微积分曹定华修订版课后题答案第二章习题详解
微积分(曹定华)(修订)课后题答案第二章习题详解

第二章习题2-11. 试利用本节定义5后面的注〔3〕证明:假设lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时〔此时1n k N +>〕有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:假设lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:〔1〕因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 〔2〕因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4. 利用单调有界数列收敛准则证明以下数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…. 证:〔1〕略。
《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第三章

(3) y x x 3 x
2
y ( x 6 )
6. 讨论函数 y= 3 x 在 x=0 点处的连续性和可导性. 解: lim 3 x 0 f (0)
x 0
lim
x 0
3 f ( x) f (0) x 0 1 lim lim x 0 x 0 3 2 x0 x x
t
此文档由天天learn()为您收集整理。
解:(1) lim
x 0
f ( x0 x) f ( x0 ) f [ x0 ( x)] f ( x0 ) lim f ( x0 ) x 0 x x
A f ( x0 )
tt
2 3
1
1 5 1 x 6 6 6 6 x5
le
5 2
x2
;(3) y=
x6
1
ar
x2
3
x2
x5
n.
.
2
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
ne
t
f ( x0 h) f ( x0 h) h 0 h [ f ( x0 h) f ( x0 )] [ f ( x0 h) f ( x0 )] lim h 0 h f ( x0 h) f ( x0 ) f [ x0 (h)] f ( x0 ) lim lim h 0 h 0 h h
解:为使 f ( x) 在 x 1 处连续,必须 f (1 0) f (1 0) f (1) ,
le
为了使 f ( x) 在 x 1 处可导,必须 f (1) f (1)
f (1) lim
f ( x) f (1) ax b 1 ax a lim lim a x 1 x 1 x 1 x 1 x 1
微积分第二章习题参考答案

f ( x ) f ( x ), f ( x ) f ( x ),
即f ( x )为奇函数;
§2.3隐函数的导数(23-24)
一.1. ey sec 2 ( r ) ; 2. csc 2 ( r ) ; 2 2 y 1 sec ( r )
x 0
1 2 x
1.
二.解1.(1).
y ln( x 1 x 2 ) ln x ,
1 x
1 y (1 ) x x 1 x2 1 x2 1 . x 2 1 x 2 x(1 x 2 )
(2) 1 y 3sec (ln x ) sec(ln x )tan(ln x ) x 3 sec 3 (ln x )tan(ln x ). x
x 1 dy k 2e ,当 0时, , dx 0 y0
切线方程为 y 2e( x 1), 1 法线方程为 y ( x 1). 2e
四.
解 : s ( t ) x ( t ) 9,
2 2
ds dx s( t ) x ( t ) 0, dt dt ds 已知 160, s 5, x 4, dt dx 200, v 200 120 80. dt
(sin 2 x ) f (cos 2 x )]sin 2 x . [f 1 (3) y f ( x ); 2 1 f ( x)
(4) y f (sin x )cos x cos[ f ( x )] f ( x ).
