正弦波发生器的设计
正弦波发生器的设计(完整版)实用资料

正弦波发生器的设计(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)电子技术课程设计报告题目:正弦波发生器的设计专业:XXXXXXXXXXXX班级:XXXXXXXXXXX学号:XXXXXXX姓名:XX指导教师:XXXX设计日期:2021年12月3日正弦波发生器设计报告一、设计目的作用1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。
2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。
3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。
4. 培养创新能力二、设计要求1. 用途广泛,能产生10 Hz ~ 400 Hz 的正弦波,要求掌握设计原理,对电路进行分析。
2. 控制便捷,通过调节电位器实现对频率的调节,了解一些元器件的用途。
3. 造价低廉,使用集成芯片,花费都很低,熟悉一些重要芯片的逻辑功能,以及对芯片进行设计连接。
4. 精度较高,通过对振荡器、计数器、加法器等集成电路的使用,使得电路的运行都是很精确的。
所以要对一些逻辑电路的进行运用。
三、设计的具体实现1、系统概述总体设计思路:电路原理:振荡器--- 扭环形计数器----逻辑模拟开关----加法器----滤波器----正弦波一.首先阐述正弦波振荡器起振条件及原理过程:正弦波振荡器起振条件:|AF|>1(略大于)结果产生增幅震荡振荡条件是=1幅度平衡条件||=1相位平衡条件ϕAF = ϕA+ϕF = ±2nπ正弦波振荡电路的组成判断及分类:(1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。
(2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。
EDA正弦波信号发生器的设计

利用LPM 设计正弦信号发生器一、设计目的:进一步熟悉maxplu sII 及其LPM 设计的运用。
二、设计要求:1、利用原理图输入方式。
2、信号数据点值自行想法实现。
3、得出正确时序仿真文件。
三、设计原理:图1 正弦信号发生器结构框图图1所示的正弦波信号发生器的结构由三部分组成计数器或地址发生器(这里选择8位),正弦信号数据ROM (8位地址线,8位数据线),含有256个8位数据(一个周期)。
四、VHDL 顶层设计。
设计步骤:1、建立.mif 格式文件建立C 语言文件sin.cpp ,运行产生sin.exe 文件。
sin.cpp 程序代码:#include <iostream>#include <cmath>#include <iomanip>using namespace std;int main(){int i;float s;VHDL 顶层设计sin.vhd8位计数器 (地址发生器) 正弦波数据 存储ROM 产生波形数据cout<<"WIDTH=8;\nDEPTH=256;\n\nADDRESS_RADIX=HEX;\nDA TA_R ADIX=HEX;\n\nCONTENT\nBEGIN\n";for(i=0;i<256;i++){s=sin(atan(1)*8*i/256);cout<<" "<<i<<" : "<<setbase(16)<<(int)((s+1)*255/2)<<";"<<endl;}cout<<"END"<<endl;return 0;}把上述程序编译后,在DOS命令行下执行命令:sin.exe > sin.mif;将生成的sin.mif 文件。
vhdl语言正弦波信号发生器设计

AS正弦波信号发生器设计一、实验内容1.设计一正弦信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生正弦信号。
(ROM:6位地址8位数据;要求使用两种方法:VHDL编程和LPM)2.正弦信号六位地址数据128,140,153,165,177,188,199,209,219,227,235,241,246,250,253,255,255,254,252,248,244,238,231,223,214,204,194,183,171,159,147,134,121,109,96,84,72,61,51,41,32,24,17,11,7, 3,1,0,0,2,5,9,1420,28,36,46,56,67,78,90,102,115,127。
二、实验原理正弦波信号发生器是由地址发生器和正弦波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。
1.地址发生器的原理地址发生器实质上就是计数器,ROM的地址是6位数据,相当于64位循环计数器。
2.只读存储器ROM的设计(1)、VHDL编程的实现①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O相连,然后进行存储数据的读写操作。
②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。
(2)、基于LPM宏功能模块的存储器的设计①LPM:Library of Parameterized Modules,可参数化的宏功能模块库。
②Quartus II提供了丰富的LPM库,这些LPM函数均基于Altera器件的结构做了优化处理。
③在实际的工程中,设计者可以根据实际电路的设计需要,选择LPM库中适当的模块,并为其设置参数,以满足设计的要求,从而在设计中十分方便的调用优秀的电子工程技术人员的硬件设计成果。
三、设计方案1.基于VHDL编程的设计在地址信号的选择下,从指定存储单元中读取相应数据系统框图如下:2.基于LPM宏功能模块的设计LPM宏功能具有丰富的由优秀的电子工程技术人员设计的硬件源代码可供调用,我们只需要调用其设计的模块并为其设计必要的参数即可。
EDA实验-正弦波信号发生器设计

