2.85E-4lb/in3(比重)最大许用应力=400psi分析中使用如下几何特性:横截面面积变化范围=1到1000in2(初始值为1000)基本尺寸B变化范围=400到1000in (初始值为1000)问题简图第一步:指定文件名1.选择Utility Menu>File>Change Jobname,打开文件名对话框。

2.输入“truss”为工作文件名。

3.单击OK关闭对话框。

第二步:指定分析题目1.选择Utility Menu>File>Change Title,打开更改分析题目对话框。

2.输入“Optimization of a Three-Bar Truss”作为分析题目。

第三步:定义参数初始值1.选择Utility Menu>Parameters>Scalar Parameters,打开数值参数对话框。

在选择区域中输入下列内容:B=1000 按ENTER键A1=1000 按ENTER键A2=1000 按ENTER键A3=1000 单击OK。

参数将在菜单中显示出来。

2.在数值参数对话框中单击OK。

第四步:定义单元类型1.选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete,打开单元类型对话框。

2.在单元类型库对话框中单击Add。

有限元应用—杆单元问题

有限元应用—杆单元问题

《有限元应用实训》实验报告(1)杆单元问题一、实训问题介绍:如图3-4所示三杆组合,三个杆的长度均相等为30in(762m m),在2节点施加水平向右大小为3000l b(13344.6N)的力,杆件1和杆件2的弹性模量为E=30×106ps i(206880N/m m2),横截面面积为1in2(645.16m m2),杆件3的弹性模量为E=15×106ps i(103440N/m m2),横截面面积为2in2(1290.32m m2),节点1和节点4为固定约束。

在有限元软件中对模型进行有限元分析,回答下面两个问题:(1)确定节点2和节点3的位移;(2)节点1和节点4的反作用力。

二、方法与材料本次练习的研究对象为桁架结构,桁架结构由杆件组成,杆件受轴向力作用,其有限元基本模型为杆,可通过杆单元建立结构的有限元分析模型。

So l id Works有限元软件建模与求解步骤:2.1创建杆横截面草图,保存在weldment profi l es目录下,另存为.s ld l fp格式根据杆1、2和杆3规定的横截面,分别建立相应的截面文件。

2.2创建杆件草图2.3创建结构焊件,结构构件分别为三个杆件赋予截面2.4建立有限元s imulat i on新算例(1)定义材料(2)将焊件定义为桁架杆件(3)施加边界条件,节点1和节点4施加固定铰链约束(4)施加载荷条件,节点2施加水平向右的集中力(5)生成杆件网格并计算三、计算结果与讨论3.1节点2、3的位移节点2、3沿x方向(轴向)的位移分别为0.04597m m,0.0160m m计算结果与原题公式计算结果相同,说明本模型正确。

节点沿y和z向的位移为零,符合杆轴线承载条件。

3.2节点1、4的约束反力杆的约束反力为8010N,-5340N3.3杆件的轴向力3.4杆件的轴向应力3.5杆件的安全系数,当乘数为0.5时最小安全系数是8.8873.6应力准则应用最大Von Mises应力准则四、结论:通过软件建模,成功计算了结构构件的位移、应力、内力,确定了危险截面,出现在第一个杆件左端点处,构件满足最大Von M i ses应力准则,结构符合强度要求。