4.解.(一) lim f ( x ) lim
1 1 2( 1)2 2( 1)2 y , y 2 2 , 3 3 ( t 2) ( t 1) ( t 2) ( t 1)
微积分曹定华课后题答案第二章习题详解

第二章习题2-11、 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a 、证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=、2、 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|、考察数列x n =(-1)n ,说明上述结论反之不成立、证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<Q而 n n x a x a -≤- 于就是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3、 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭L =0; (2) lim n →∞2!n n =0、 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+L 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭L 、 (2)因为22222240!1231n n n n n<=<-g g g L g g ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 4、 利用单调有界数列收敛准则证明下列数列的极限存在、 (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…、 证:(1)略。
微积分(曹定华)(修订版)课后题答案第一章习题详解

第一章习题1-11.用区间表示下列不等式的解2(1)9;(2)1;1(3)(1)(2)0;(4)00.011 x x x x x ≤>--+<<<+ 解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1).(4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩ 用区间表示是(-1.01,-1)∪(-1,-0.99).2.用区间表示下列函数的定义域:1(1)(2)arcsin(1)lg(lg );1(3).ln(2) y y x x x y x ==-+=- 解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),ff (a )(a 为实数),并作出图形(1)1,0,2,011,12x x y x x x ⎧<⎪⎪=⎨≤<⎪⎪<≤⎩; (2)y=211,12x x x ⎧≤⎪⎨-<<⎪⎩解 (1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x x x x x =<≤<<≤=<<≤=-∞1(0)200,1,()201112a af f f a a a a ⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x x x x x =≤<<=<=-221(0)1,11,()112a f f f a a a ≤===-==-<<⎪⎩4※.设1,1()1,1x f x x ⎧≤⎪=⎨->⎪⎩,求f (f (x )).解 当|x |≤1时, f (x )=1, f (f (x ))= f (1)=1;当|x |>1时, f (x )=-1, f (f (x ))= f (-1)=1,综上所述f (f (x ))=1(x ∈R ).5.判定下列函数的奇偶性:(1) f (x )=21cos x x -; (2)f (x )=(x 2+x )sin x ;(3) ※ f (x )=1e ,0e 1,0x x x x -⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x x f x f x x x----===- ∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-,∴f (x )是非奇非偶函数.(3) ※当x <0时,-x >0, ()1(1)()e e x x f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()e e e x x x f x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数.6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数.证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =±则 ()()()()()()F x f x g x f x g x F x -=-±-=±=,所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅,则 ()()()()()()F x f x g x f x g x F x -=-⋅-=-=-,所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数.8. 求下列函数的反函数:22(1)2sin 3,,;(2);66212101,(3)()2(2)1 2.xx y x x y x x f x x x ππ⎡⎤=∈-=⎢⎥+⎣⎦-≤≤⎧=⎨--<≤⎩解 (1)由2sin3y x =得1arcsin 32yx =所以函数2sin3y x =的反函数为1arcsin (22)32xy x =-≤≤.(2)由221xx y =+得21x y y =-,即2log 1yx y =-. 所以函数221x x y =+的反函数为2log (01)1xy x x =<<-.(3) ※当01x ≤≤时,由21y x =-得1,112yx y +=-≤≤;当12x <≤时,由22(2)y x =--得22x y =<≤;于是有1112212yy x y +⎧-≤≤⎪=⎨⎪<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212x x f x x +⎧-≤≤⎪=⎨⎪<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,(). 为实数u v y u x y u u v x y u u v a x a ==+======+解 (1)211010u x y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2v x y u x ====⋅定义域为(-∞,+∞);(3) arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的?(1) y= ; (2) y =sin 3ln x ;(3) y = tan 2x a ; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin x u a =,则y ,再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,x y u v v a ===复合而成的.(2)令sin ln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则u y a =,再令2v x =,则tan u v =,因此2tan x y a =是由基本初等函数2,tan ,u y a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w === 3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域:(1) f (x 2); (2) f (sin x );(3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ].(4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1].3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x );(2) 设g (x -1)=x 2+x +1,求g (x );(3) 设1()f x x +=x 2+21x,求f (x ). 解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=++.