实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。
2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。
二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。
•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。
当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。
波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。
相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。
输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。
DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。
其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。
•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。
•XFER(PIN 17):数据传送控制信号,低电平有效。
•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。
正弦波信号发生器设计(课设)

课程设计I(论文)说明书(正弦波信号发生器设计)2010年1月19日摘要正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。
本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。
以op07和555定时器构成正弦波和方波的发生系统。
Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。
正弦波方波可以通过示波器检验所产生的信号。
测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。
关键词:正弦波方波 op07 555定时器目录引言 (2)1 发生器系统设计 (2)1.1系统设计目标 (2)1.2 总体设计 (2)1.3具体参数设计 (4)2 发生器系统的仿真论证 (4)3 系统硬件的制作 (4)4 系统调试 (5)5 结论 (5)参考文献 (6)附录 (7)1引言正弦波和方波是在教学中经常遇到的两种波形。
本文简单介绍正弦波和方波产生的一种方式。
在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。
1、发生器系统的设计1.1发生器系统的设计目标设计正弦波和方波发生器,性能指标要求如下:1)频率范围100Hz-1KHz ;2)输出电压p p V ->1V ;3)波形特性:非线性失真~γ<5%。
1.2总体设计(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。
2图1.1正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;φa+φb=±2nπ;A=X。
/Xid; F=Xf/X。
;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。
基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。
反馈网络中两个反向二极管起到稳压的作用。
振荡电路的振荡频率f0是由相位平衡条件决定的。
一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。
555定时器构成的方波三角波正弦波发生器设计报告

555定时器构成的方波三角波正弦波发生器设计报告设计报告:555定时器构成的方波、三角波、正弦波发生器一.引言数字电子技术在现代电子设备中得到广泛应用,定时器作为一种常用的集成电路,在实际电路设计中起着重要的作用。
本报告将介绍基于555定时器构成的方波、三角波、正弦波发生器的设计方法和原理。
二.设计原理1.555定时器简介2.方波发生器的设计方波发生器是利用555定时器的比较器功能来实现的。
具体步骤如下:(1)将一个电阻和一个电容连接到555的引脚,构成一个RC电路。
(2)分压电路使输入电压达到比较器的阈值。
(3)连接一个LED或其他负载到输出引脚。
3.三角波发生器的设计三角波发生器基于方波发生器的基础上,通过使用一个二阶RC滤波器来获得平滑的三角波。
具体步骤如下:(1)将一个电阻和一个电容串联到555的引脚。
(2)将滤波电容接在555的引脚上,形成一个RC滤波器。
(3)连接一个负载到滤波电容的两端。
4.正弦波发生器的设计正弦波发生器是通过利用555定时器构成的线性电压控制振荡器实现的。
具体步骤如下:(1)将一个电阻和一个电容连接到555的引脚,构成一个RC电路。
(2)将555的引脚与反相放大器相连。
(3)将反相放大器的输出连接到555的控制电压输入引脚,通过一个电阻和二极管连接到电源。
三.实验结果与分析使用仿真软件对方波、三角波、正弦波发生器进行仿真,得到以下结果:(1)方波发生器:输出波形为高电平和低电平的方波,频率由RC电路的电阻和电容决定。
(2)三角波发生器:输出波形为逐渐上升和下降的三角波,通过RC 滤波电路生成。
(3)正弦波发生器:输出波形为正弦波,通过线性电压控制振荡器实现。
四.结论本报告介绍了基于555定时器构成的方波、三角波、正弦波发生器的设计原理和实验结果。
方波和三角波发生器是利用555定时器的比较器和滤波器功能实现的,而正弦波发生器则利用线性电压控制振荡器来生成正弦波。
这些电路在现代电子设备中得到广泛应用,具有重要的实际意义。
方波三角波正弦波函数发生器的设计

