数控机床的发展史
数控机床发展史

数控机床的发展史1.第一代数控机床产生于1952年(电子管时代)美国麻省理工学院研制出一套试验性数字控制系统,并把它装在一台立式铣床上,成功地实现了同时控制三轴的运动。
这台数控机床被大家称为世界上第一台数控机床,但是这台机床毕竟是一台试验性的机床。
到了1954年11月,在帕尔森斯专利基础上,第一台工业用的数控机床由美国本迪克斯公司。
2.第二代数控机床产生于1959年(晶体管时代)电子行业研制出晶体管元器件,因而数控系统中广泛采用晶体管和印制电路板,使数控机床跨入了第二代。
同年3月,由美国克耐·杜列克公司(Keaney &Trecker Corp)发明了带有自动换刀装置的数控机床,称为“加工中心”。
现在加工中心已成为数控机床中一种非常重要的品种,在工业发达的国家中约占数控机床总量的l/4左右。
生产出来。
3. 第三代数控机床产生于1960年(集成电路时代)研制出了小规模集成电路。
由于它的体积小,功耗低,使数控系统的可靠性得以进一步提高,数控系统发展到第三代。
以上三代,都是采用专用控制的硬件逻辑数控系统(NC)。
4.第四代数控机床产生于1970年前后随着计算机技术的发展,小型计算机的价格急剧下降、小型计算机开始取代专用控制的硬件逻辑数控系统(NC),数控的许多功能由软件程序实现。
由计算机作控制单元的数控系统(CNC),称为第四代。
1970年,在美国芝加哥国际展览会上,首次展出了这种系统。
5.第五代数控机床产生于1974年美、日等国首先研制出以微处理器为核心的数控系统的数控机床。
30多年来,微处理机数控系统的数控机床得到飞速发展和广泛的应用,这就是第五代数控(MNC)。
后来,人们将MNC也统称为CNC。
柔性制造系统1967年,英国首先把几台数控机床联接成具有柔性的加工系统,这就是最初的FMS—Flexible Manufacturing System柔性制造系统。
之后,美、欧、日等国也相继进行了开发和应用。
数控机床的发展历史

数控机床的发展历史1.产生背景随着科学技术和社会生产力的不断发展,人们对机械产品的质量和生产效率提出了越来越高的要求,而机械加工过程的自动化是实现上述要求的有效途径。
从工业化革命以来人们实现机械加工自动化的手段有:自动机床;组合机床;专用自动生产线。
这些设备的使用大大地提高了机械加工自动化的程度,提高了劳动生产率,促进了制造业的发展,但它也存在固有的缺点:初始投资大;准备周期长;柔性差。
因此,上述方法仅适用批量较大的零件生产。
然而,随着市场竞争的日趋激烈,产品更新换代周期缩短,批量大的产品越来越少,而小批量产品的生产所占的比重越来越大,约占总加工量的80%以上。
在航空、航天、重型机床以及国防部门尤其如此。
因此,迫切需要一种精度高、柔性好的加工设备来满足上述需求,这是机床数控技术产生和发展的内在动力。
另一方面,电子技术和计算机技术的飞速发展则为NC机床的进步提供了坚实的技术基础,这是机床NC技术产生和发展的可能性。
NC技术正是在这种背景下诞生和发展起来的。
它极其有效地满足了上述要求,为小批量、精密复杂的零件生产提供了自动化加工手段。
它的产生给自动化技术带来了新的概念,推动了加工自动化技术的发展。
2.发展沿革1952年,美国帕森斯(Parsons)公司和麻省理工学院(MIT)合作研制了世界上第一台三坐标数控机床,其控制系统由电子管组成。
1955年,在Parsons专利的基础上,第一台工业用数控机床由美国Bendix公司生产出来,这是一台实用化的数控机床。
从1952年至今,数控机床按数控系统的发展经历了五代。
第一代:1955年数控系统以电子管组成,体积大,功耗大。
第二代:1959年数控系统以晶体管组成,广泛采用印刷电路板。
第三代:1965年数控系统采用小规模集成电路,其特点是体积小,功耗低,可靠性有了提高。
第四代:1970年数控系统采用小型计算机取代专用计算机,其部分功能由软件实现,首次出现在1970年美国芝加哥国际机床展览会上。
数控机床的发展历史及其技术的发展趋势

3、在关键技术的应用方面,伺服驱动技术、数控系统技术和机械结构技术 都在不断发展,其中伺服驱动技术和数控系统技术的数字化、高频化、集成化, 以及机械结构技术的高刚度、高精度、高可靠性都是当前发展的主要方向。
综上所述,数控机床的关键技术和发展趋势对制造业的发展至关重要。未来, 随着科学技术的不断进步和创新,我们有理由相信,数控机床的关键技术和发展 趋势将会有更大的突破和创新。
2、虚拟现实/增强现实技术在数 控机床上的应用
虚拟现实(VR)和增强现实(AR)技术的引入,为数控机床的操作和维护提 供了全新的视角。通过VR技术,可以将加工过程进行模拟仿真,帮助操作人员提 前发现潜在的错误和问题,提高实际加工过程中的安全性。而AR技术则可以将加 工信息实时叠加到实际场景中,使操作人员能够更加直观地了解设备状态和加工 进度,提高生产效率。
高速化指的是数控机床的加工速度不断提高,高精度化则是指数控机床的加 工精度不断提高。复合化是指数控机床具备多种加工功能,能够实现一机多能。 智能化则是指数控机床具备智能化的加工能力和自我诊断修复功能。
三、数控机床关键技术分析