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-,即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++,即 2()33g x x x =++.(3)法一:令1x t x +=,两边平方得22212x t x ++= 即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-. 法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令1x t x+=,得2()2f t t =-,即2()2f x x =-.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR === 即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 1240a b c ⎧=-⎪⎪⎨=⎪⎪=⎩ 所以总收入函数21()42TR x x x =-+. 2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR x x x x x ≤⎧=⎨+<≤⎩.3. 已知需求函数为105Q P =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105Q R Q PQ Q ==- ,则 总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q Q Q==--. 4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P = 所以市场均衡价格5P =.。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第四章

f (0) 0 ,依题意知 f ( x0 ) 0 .即有 f (0) f ( x0 ) .由罗尓定理,至少存在一点 (0, x0 ) ,使
得 f ( ) 0 成立,即
a0 n n 1 a1 (n 1) n 2 … an 1 0
成立,这就说明 是方程 a0 nx n 1 a1 (n 1) x n 2 an 1 0 的一个小于 x0 的正根. 7. 设 f(a) = f(c) = f(b),且 a<c<b, f ″(x)在 [a,b] 上存在, 证明在(a,b)内至少存在一点ξ, 使 f ″(ξ) = 0. 证: 显 然 f ( x ) 分 别 在 a , c 和 c, b 上 满 足 罗 尓 定 理 的 条 件 , 从 而 至 少 存 在
x x x
由 e 在 , 上连续,可导, f ( x) 在 a, b 上连续,在 a, b 内可导,知 F ( x) 在 a, b 上连
x
续,在 a, b 内可导,而且 F ( a ) e f ( a ) 0, F (b) e f (b) 0, 即F ( a ) F (b) ,
(4) lim
(a x) x a x ,(a>0); x 0 x2
(6) lim sin x ln x ;
x 0
1 ln(1 ) x ; (7) lim x arc cot x
(9) lim(1 sin x) x ;
x 0
1
(8) lim(
x 0
ex 1 ); x ex 1
x 0
f ( x) 在 0,π 上不连续,
显 然 f ( x) 在
0, π
微积分曹定华版课后题答案习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2)∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4)∑∞=-+12)1(2n nn; (5) ∑∞=+11ln n n n ; (6)∑∞=-12)1(n n;(7) ∑∞=+11n n n ; (8)(1)21n n nn ∞=-⋅+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散.(2)Q n S =+++L∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n∞=∑发散,故原级数113n n ∞=+∑发散. (4)Q 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5)Q lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6)Q 2210,2n n S S +==-∴lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7)Q 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8)Q (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ; (3) ∑∞=⋅12sin n n n π; (4)πcos2n n ∞=∑. 解:Q (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32.(2)Q11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散.3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=L ,故存在0n ,使又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim n n S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n1; (3) ∑∞=++1n n n n )2(2; (4)∑∞=+1n n n )5(12;(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n nb a 1(a , b >0); (7)()∑∞=--+1n a n a n22(a >0); (8)∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753ΛΛ; (12)∑∞=1n nn3;(13) ※∑∞=1n n n 22)!(2; (14)∑∞=⎪⎭⎫ ⎝⎛+1n nn n 12; (15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n ∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散.(3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散.(4321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数n ∞=.(5)因为111lim lim lim(1)111n n n n n n n na a a a a →∞→∞→∞+==-++ 而当1a >时,11n n a ∞=∑收敛,故111nn a ∞=+∑收敛; 当1a =时,11n n a∞=∑=11n ∞=∑发散,故111nn a∞=+∑发散;当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n n n n n n b aa b a b a bb→∞→∞→∞+==-++ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为lim lim 1n n n→∞→∞=而11n n ∞=∑发散,故级数10)n a ∞=>∑发散. (8)因为434431121lim lim 1212n n n n n n n n→∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散. (11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+L L L L232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n ∞=∑收敛.(13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n n U n U ++→∞→∞+==< 由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛. (15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅ 而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n n n ∞=∑收敛. (16)因为2πcos 322n nn n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nn x ; (2)nn x n ∑∞=⎪⎭⎫⎝⎛123. 