流体主要计算公式
流体力学公式总结

工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ∙=∙-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα∙-=∙=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du AT (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:hb bh R 2+=,b 为明渠宽度,h 为明渠水深) 15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ•=•-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα•-=•=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dydu dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:h b bh R 2+=,b 为明渠宽度,h 为明渠水深)15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
流体的基本计算

质量流量计算公式;1、液体压强计算计算公式;AP = pgH液体压强;在液体容器低、内壁、内部中,由液体所产生的液体压强,简称液压2、喷嘴射流速度及流量深度△ Z 液体密度P 岀口直径D 流量系数CDensity p AZ出口速度计算公式;体积流量计算公式;3、限孔流场计算入口直径Di岀口直径Do压力差△ p流体密度P入口速度计算公式;出口速度计算公式;体积流量计算公式;质量力量计算公式;4、运动粘度运动粘度卩密度P运动粘度计算公式;运动粘度;运动粘度即流体的运动粘度与同温度下该流体密度P之比。
动力粘度;M动力粘度【Pa。
s】或【N。
S/m2】或【kg/(m。
s)】;也被称为动态粘度、绝对粘度或简单粘度,定义为应力与应变速率之比,其数值上等于面积为1m2相距1m的两平板,以1m/s的速度作为相对运动时, 因之存在的流体互相作用所产生的内摩擦力。
5、雷诺数特征速度v特征长度L运动粘度V动力粘度卩密度p雷诺数;雷诺数计算公式;一种可用来表征流体流动情况的无量纲数。
利用雷诺数可区分为流体的流动是层流或湍流,也可用来确定物体在流体中流动所受的阻力。
6、韦伯数流体密度P 特征速度v特征长度L秒面张力b韦伯数计算公式;韦伯数韦伯数是流体力学中的一个无量纲数。
当不同的流体之间有交界面时,尤其在多相流中交界面的曲率较大时,它用来分析流体运动。
7、马赫数流体速度v 马赫数计算公式;马赫数;流体力学中表征流体可压缩程度的一个重要的无量纲参数,定义为流场中某点的速度v同该点的当地声速c之比。
8、水力半径和水力直径流动截面积A圆周Pw水力半径计算公式水力直径计算公式水力半径;是水力学中的一个专有名称,指某输水断面的过流面积与输水断水面和接触的边长(圆周)之比,与断面形状有关,常用于计算渠道隧道的输水能力。
水力直径;是在关内流动中引入的,其目的是为了给非圆管流动取一个合适的特征长度来计算其雷诺数。
常用表达式是;2A/P,即二倍的横截面积(A)除以圆周长度(P)。
流体的基本计算

1、液体压强计算计算公式;液体压强;在液体容器低、内壁、内部中,由液体所产生的液体压强,简称液压。
2、喷嘴射流速度及流量深度△Z 液体密度ρ出口直径D 流量系数C出口速度计算公式;体积流量计算公式;质量流量计算公式;3、限孔流场计算入口直径Di 出口直径Do 压力差△p 流体密度ρ入口速度计算公式;出口速度计算公式;体积流量计算公式;质量力量计算公式;4、运动粘度运动粘度μ密度ρ运动粘度计算公式;运动粘度;运动粘度即流体的运动粘度与同温度下该流体密度ρ之比。
动力粘度;Μ动力粘度【Pa。
s】或【N。
S/m²】或【kg/(m。
s)】;也被称为动态粘度、绝对粘度或简单粘度,定义为应力与应变速率之比,其数值上等于面积为1m²相距1m的两平板,以1m/s的速度作为相对运动时,因之存在的流体互相作用所产生的内摩擦力。
5、雷诺数特征速度v 特征长度L 运动粘度V 动力粘度μ密度ρ雷诺数计算公式;雷诺数;一种可用来表征流体流动情况的无量纲数。
利用雷诺数可区分为流体的流动是层流或湍流,也可用来确定物体在流体中流动所受的阻力。
6、韦伯数流体密度ρ特征速度v 特征长度L 秒面张力σ韦伯数计算公式;韦伯数韦伯数是流体力学中的一个无量纲数。
当不同的流体之间有交界面时,尤其在多相流中交界面的曲率较大时,它用来分析流体运动。
7、马赫数流体速度v马赫数计算公式;马赫数;流体力学中表征流体可压缩程度的一个重要的无量纲参数,定义为流场中某点的速度v同该点的当地声速c之比。
8、水力半径和水力直径流动截面积A圆周Pw水力半径计算公式水力直径计算公式水力半径;是水力学中的一个专有名称,指某输水断面的过流面积与输水断水面和接触的边长(圆周)之比,与断面形状有关,常用于计算渠道隧道的输水能力。