1、伺服驱动技术:伺服驱动技术是数控机床的重要组成部分,其性能直接 影响到数控机床的加工精度和速度。目前,伺服驱动技术正朝着数字化、高频化、 集成化方向发展,其中数字化伺服驱动技术通过提高脉冲频率和采样率,能够大 幅度提高伺服系统的性能。
四、结论
数控机床作为现代制造业的核心设备,其性能和使用寿命直接影响到生产效 率和产品质量。本次演示通过对数控机床的关键技术和发展趋势进行分析,得出 以下结论:
1、数控机床的关键技术包括伺服驱动技术、数控系统技术、机械结构技术 等,这些技术的发展程度直接决定了数控机床的性能和使用寿命。
数控机床的发展历程和趋势

现代数控机床的应用领域拓展
01
02
03
04
航空航天领域
用于加工飞机和航天器的复杂 零部件,如发动机叶片、机翼
等。
汽车制造领域
用于加工汽车零部件,如发动 机缸体、曲轴等。
模具制造领域
用于加工各种模具零部件,如 注塑模、压铸模等。
医疗器械领域
用于加工各种医疗器械零部件 ,如人工关节、牙科种植体等
高精度直线导轨和滚珠丝 杠
高精度直线导轨和滚珠丝杠的 应用提高了数控机床的定位精 度和重复定位精度,进一步提 升了加工质量。
智能化技术
中期发展阶段开始引入智能化 技术,如自适应控制、模糊控 制等,使数控机床能够根据不 同的加工条件自动调整参数, 提高加工过程的稳定性和效率 。
中期发展的主要应用领域
高速发展阶段
21世纪初,中国数控机床 产业进入高速发展阶段, 技术水平不断提高,产品 种类日益丰富。
中国数控机床的产业现状
产业规模
中国数控机床产业规模不断扩大, 已经成为全球最大的数控机床生 产国之一。
技术水平
中国数控机床的技术水平不断提高, 已经具备了国际竞争力。
产品种类
中国数控机床的产品种类日益丰富, 涵盖了各种加工中心、数控车床、 数控铣床等。
新兴领域应用 数控机床在新兴领域如新能源、 新材料、生物医药等领域的应用 不断拓展,为数控机床的发展提 供了新的机遇。
技术创新驱动 数控机床技术的不断创新和发展, 将推动其在高效、高精度、智能 化等方面取得更大突破。
如何应对数控机床发展的挑战和机遇
加强技术研发和创新
企业应加大技术研发和创新投入,提升 数控机床的技术水平和核心竞争力。
数控机床发展简史

1、1948年美国空军部门为制造飞机杂零件,研究四年,於1952年试制出世界第一台数控铣床,立即生产100台交付军工使用。
在成果上显示了它是社会需求、科技水平、人员素质三者的结晶;在技术上则显示出机电一体化机床在控制方面的巨大创新。
数控机床种类繁多,一般将数控机床分为16大类:数控车床(含有铣削功能的车削中心)数控铣床(含铣削中心)数控铿床以铣程削为主的加工中心.数控磨床(含磨削中心)数控钻床(含钻削中心)数控拉床数控刨床数控切断机床数控齿轮加工机床数控激光加工机床数控电火花线切割机床数控电火花成型机床(含电加工中心) 数控板村成型加工机床数控管料成型加工机床其他数控机床2.数控机床的发展趋势2.1 高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。
(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。
由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。
德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。
2.2 高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。
(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。
关于各个国家的数控机床的发展历史

关于各个国家的数控机床的发展历史Newly compiled on November 23, 2020关于各个国家的数控机床的发展历史数控机床是由美国发明家约翰·帕森斯上个世纪发明的。
随着电子信息技术的发展,世界机床业已进入了以数字化制造技术为核心的机电一体化时代,其中数控机床就是代表产品之一。
数控机床是制造业的加工母机和国民经济的重要基础。
它为国民经济各个部门提供装备和手段,具有无限放大的经济与社会效应。
欧、美、日等工业化国家已先后完成了数控机床产业化进程,而中国从20世纪80年代开始起步,仍处于发展阶段。
美国发展美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究"效率"和"创新",注重基础科研。
因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。
由于美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。
当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重于基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。
从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。