解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛.而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2n n xn ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2)11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6)∑∞=+-1)1(n n x n ; (7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛.(3)因为22sin 1,nx n n ≤而级数211n n ∞=∑收敛,由比较判别法知21sin n nxn ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛.(4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛. (7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(Q 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p pu u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n p n n ∞-=-∑条件收敛.综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n n n b a 及()∑∞=+12n n n b a 也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2)∑∞=0!n nn x n n ; (3) ∑∞=⋅022n n nnx ; (4)∑∞=++-01212)1(n n nn x . (5) ∑∞=⋅+02)2(n n nn x ; (6)∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!n n x n ∞=∑的收敛区间为(,)-∞+∞.(2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)nn +是单调递增数列,且1(1)n n+<e 所以1n n u u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数!nnn n x n∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数210(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为01(1)nn n ∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的.综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛. 当1|1|2x ->即12x <或32x >时,原级数发散. 当32x =时,原级数变为01n n∞=∑是调和级数,发散. 当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数. 综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数: (1) ∑∞=-1)1(n nn n x ; (2) ∑∞=-1122n n nx ; (3) n n x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n xn .解:(1)可求得所给幂级数的收敛半径r =1. 设1()(1)nnn x S x n ∞==-∑,则 1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ 又当x =1时,原级数收敛,且()S x 在x =1处连续.(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有 于是22222()1(1)x x s x x x '⎛⎫== ⎪--⎝⎭又当1x =±时,原级数发散.故 2122122 (||1)(1)n n x nx x x ∞-==<-∑ (3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑ 所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰; 所以1()11ln(1),||1,S x x x x ⎛⎫=+--< ⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)n n n n ∞=-+∑,它们都收敛.且显然有(0)0S =. 故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设10()n n S x nx ∞-==∑,则001()d .1xn n s x x x x∞===-∑⎰ 于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以1101(21)2n n n n n n n xx nx x ∞∞∞-===+=+∑∑∑ 3. 求下列级数的和: (1) ∑∞=125n n n ; (2)∑∞=-12)12(1n n n ; (3) ∑∞=--112212n n n ; (4) 1(1)2n n n n ∞=+∑. 解:(1)考察幂级数21n n n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21n n n x ∞=∑的收敛区间为(-1,1).设21() (||1)n n S x n x x ∞==<∑,则211()n n S x x n x ∞-==∑ 令2111()n n S x n x∞-==∑,则11011()d x n n n n S x x nx x nx ∞∞-====∑∑⎰. 再令121()n n S x nx∞-==∑,则201()d 1x n n x S x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 即 1111()(0)ln (,(0)0)21x S x S s x+-==-. 于是 111()ln ,(||<1)21x S x x x +=-,从而取x =则11(21)21n n S n ∞===--∑(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为 令2111()2n n S x nx∞-==∑,则221201()d 1x n n x S x x xx ∞===-∑⎰.所以212222() (||1)1(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭,于是 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭- ⎪⎝⎭∑. (4)考察幂级数1(1)n n n n x∞=+∑,可求得其收敛半径r =1. 设1()(1) (||1)n n S x n n xx ∞==+<∑ 则121011()d xn n n n S x x nx x nx ∞∞+-====∑∑⎰. 又设111()n n S x nx∞-==∑则101()d 1x n n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 取12x =,则 习题9-51. 将下列函数展开成x 的幂级数:(1) 2cos 2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!n n n x x x n ∞=+==+-∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑ (3)22210011e ()(1) ()!!x n n n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑ (4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3).(2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦ 收敛区间为(,)-∞+∞.(3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n n n x x x ∞=-=⋅=-⋅-+∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 由313x -<得06x <<. 故收敛区间为(0,6).。