水力直径;是在关内流动中引入的,其目的是为了给非圆管流动取一个合适的特征长度来计算其雷诺数。
常用表达式是;2A/P,即二倍的横截面积(A)除以圆周长度(p)。
流体力学复习要点(计算公式)

DDy Sx ePgh2gh1h2h1b L y CC DDy xPhc第一章绪论单位质量力:mF f B m密度值:3mkg 1000水,3mkg 13600水银,3mkg 29.1空气牛顿内摩擦定律:剪切力:dydu ,内摩擦力:dydu AT动力粘度:完全气体状态方程:RTP压缩系数:dpd 1dpdV 1V (Nm2)膨胀系数:TTVV Vd d 1d d 1(1/C或1/K)第二章流体静力学+流体平衡微分方程:1;01;01zp zyp Yxp X液体平衡全微分方程:)(zdz ydy xdx dp 液体静力学基本方程:Cgp zgh p p 0或绝对压强、相对压强与真空度:a abs P P P ;va abs P P P P压强单位换算:水银柱水柱mm 73610/9800012m mN at 2/1013251mN atm 注:hgP P;PN at 2m/98000乘以2/98000mN P a平面上的静水总压力:(1)图算法SbP作用点eh y D sin1)()2(32121h h h h L eρ若01h ,则压强为三角形分布,32L ey Dρ注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图,α且用相对压强绘制。
(2)解析法Agh Ap Pc c 作用点Ay Iy y C xcCD矩形123bLIxc圆形644d I xc曲面上的静水总压力:x c xc x A gh A p P ;gVP z总压力zx P P P与水平面的夹角xzP P arct an潜体和浮体的总压力:xP 排浮gV F P z 第三章流体动力学基础质点加速度的表达式zuuyu uxu u tu az u u y u u x u ut ua z uu y uu x uu t ua zzz y z xz zy zy y y x yyxzxyxxxxAQ VQ Q Q QQ GA断面平均流速重量流量质量流量体积流量g udA m流体的运动微分方程:tztytxd du zp zd du yp Yd du xp X1;1;1不可压缩流体的连续性微分方程:zu yu xu zy x 恒定元流的连续性方程:dQA A 2211d u d u 恒定总流的连续性方程:QA A 2211无粘性流体元流伯努利方程:g2u gp z g 2u gp z 22222111粘性流体元流伯努利方程:w22222111'h g2u gp z g2u gp z恒定总流的伯努利方程:w2222221111h g2gp z g2gp z 气流伯努利方程:w22212211P 2)()(2P z z g P a有能量输入或输出的伯努力方程w2222221111h g2gp z g2gp z m H 总流的动量方程:1122QF 投影式)()()(112211221122zzzy y y xx xv vQ F v V Q F v vQ F 动能修正系数:11.105.1Av dAu 33,一般,较均匀流动A 动量修正系数:105.102.1Av dAu 22,一般,较均匀流动A水力坡度dldh dldH Jw 测压管水头线坡度dldh dldHJw p第四章流动阻力和水头损失圆管沿程水头损失:gvd l h f222g 8Re64C;紊流层流局部水头损失:gvh j22.15.015.0v v g2v v h 1g2v h 1g2v h 12221j2122222j 2211211j出入;管道出口注:管道入口)(用细管流速(突缩管—其余管用断面平均流速—弯管)()(,)(,突然扩大管A A A A A A 雷诺数:575Re e 2300de deccRR ccR RR R R ,非圆管,圆管流态判别,流动为临界流为紊流,为层流,c c c Re Re流动Re e 流动Re eR R 谢才公式:RJC V 谢才系数:gC8; 曼宁公式:611R nC均匀流动方程式:lh gRgRJf 0圆管过流断面上剪应力分布:r r 圆管层流:(1)流速分布式)r (r 4g u22J (2)最大流速2maxr4g u J (3)断面平均流速:2u vmax (4)Re64紊流剪应力包括:粘性剪应力和附加剪应力,即21,dyu d x 1,yx 2u u 紊流流速分布一般表达式:CIny k1u*非圆管当量直径:)4Re;2(42Rv vd gvd l h R de e fe 绕流阻力:AU C D D220第五章孔口、管嘴出流和有压管流薄壁小孔口恒定出流:2gHv2gHA Q97.062.0AA c 0H 作用水头,自由出流gv HH 22,若00v ,HH;淹没出流gv g vH H H 2222221121,若21v v ,HH H H 210孔口变水头出流:)(2221H H gA F t,若02H ,放空时间max1222Q V gAH F t圆柱形外管嘴恒定出流:2gHvn;02gHA Qn;82.0nn ;32.1n;75.0H gP v 简单管道:5228,dgaaalQ h Hf比阻,(62/ms )串联管道:ii ni i i ni ii i ni fil a SQ S Q l a h Hi阻抗,12121并联管道:233322222111321,Q l a Q l a Q l a h h h f f f 注:串联、并联管道有时需结合节点流量方程求解。