ansys三根杆桁架优化问题命令流

ansys三根杆桁架优化问题命令流

ansys三根杆桁架优化问题命令流问题描述:⼀个由三根杆组成的桁架承受纵向和横向载荷,桁架的重量在最⼤应⼒不超过400PSI最⼩化(因此重量为⽬标函数)。

三根梁的横截⾯⾯积和基本尺⼨B在指定范围内变化。

结构的重量初始设计为109.10磅。

缺省允差(由程序计算)为初始重量的1%(11磅)。

分析中使⽤如下材料特性:E=2.1E6psiRHO=2.85E-41b/in3 (⽐重)最⼤许⽤应⼒=400psi分析中使⽤如下⼏何特性:横截⾯⾯积变化范围=1到1000in2(初始值为1000)基本尺⼨B变化范围=400到1000in(初始值为1000)命令流如下:/filnam,truss/title, optimization of a three-bar truss!初始化设计变量参数B=1000 !基本尺⼨A1=1000 !第⼀个⾯积A2=1000 !第⼆个⾯积A3=1000 !第三个⾯积!!进⼊PREP7并建模/prepet,1,link1 !⼆维单元r,1,A1 !以参数形式的实参r,2,A2r,3,A3mp,ex,1,2.1E6 !杨⽒模量n,1,-B,0,0n,2,0,0,0n,3,B,0,0n,4,0,-1000,0e,1,4real,2e,2,4real,3e,3,4finish!!进⼊求解器,定义载荷和求解/solud,1,all,0,,3f,4,fx,200000f,4,fy,-20000solvefinish!!进⼊POST1并读出状态变量数值/post1set,lastetable,evol,volu !将每个单元的体积放⼊ETABLE ssum !将单元表格内数据求和*get,vtot,ssum,,item,evol !VTOT=总体积rho=2.85e-4wt=tho*vtot !计算总体积etable,sig,ls,1 !将轴向应⼒放⼊ETABLE!*get,sig,elem,1,etab,sig !SIG1=第⼀个单元的轴向应⼒*get,sig,elem,2,etab,sig !SIG2=⼆单元的轴向应⼒*get,sig,elem,3,etab,sig !SIG3=三单元的轴向应⼒!sig1=abs(sig1) !计算轴向应⼒的绝值sig2=abs(sig2)sig3=abs(sig3)!/eshape,2 !以实体单元模式显⽰壳单元/view,1,1,1,1 !轴测视图eplot!/opt !进⼊优化处理器opanl,truss,lgw !指定分析⽂件(批处理⽅式中不⽤这个命令)!opvar,B,dv,400,2000 !定义设计变量opvar,A1,dv,1,1000opvar,A2,dv,1,1000opvar,A3,dv,1,1000opvar,sig1,sv,,400 !定义状态变量opvar,sig2,sv,,400opvar,sig3,sv,,400!opsave,trussvar,opt !存储数据!opvar,wt,obj,,,2, !定义⽬标函数!optype,first !定义⼀阶⽅法opfrst,45 !最⼤45次迭代opexs !开始优化分析!oplist,16 !列出最佳设计序列,号为16oplist,all!/view,1,,,1 !前视图!/axlab,x,iteration number !画重量对迭代数图形/axlab,y,structure weightplvaropt,wt!/axlab,y,base dimension !画B对迭代数图形plvaropt,B!/axlab,y,max stress !画最⼤应⼒对迭代图形plvaropt,sig1,sig2,sig3!/axlab,y,cross-sectional area !画⾯积对迭代图形plavaropt,A1,A2,A3!finish/exit。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元作业作业题目:三杆桁架的优化设计学生姓名:苏宏斌学号:200900403064专业:数控技术班级:机自Y094指导老师:王虎奇三杆桁架的优化设计题目描述::下图所示为一个有3根杆组成的桁架,承受纵向和横向载荷,杆件的横截面面积和基本尺寸B在指定范围内变化,要求桁架的每根杆件承受的最大应力小于(800+学号最后两位数)MPa,试对该结构进行优化设计,使得桁架重量最少。

弹性模量E=220GPa;泊松比:0.3;密度ρ=7800kg/m3材料最大许用应力:σ= 864 MPa横截面面积变化范围:0.01~10cm2(初始值为10)基本尺寸B变化范围:1~2m(初始值为2)前处理:(1)定义工作文件名:utility menu-file-change jobname,在弹出的change jobname对话框中输入文件名为: suhongbin 单击ok按钮。

(2)定义工作标题:utility menu-file-change tile,在弹出的change tile对话框中输入suhongbin ,单击ok按钮。

(3)定义参数的初始值:utility menu-parameters-scalar parameters命令,弹出对话框,在selection下的文本框中输入B=2,按下enter键;A1=0.001, 按下enter键;A2=0.001, 按下enter键;A3=0.001, 单击Close按钮。

参数将在菜单中显示。

(4)设置材料属性:main menu-preprocessor-material props-material model命令,设置EX=2.2e11 , PRXY=0.3 , DENS=7800。

(5)定义单元类型:main menu-preprocessor-element type-add/edit/delete命令,弹出element type对话框。

单击add按钮,弹出library of element type 对话框,在左边列中选择structural link,在右边列中选择2D spar 1,单击ok。

(6)定义实常数:main menu-preprocessor-real constant命令,弹出real constants对话框。

单击add按钮,又单击ok按钮,弹出real constant set number 1,for link1对话框。

在real constant set no后面的文本框中输入1,在cross-section area后面的文本框中输入A1,单击apply按钮,在弹出同样对话框的同样位置分别输入2,A2, 单击apply按钮,在弹出同样对话框的同样位置分别输入3,A3单击ok按钮,单击close按钮,完成实常数的设置。

(self:此步最好按写的步骤做,不要用0.001替代A1,即使A1=0.001,因为A1也许在后面是变量,就不是0.001了)(7)生成有限元节点:main menu-preprocessor-moding-create-nodes-in active cs命令,弹出的create nodes in active coordinate system对话框,在node number后面的文本中输入1,其坐标值为:-B,0,0,单击apply按钮,在node number后面的文本中输入2,其坐标值为:0,0,0,单击apply按钮,在node number后面的文本中输入3,其坐标值为:B,0,0,单击apply按钮,在node number后面的文本中输入4,其坐标值为:0,-2,0,单击ok按钮.(8)关闭坐标符号显示:utility menu-plotctrls-window options,弹出一个对话框,在location of triad 后面的下拉式选择栏中选择no shown ,单击ok 。