微积分II课后答案详解

x+ y
x→0
分析�由二元函数极限定义�我们只须找到沿不同路径 p → p0(0,0) 时�所得极限值不同即可。
证明� ① p(x, y) x ( x ≠ 0, y = 0)
f (x, y) = f (x,0) = 1, lim f (x, y) = 1 x →0 y→0
p0 (0, 0)
②当 p(x, y)沿直线y = kx(x ≠ 0)趋于�0�0�时�
f (x, y) = x − kx = 1 − k ≠ 1(k ≠ 0) x + kx 1 + k
综合①②可知函数极限不存在。
练习 5.2
1.求下列函数的偏导数
① z = x3 y − xy3,求 ∂z , ∂z
∂x ∂y
解� ∂z = 3x 2 y − y 3 , ∂z = x3 − 3xy 2
(2) ln(3 1.03 + 4 0.98 − 1) 解:令 f (x, y) = ln(3 x + 4 y −1)
取 x0 = 1, ∆x = 0.03, y0 = 1, ∆y = −0.02
原式
= f (1 + 0 .0 3,1 − 0 .0 2 )
1
−2
x3
≈
ln( 3 1 +
4 1 − 1) +
解�全增量 ∆z = f (2 + 0.1,3 − 0.2) − f (2,3) = 2.1× 2.8 − 6 = −0.12
dz = zx∆x + zy∆y = y∆x + x∆y = 3× 0.1+ 2 × (−0.2) = −0.1
�2�求 z = ln(1 + x2 + y 2 ),当x = 1, y = 2时的全微分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1,x n +1,n =1,2,…. 证:(1)略。
(2)因为12x =<,不妨设2k x <,则故有对于任意正整数n ,有2n x <,即数列{}n x 有上界, 又1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列。
综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在。
习题2-21※. 证明:0lim x x →f (x )=a 的充要条件是f (x )在x 0处的左、右极限均存在且都等于a .证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=. 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<。
取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=.再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<.所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →f (x )=a 的充要条件是f (x )在x 0处的左、右极限均存在且都等于a .2. (1) 利用极限的几何意义确定0lim x →(x 2+a ),和0lim x -→1e x;(2) 设f (x )= 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →f (x )存在.解:(1)因为x 无限接近于0时,2x a +的值无限接近于a ,故20lim()x x a a →+=.当x 从小于0的方向无限接近于0时,1e x的值无限接近于0,故1lim e 0xx -→=. (2)若0lim ()x f x →存在,则0lim ()lim ()x x f x f x +-→→=, 由(1)知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 所以,当0a =时,0lim ()x f x →存在。
3. 利用极限的几何意义说明lim x →+∞sin x 不存在.解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在。
习题2-31. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由sin cos tan xx x=(当0x →时,cos 1x →)不是无穷大量,也不是无穷小量。
例2:当x →∞时,2x 与x 都是无穷大量,但22xx=不是无穷大量,也不是无穷小量。
例3:当0x +→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不是无穷大量,也不是无穷小量。
2. 判断下列命题是否正确:(1) 无穷小量与无穷小量的商一定是无穷小量; (2) 有界函数与无穷小量之积为无穷小量; (3) 有界函数与无穷大量之积为无穷大量; (4) 有限个无穷小量之和为无穷小量; (5) 有限个无穷大量之和为无穷大量;(6) y =x sin x 在(-∞,+∞)内无界,但lim x →∞x sin x ≠∞;(7) 无穷大量的倒数都是无穷小量; (8) 无穷小量的倒数都是无穷大量. 解:(1)错误,如第1题例1; (2)正确,见教材§定理3;(3)错误,例当0x →时,cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量; (4)正确,见教材§定理2;(5)错误,例如当0x →时,1x 与1x -都是无穷大量,但它们之和11()0x x+-=不是无穷大量; (6)正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;(7)正确,见教材§定理5;(8)错误,只有非零的无穷小量的倒数才是无穷大量。
零是无穷小量,但其倒数无意义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量. (1) f (x )=234x -,x →2; (2) f (x )=ln x ,x →0+,x →1,x →+∞; (3) f (x )= 1e x,x →0+,x →0-; (4) f (x )=2π-arctan x ,x →+∞;(5) f (x )=1x sin x ,x →∞; (6) f (x )= 21xx →∞. 解:(1)22lim(4)0x x →-=因为,即2x →时,24x -是无穷小量,所以214x -是无穷小量,因而234x -也是无穷大量。
(2)从()ln f x x =的图像可以看出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =是无穷大量;当1x →时,()ln f x x =是无穷小量。
(3)从1()e x f x =的图可以看出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =是无穷大量; 当0x -→时,1()e xf x =是无穷小量。
(4)πlim (arctan )02x x →+∞-=, ∴当x →+∞时,π()arctan 2f x x =-是无穷小量。
(5)当x →∞时,1x是无穷小量,sin x 是有界函数,∴ 1sin x x是无穷小量。
(6)当x →∞时,21x∴习题2-41.若0lim x x →f (x )存在,0lim x x →g (x )不存在,问0lim x x →[f (x )±g (x )], 0lim x x →[f (x )·g (x )]是否存在,为什么解:若0lim x x →f (x )存在,0lim x x →g (x )不存在,则(1)0lim x x →[f (x )±g (x )]不存在。
因为若0lim x x →[f (x )±g (x )]存在,则由()()[()()]g x f x f x g x =--或()[()()]()g x f x g x f x =+-以及极限的运算法则可得0lim x x →g (x ),与题设矛盾。
(2)0lim x x →[f (x )·g (x )]可能存在,也可能不存在,如:()sin f x x =,1()g x x=,则0limsin 0x x →=,01lim x x →不存在,但0lim x x →[f (x )·g (x )]=01limsin 0x x x→=存在。