流体力学公式及分析

流体力学1. 密度ρ: 单位体积流体所具有的质量。
SI 单位:kg/m3a) 液体密度:主要影响因素为温度和压力。
i.压力的影响较小,通常可忽略。
ii.温度升高,密度减小。
b) 气体密度:在工程中,低压、高温下的真实气体可近视为理想气体。
i. 气体密度随温度、压力的变化有明显的改变。
ii.压力升高,密度增大;温度升高,密度减小。
2. 压强p :流体垂直作用在单位面积上的力。
SI 单位:Pa 或N/m 2a) 1atm =101.3kPa =760mmHg =10.33mH 2O =1.033at = 1.033kgf/cm 21bar =105Pab) 表压=绝压-大气压 真空度=大气压-绝压★当压力用表压或真空度表示时,需注明。
例如:20kPa (表压)3. 流体静力学基本方程式:a) 等压面概念:在静止、连续的同一种流体内部,处在同一水平面上的各点的压力均相等。
(即静压强仅与垂直高度有关,而与水平位置无关。
)Vm=ρRTpM V m ==ρAFp =ghP P ρ+=0b) 传递定律:同一种流体内部,如果一点的压力发生变化,则其他各点的压力将发生同样大小和方向的变化。
c)可以改写成 即液柱高度可以用来表示静压强大小,但须注明是何种液体。
在静止、连续的同一种流体内部,任一截面的压力仅与其所处的深度有关,而与底面积无关 。
d) 方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变化不大的情况。
(±20%)4. 流量:单位时间内流过管道任一截面的流体量。
a) 体积流量:流量用体积来计量,一般用Q 表示;SI 单位:m 3/s b) 质量流量:流量用质量来计量,用W S 表示; SI 单位:kg/sc)5. 流速:单位时间内流体在流动方向上流过的距离,称为平均流速。
以u 表示,SI 单位:m/s 。
质量流速:单位时间内流体流过管道单位面积的质量流量,SI 单位:kg/(m 2.S)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要的流体力学事件有:•1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。
•1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。
•1781年拉格朗日首先引进了流函数的概念。
•1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。
•1876年雷诺发现了流体流动的两种流态:层流和紊流。
•1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。
•19世纪末,相似理论提出,实验和理论分析相结合。
•1904年普朗特提出了边界层理论。
•20世纪60年代以后,计算流体力学得到了迅速的发展。
流体力学内涵不断地得到了充实与提高。
理想势流伯努利方程(3-14)或(3-15)物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。
(应用条件:“”所示)符号说明物理意义几何意义单位重流体的位能(比位能)位置水头单位重流体的压能(比压能)压强水头单位重流体的动能(比动能)流速水头单位重流体总势能(比势能)测压管水头总比能总水头二、沿流线的积分1.只有重力作用的不可压缩恒定流,有2.恒定流中流线与迹线重合:沿流线(或元流)的能量方程:(3-16)注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。
一般不同流线各不相同(有旋流)。
(应用条件:“”所示,可以是有旋流)流速势函数(势函数)观看录像>>•存在条件:不可压缩无旋流,即或必要条件存在全微分d直角坐标(3-19)式中: ——无旋运动的流速势函数,简称势函数。
•势函数的拉普拉斯方程形式对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有:或(3-20)适用条件:不可压缩流体的有势流动。
点击这里练习一下极坐标(3-21)流函数1.流函数存在条件:不可压缩流体平面流动。
直角坐标连续性微分方程:必要条件存在全微分d y(3-22)式中:y——不可压缩流体平面流动的流函数。
适用范围:无旋流、有旋流、实际流体、理想流体的不可压缩流体的平面流动。
流函数的拉普拉斯方程形式对平面势流,有,则或(3-23)适用条件:不可压缩流体的平面有势流动。
极坐标(3-24)2.流函数的物理意义(1)流函数等值线就是流线。
得平面流线方程(3-1):,得证。