(9)打开节点编号显示:utility menu-plotctrls-numbering命令,弹出plot numbering controls对话框。

选择node number复选框,单击按ok钮。

(10)生成第一个单元:main menu-preprocessor-moding-create-elements-auto numbered-thru nodes命令,弹出一个拾取框,拾取编号为1和4(按照该顺序)的节点,单击ok按钮。

(11)改变第二个单元属性:mainmenu-preprocessor-moding-create-elements-elem attributes命令,弹出element attributes对话框。

在real constant set number下拉列表中选择2,单击ok按钮。

(12)生成第二个单元:main menu-preprocessor-moding-create-elements-auto numbered-thru nodes命令,弹出一个拾取框,拾取编号为2和4(按照该顺序)的节点,单击ok按钮。

(13)改变第二个单元属性:main menu-preprocessor-moding-create-elements-elem attributes命令,弹出element attributes对话框。

在real constant set number下拉列表中选择3,单击ok按钮。

(14)生成第二个单元:main menu-preprocessor-moding-create-elements-auto numbered-thru nodes命令,弹出一个拾取框,拾取编号为3和4(按照该顺序)的节点,单击ok按钮。

求解:(1)施加边界条件:main menu-solution-loadsapply-structural-displacement-on nodes命令,给编号为1,2,3的节点进行全约束。

(2)施加集中载荷:main menu-solution-loadsapply-structural force/moment-on nodes命令,给编号为4的节点施加Fx方向-20000,Fy方向-20000的力。

(3)保存数据:单击工具栏中的save_db按钮。

(4)求解运算:main menu-solution-solve-current ls命令。

(5)保存优化结果到文件:utility menu-file-save as,在弹出的对话框中输入文件名为truss_resu,单击ok按钮。

优化设置:(1)定义单元表:main menu-general postproc-element table-define table命令,弹出element table date对话框,单击add按钮,弹出define additional element table items对话框。

在user label for item后面的文本框中输入EVOLUME。

又在item,comp results date item的左栏中选择geometry,在右栏中选择elem volume volu.单击ok按钮,单击close按钮。

(2)计算单元体积的总和:main menu-general postproc-element table-sum of each item命令,弹出tabular sum of each element table item对话框,单击ok按钮,弹出一个信息窗口,在窗口中显示体积总和为76.5685。

选择该窗口菜单栏上的file-close,关闭该窗口。

(3)取出体积的值:utility menu-parameters-get scalar date命令,弹出get scalar data对话框。

在type of data to be retrived的左栏中选择results data,在右栏中选择elem table sums,单击ok按钮,弹出get element table sum results 对话框,在name of parameter to be defined后面的文本中输入VTOT,单击ok按钮关闭该对话框。

(4)计算初始重量:utility menu-parameters-scalar parameters命令,弹出scalarparameters对话框,在selection下面的文本中输入DENS=7800,并按下enter 键,又在selection下面的文本中输入WT=DENS*VTOT,并按下enter键,总的体积将计算并在该对话框中显示,总的重量应为59.7234631.单击close按钮关闭该对话框。

(5)设置单元表:main menu-general postproc-element table-define table命令,弹出element table data对话框,单击add按钮,弹出define additional element table items对话框,在user lable for item后面的文本框中输入SIGMA,又在item,comp results data item的左栏中选择by sequence num,在右栏中选择LS, 在其下面出现的LS, 后面的文本框中输入1(表示序列号为1),单击ok按钮,又单击element table data对话框的close按钮,关闭该对话框。

(6)得到第一杆的轴向应力:utility menu-parameters-get scalar data命令,弹出get scalar data对话框,在the type of data to be retrived的左栏中选中results data,在右栏中选择elem table data,单击ok按钮,弹出get element table data对话框,在name of parameter to be defined后面的文本中输入sig1,在element number n后面的文本中输入1,在elem table data to be retrived后面的下拉列表中选取SIGMA,单击apply按钮。

(7)得到第二杆的轴向应力:又弹出get scalar data对话框,在the type of data tobe retrived的左栏中选中results data,在右栏中选择elem table data,单击ok按钮,弹出get element table data对话框,在name of parameter to be defined后面的文本中输入sig2,在element number n后面的文本中输入2,在elem table data to be retrived后面的下拉列表中选取SIGMA,单击apply 按钮。

相关文档
最新文档