德国发展德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。
于1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。
企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。
数控车床发展史

1970年代末至1980年代初
美国、德国、日本等国在数控机床领域取得显著进展,推出了一系列高性能的数控机床
数控机床技术逐渐成熟,应用领域不断扩大
1980年代
日本数控机床产量超过美国,成为世界最大的数控机床生产国
日本在数控机床领域的技术创新和质量控制使其在全球市场上占据领先地位
数控车床发展史
时间节点
发展事件
技术特点
1952年
美国帕森斯公司与麻省理工学院合作试制出世界上第一台三坐标联动、利用脉冲乘法器原理工作的立式数控铣床
数控技术的初步探索,采用电子管控制
1954年
美国本迪克斯公司生产了世界上第一台工业用数控机床
数控机床的工业化应用开始,标志着数控技术的初步成熟
1959年
数控系统发展到第二代,采用晶体管控制
1990年代至今
数控机床技术持续发展,各国纷纷推出高性能、高精度的数控机床
数控机床在控制、精度、自动化、灵活性等方面不断提升,广泛应用于航空航天、汽车、电子等高端制造领域
2020年代
中国数控机床产业发展迅速,技术突破显著,打破了国外的技术垄断
相比电子管,晶体管具有更高的可靠性和稳定性
1965年
数控系统发展到第三代,采用小规模集成电路控制
集成电路的应用提高了数控系统的性能和可靠性
1970年
第四代数控系统出现,小型计算机开始用于数控系统
计算机技术的应用使数控系统具有更高的智能化和自动化水平
1974年
第五代数控系统出现,微处理器开始用于数控系统
数控机床发展历程

数控机床发展历程数控机床是利用计算机数字控制技术来完成各种机械加工过程的机床。
它具有高精度、高自动化程度和高效率的特点,被广泛应用于机械制造领域。
下面将介绍数控机床的发展历程。
数控机床的起源可以追溯到20世纪50年代,最初是在航天航空领域应用,在飞机发动机的制造中起到了重要的作用。
当时的数控机床主要由电子管控制系统组成,机床的精度和可靠性较低。
但是随着计算机技术的飞速发展,数控技术得到了迅猛的发展。
到了20世纪60年代,随着集成电路技术的发展,数控机床逐渐由电子管控制系统转向使用集成电路控制系统。
这使得数控机床的控制更加稳定可靠,精度也得到了一定程度的提高。
但是当时的数控机床还比较笨重,体积庞大,功能有限。
20世纪70年代,随着微处理器的出现,数控机床得到了进一步的发展。
微处理器技术的应用使得机床的控制系统更加灵活多样化,运算速度也大大提高,机床的精度和效率得到了显著提升。
同时,液晶显示器的使用也使得操作界面更加直观,大大提高了操作的便利性。
到了20世纪80年代,数控机床开始逐渐应用于各个行业,成为工业企业的重要设备之一。
同时,随着计算机网络技术的兴起,数控机床开始与计算机网络进行连接,实现了数据的共享和远程监控。
这使得机床的生产过程更加智能化和自动化。
到了21世纪,随着互联网和云计算的飞速发展,数控机床发展到了一个新的阶段。
数控机床不仅能够实现远程监控和数据共享,还可以通过云计算技术实现大数据分析和人工智能。
这样,数控机床的生产效率和精度得到了进一步提高,同时还大大降低了生产成本。
总之,数控机床经过多年的发展,从最初的电子管控制系统到现在的云计算智能化系统,不断提升了精度、效率和自动化程度。
数控机床的发展不仅推动了工业制造的进步,也极大地提高了工人的工作环境和工作效率。
相信在不久的将来,数控机床将会继续发展壮大,成为工业制造的重要支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北科技师范学院欧美学院论文题目:数控机床发展史系别:机电科学与工程系专业:机械制造与自动化姓名:***学号:**********2010年10月6日数控机床发展史论文摘要摘要:作为机械系的一名学生,将来工作学习都会以机械为主,所以必须把握好各种机械的专业知识,从这学期开端,开端接触机械专业基础课。
我会本着认真的态度看待专业课的学习,进步自己的专业素养.接下来我将介绍一下我对数控机床发展史的熟悉。
20世纪中期,随着电子技巧的发展,主动信息处理、数据处理以及电子盘算机的涌现,给主动化技巧带来了新的概念,用数字化信号对机床运动及其加工过程进行把持,推动了机床主动化的发展。
采用数字技巧进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公(ParsonsCorporation)实现的。
他们在制作飞机的框架及直升飞机的转动机翼时,利用全数字电子盘算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高程度。
1952年,麻省理工学院在一台立式铣床上,装上了一套实验性的数控系统,成功地实现了同时把持三轴的运动。
这台数控机床被大家称为世界上第一台数控机床。