方波三角波正弦波函数发生器的设计
设计方波、三角波、正弦波函数发生器需要经过以下步骤:
首先,设计电路图。
其主要由单稳态触发器、行波触发器、电源部分和振荡放大部分组成,使用的主要器件有电阻、电容、三极管和二极管。
其次,具体元器件的参数选择。
为了保证输出波形的稳定性,应该选择具有良好温度稳定性和频率稳定性的元器件,同时考虑到制作成本和实际应用要求,选择适合的元器件。
第三,制作电路板。
在选择好元器件之后,需要合理布局电路,将元器件焊接到电路板上。
为保证电路的稳定性和可靠性,电路板应该选用高质量的绝缘材料,并进行严格的质量控制。
然后,对电路进行调试和测试。
初始调试时,需要使用示波器和电压表等测试仪器,调整电路参数,使其达到预期的性能要求。
在测试中,应注意观察波形的稳定性、频率、峰值、偏移量等参数,对异常情况进行分析和处理。
最后,进行封装和安装。
根据实际应用环境和要求,选择合适的封装方式和安装位置。
考虑到散热和防护问题,需要选择具有良好散热性能和防护性能的封装材料,并进行严格的防护处理。
综上所述,设计方波、三角波、正弦波函数发生器是一项既需要严谨的理论知识,又需要熟练的实践技能和深入的电路分析能力的工作,这需要设计者具有深厚的电子技术基础和丰富的实践经验。
EDA课程设计正弦信号发生器的设计