这台机床是一台实验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。
在此以后,从1960年开端,其他一些工业国家,如德国、日本都陆续开发、生产及应用了数控机床。
数控机床中最初涌现并获得应用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。
然而,由于当时的数控系统采用的是电子管,体积宏大,功耗高,因此除了在军事部门应用外,在其他行业没有得到推广应用。
到了1960年以后,点位把持的数控机床得到了迅速的发展。
因为点位把持的数控系统比起轮廓把持的数控系统要简略得多。
因此,数控铣床、冲床、坐标镗床大批发展,据统计材料表明,到1966年实际应用的约6000台数控机床中,85%是点位把持的机床。
数控机床的发展中,值得一提的是加工中心。
这是一种具有主动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。
这种产品最初是在1959年3月,由美国卡耐·;特雷克公司(Keaney&TreckerCorp.)开发出来的。
这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令主动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。
它可缩短机床上零件的装卸时间和调换刀具的时间。
加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。
1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制作系统。
美、欧、日等也相继进行开发及利用。
1974年以后,随着微电子技巧的迅速发展,微处理器直接用于数控机床,使数控的软件功效加强,发展成盘算机数字把持机床(简称为CNC机床),进一步推动了数控机床的普及利用和大力发展。
80年代,国际上涌现了1~4台加工中心或车削中心为主体,再配上工件主动装卸和监控检验装置的柔性制作单元(FlexibleManufacturingCell——FMC)。
这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制作系统中应用。
目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩大,从中小批量加工向大批量加工发展。
所以机床数控技巧,被认为是现代机械主动化的基础技巧。
那什么是车床呢?据材料所载,所谓车床,是重要用车刀对旋转的工件进行车削加工的机床。
在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。
车床重要用于加工轴、盘、套和其他具有回转表面的工件,是机械制作和修配工厂中应用最广的一类机床。
古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。
1797年,英国机械创造家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可转变进给速度和被加工螺纹的螺距。
1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来转变主轴转速。
为了进步机械化主动化程度,1845年,美国的菲奇创造转塔车床;1848年,美国又涌现回轮车床;1873年,美国的斯潘塞制成一台单轴主动车床,不久他又制成三轴主动车床;20世纪初涌现了由单独电机驱动的带有齿轮变速箱的车床。
第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效主动车床和专门化车床迅速发展。
为了进步小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,和此同时,多刀车床也得到发展。
50年代中,发展了带穿孔卡、插销板和拨码盘等的程序把持车床。
数控技巧于60年代开端用于车床,70年代后得到迅速发展。
车床依用处和功效区分为多种类型。
普通车床的加工对象广,主轴转速和进给量的调剂领域大,能加工工件的内外表面、端面和内外螺纹。
这种车床重要由工人手工操作,生产效率低,实用于单件、小批生产和修配车间。
转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次应用不同刀具完成多种工序,实用于成批生产。
主动车床能按必定程序主动完成中小型工件的多工序加工,能主动高低料,重复加工一批同样的工件,实用于大批、大批生产。
多刀半主动车床有单轴、多轴、卧式和立式之分。
单轴卧式的布局情势和普通车床类似,但两组刀架分辨装在主轴的前后或高低,用于加工盘、环和轴类工件,其生产率比普通车床进步3~5倍。
仿形车床能仿照样板或样件的外形尺寸,主动完成工件的加工循环,实用于外形较复杂的工件的小批和成批生产,生产率比普通车床高10~15倍。
有多刀架、多轴、卡盘式、立式等类型立式车床的主轴垂直于程度面,工件装夹在程度的回转工作台上,刀架在横粱或立柱上移动。