《EDA技术》设计报告设计题目正弦信号发生器的设计院系:信息工程学院专业:通信工程学姓号:名:RST7 根地址线CLK计 数器8 位R O M并转串输出TLV5620 D/A 转换一.设计任务及要求1. 设计任务 :利用实验箱上的 D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波2. 设计要求 :(1) 用 VHDL 编写正弦波扫描驱动电路 (2) 设计可以产生正弦波信号的电路(3) 连接实验箱上的 D/A 转换器和示波器,观察正弦波波形二.设计方案(1)设计能存储数据的 ROM 模块,将正弦波的正弦信号数据存储在在 ROM 中,通过地址发生器读取,将正弦波信号输入八位 D/A 转化器,在示波器上观察波形(2)用 VHDL 编写正弦波信号数据, 将正弦波信号输入八位 D/A 转化器, 在示波器上观察波形三.设计框图图 1 设计框图信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM用于存储待采样的波形幅度数值, TLV5620 用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。
其中,ROM 设置为 7 根地址线, 8个数据位,8 位并行输出。
TLV5260 为串行输入的 D/A 转换芯片,因此要把 ROM 中并行输出的数据进行并转串。
四.实现步骤1. 定制 ROMROM 的数据位选择为8 位,数据数选择128 个。
利用megawizard plug-in manager定制正弦信号数据ROM 宏功能块,并将上面的波形数据加载于此ROM 中。
如图 3 所示。
图2 ROM 存储的数据图3 调入ROM 初始化数据文件并选择在系统读写功能2. 设计顶层.顶层设计主要是通过编写VHDL 语言或设计原理图用于产生计数信号和调用room 存储的数据并输出。
在此步骤里要建立EDA 工程文件,工程文件结构如图4 所示,SIN_CNT 中的VHDL 代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY SIN_GNT ISPORT ( RST, CLK, EN : IN STD_LOGIC;ADDR : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END SIN_GNT;ARCHITECTURE BEHA VIOR OF SIN_GNT ISCOMPONENT ROM ISPORT ( address : IN STD_LOGIC_VECTOR(6 DOWNTO 0);inclock : IN STD_LOGIC;q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END COMPONENT;SIGNAL Q : STD_LOGIC_VECTOR(6 DOWNTO 0);BEGINU : ROM PORT MAP ( address => Q,inclock => CLK,q => DOUT);PROCESS(CLK, RST, EN)BEGINIF RST = '0' THENQ <= "0000000";ELSIF CLK'EVENT AND CLK = '1' THENIF EN = '1' THENQ <= Q + 1;END IF;END IF;END PROCESS;ADDR <= Q;END BEHA VIOR;工程文件的建立步骤简述如下:1、新建一个文件夹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验题目: 正弦波发生器的设计
实验时间:_2016年11月29号________
班级:___14物本2班____学号:_2014294222_____姓名:_梁国烈___
一、实验预习
1、实验目的
(1)学习用集成运放构成正弦波发生器。
(2) 学习波形发生器的调整和主要性能指标的测试方法。
2、实验原理及内容(简明扼要,主要是实验接线图)
(一)设计原理与参考电路 1.电路工作原理
RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图3-27所示。
R
3
2
-12V
4
+12V
6
7u 0
A
R b
R a
R
C
C
{
R 1
Rw
D 1D 2
图3-27 RC 桥式振荡电路
图中RC 选频网络形成正反馈电路,并由它决定振荡频率f O ,R a 和R b 形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制,该电路的振荡频率
起振幅值条件
即
式中:R b =R w +R 1//r d
r d —为二极管的正向动态电阻。
2.参数确定与元件选择
设计如图3-27所示振荡电路,需要确定和选择的元件如下: (1)确定R 、C 值。
根据设计所要求的振荡频率f O,由式先确定RC之积,即
为了使选频网络的选频特性尽量不受集成运算放大器的输人电阻R i和输出电阻R o的
影响,应使R满足下列关系式
R i»R»R o
一般R i约为几百千欧以上(如LM741型R i≥0.3MΩ),而R O仅为几百欧以下,初步选
定R之后,由式算出电容C值,然后,再复算R取值是否能满是振荡频率的要求。
若考虑到电容C的标称挡次较少,也可以先初选电容C,再算电阻R。
(2)确定R a和R b。
电阻R a和R b应由起振的幅值条件来确定。
由式可知,R b≥2R a,通常取R b=(2.1-2.5)Ra,
这样既能保证起振,也不致产生严重的波形失真。
此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即
R=R a∥R b
于是可导出
(3)确定稳幅电路及元件值。
常用的稳幅方法是利用A uf随输出电压振幅上升而下降(负反馈加强)的自动调节作用实现稳幅。
为此R a可选用正温度系数的电阻(如钨丝灯泡),或R b选用负温度系数的电阻(如热敏电阻)。
在图3-27中,稳幅电路由两只正反向并联的二极管D1、D2和电阻R1并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻R1,这是一种最简单易行的稳幅电路。
在选取稳幅元件时,应注意以下几点:
①幅二极管D1、D2宜选用特性一致的硅管。
②并联电阻R1的取值不能过大(过大对削弱波形失真不利),也不能过小(过小稳幅效果差),实践证明,取R1≈r d时效果最佳,通常R1取(3-5)kΩ即可。
当R1选定之后,R w的阻值可由下式求得
--
(4)选择集成运算放大器。
振荡电路中使用的集成运算放大器除要求输入电阻高、输出电阻低外,最主要的是运算放大器的增益-带宽积G・BW应满足如下条件,即:
G・BW>3f o
若设计要求的振荡频率f O较低,则可选用任何型号的运算放大器(如通用型)。
(5)选择阻容元件。
选择阻容元件时,应注意选用稳定性较好的电阻和电容(特别是串并联回路的R、C),否则将影响频率的稳定性。
此外,还应对RC串并联网络的元件进行选配,使电路中的电阻、电容分别相等。
(二)实验内容与步骤
实验参考电路如图3-27所示。
(1)根据已知条件和设计要求计算和确定元件参数,并在实验电路板上搭接电路,检查无误后接通电源,进行调试。
(2)调节反馈电阻R w,使电路起振且波形失真最小,并观察电阻R w的变化对输出波形u o的影响。
(3)测量和调节参数,改变振荡频率,将测量数据与理论值相比较,直至满足设计要求为止,将测得的数据记录在表3-26。
3、所用仪器设备
波形发生器电路设计实验所需仪器设备见表3-25。
表3-25 实验仪器设备
序号名称型号规格数量
1 模拟电路实验箱THM-3 1
2 双踪示波器V-252,20MH Z 1
3 交流毫伏表DF2170C 1
4 数字万用表VC9801A+ 1
4、预习思考题
(1)复习教材中RC正弦波振荡电路的工作原理。
(2)根据设计任务和已知条件设计图3-27所示RC桥式振荡电路,计算并选取参数。
(3)利用仿真软件仿真设计的RC桥式振荡电路。
二、实验原始记录(实验完成后必须要经过实验指导教师签名认可)
表3-26 正弦波发生器的数据记录
元件值实测值理论值相对误差R(kΩ) C(uF) T(ms) (H Z) (H Z)/)
三、实验报告
1、数据处理(数据表格、计算结果、误差、结果表达、曲线图等)
表3-26 正弦波发生器的数据记录
元件值实测值理论值相对误差R(kΩ) C(uF) T(ms) (H Z) (H Z) /)
47 0.01 2.9 344.83 338.80 0.01178
理论值:f0=1/(2πRc) =1/2*3.14*47*0.01=338.80Hz
相对误差:Δf0/ f0’=(344.83-338.80)/338.80=0.0178
2、结论
(1)根据设计要求和已知条件确定电路方案,计算并选取各元件参数。
3、讨论
(1)根据已知条件和设计要求计算和确定元件参数,并在实验电路板上搭接电路,检查无误后接通电源,进行调试。
(2)调节反馈电阻R w,使电路起振且波形失真最小,并观察电阻R w的变化对输出波形u o的影响。
2016年 11 月 29 日。