实用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。
铲齿车床在车削的同时,刀架周期地作径憧憬复运动,用于铲车铣刀、滚刀等的成形齿面。
通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。
专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。
联合车床重要用于车削加工,但附加一些非凡部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,实用于工程车、船舶或移动修理站看机床的程度重要看金属切削机床,其他机床技巧和复杂性不高,就是近几年很风行的电加工机床,也只是方法的转变,没什么复杂性和科技含量。
我国的数控磨床程度不错,每年都有大批出口,因为它简略,基础属于劳动密集型。
金属加工重要是去除材料,得到想得到的金属外形。
去除材料,重要靠车和铣,车床发展为数控车床,铣床发展为加工中心。
高精度多轴机床,可以让复杂零件在精度和外形上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人摘要:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。
零件精度高就意味着寿命长,可靠性好。
由普通发展到数控,一个人顶本来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。
把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁把握了,那牛得很。
现在用数控设备,只要你会编程,把参数输进去就可以了,很简略,刚毕业的技校学生都会,而且批量的产品德量也有保证。
自美国在50年代末搞降生界一台数控车床后,机床制作业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。
等80年代我们再去看世界的数控机床程度,差距就是20年了,其实奋起直追还有盼望,但国营工厂不思进取,到了90年代,我们再去看世界程度,已有30年的差距了。
中国改革开放前走的是苏联的门路,什么叫苏联的门路,举个例子来讲摘要:比如,生产一根轴,苏联的方法是建一个专用生产线,用多台专用机床,利益是批量很轻易上去,但一旦这根轴的参数产生了变更,这条线就报废了,生产人员也就没事做了。
在1960-1980年代,国营工厂一个产品生产几十年不变样。
到了1980年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就艰苦了,到了90年代就大批破产,大批职工下岗。
现代的生产也有大批量生产,但重要是单件小批量,不管是那种,只要你的设备是数控的,适应起来就快。
专业机床的门路已经到头了, ;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推动螺旋桨上的制作,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。
由此也可见,前苏联的机床制作业也落后了,他们落后,我们就更不用说了。
虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。
德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没新问题,剩下的就是电子系统方面,德国的电子系统工业本来就壮大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。
但日本人的强项就是仿造,从上世纪70年代起,日本大批从德国引进技巧,消化后大批仿造,经过努力,日本在90年代起,就超出了德国,成为世界第一大数控机床生产国,直到现在还是。
他们在机床制作程度上,有一些也走在了世界前面,如在机床复合(一机多种功效)化方面,是世界第一。
数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,重要是它的发拿科公司。
第一代的系统用步进电机,我们现在也能造,第二代用交换伺服电机。
现在的数控系统的核心就是交换伺服电机和系统内的逻辑把持软件,交换伺服电机我们国家目前还没有谁能制作,这是一个光学、机械、电子的综合体。
逻辑把持软件就是把持机床的各轴运动,而这些轴是用伺服电机驱动的,一般的系统能同时把持3轴,高级系统能把持五轴,能控5轴的,五轴以上也没新问题。
我们国家也由有5轴系统,但“做秀”的成份多,还没实用化。
我们的工厂用的五轴和五轴以上机床,100%进口。
机床是一个国家制作业程度高低的象征,其核心就是数控系统。
我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,重要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有新问题。
目前国内的各大机床厂,数控系统100%外购,各厂家一般都买日本发那科、三菱的系统,占80%以上,也有德国西门子的系统,但比较少。