(2)不可压缩流体的平面流动中,任意两条流线的流函数之差d y等于这两条流线间所通过的单位宽度流量d q。
AB断面所通过流量:图3-26粘性流体的运动微分方程1.粘性流体的特点(1)实际流体的面积力包括:压应力和粘性引起的切应力。
切应力由广义牛顿内摩擦定律确定:(2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不等,即p xx≠ p yy≠ p zz。
任一点动压强由式(2-5)为:(3-11)第三节流体动力学基本方程式一、连续性微分方程在流场内取一微元六面体(如图3-23),边长为d x,d y,d z,中心点O流速为(u x,u y,u z)以x轴方向为例:图3-23左表面流速右表面流速所以单位时间内x方向流出流进的质量流量差:x方向:同理可得:y方向:z方向:质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应等于六面体内因密度变化而减少的质量,即:(3-6)(1)流体的连续性微分方程的一般形式由(3-6)式可得(3-7)适用范围:理想流体或实际流体;恒定流或非恒定流;可压缩流体或不可压缩流体。
(2)可压缩流体恒定流动的连续性微分方程当为恒定流时,有,则(3-7)式为(3-8) 适用范围:理想、实际、可压缩、不可压缩的恒定流。
(3)不可压缩流体的连续性微分方程当为不可压缩流时,有,则(3-7)式为(3-9)物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量),与流出的流体体积(质量)之差等于零。
适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
二、理想流体运动微分方程理想流体的动水压强特性与静水压强特性相同:从理想流体中任取一(x ,y ,z )为中心的微元六面体为控制体,边长为d x ,d y ,d z ,中心点压强为p (x ,y ,z ) ,如图3-24。
图3-24受力分析(x 方向为例): 1.表面力因为理想流体,所以t =0左表面右表面2.质量力单位质量力在各坐标轴上分量为X ,Y ,Z ,所以x 方向的质量力为X d x d y d z由牛顿第二运动定律,x 方向有:理想流体的运动微分方程(欧拉运动微分方程)(3-10)适用范围:恒定流或非恒定流,可压缩流或不可压缩流体。
若加速度等于0,则上式就可转化为欧拉平衡微分方程(2-6)式三、粘性流体的运动微分方程1.粘性流体的特点(1)实际流体的面积力包括:压应力和粘性引起的切应力。
切应力由广义牛顿内摩擦定律确定:(2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不等,即p xx≠ p yy≠ p zz。
任一点动压强由式(2-5)为:(3-11)2.实际流体的运动微分方程式同样取一微元六面体作为控制体,如图3-25。
x向受力左右向压力、上下向切力、前后面切力、质量力图3-25 x方向(牛顿第二运动定律)考虑条件: 1)不可压缩流体的连续性微分方程(3-9):2)切应力与主应力的关系表达式(3-11)。
可得不可压缩粘性流体运动微分方程:纳维-斯托克斯方程(Navier-Stokes,N-S)方程(3-12)拉普拉斯算符,例:想一想:N-S方程与欧拉运动微分方程有何联系?N-S方程是不可压缩粘性流体的运动微分方程,而欧拉运动微分方程则是理想流体的运动微分方程。
当流动流体的运动粘度等于0,即为理想流体时,N-S方程即为欧拉运动微分方程。
第四节欧拉运动微分方程的积分由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分,只能在一定条件下积分。
欧拉运动微分方程组(3-10)各式分别乘以d x,d y,d z(流场任意相邻两点间距d s的坐标分量),然而相加得:(3-13)<I> <II> <III>一、在势流条件下的积分考虑条件1.恒定流:;2.均匀不可压缩流体,即 =const,;3.质量力只有重力,即X=Y=0,Z=-g;4.有势流动,满足式(3-5):;因此,(3-13)式中各项为:(考虑欧拉加速度的表达式(3-3))(引入有势流动的条件4)由以上得:积分得:第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像>>层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像>>紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像一>>观看录像二>>观看录像三>>实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v ,即沿程水头损失与流线的一次方成正比。
紊流:m2=1.75~2.0, h f =k2v1.75~2.0,即沿程水头损失h f与流速的1.75~2.0次方成正比。
层流:紊流:流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律牛顿内摩擦定律a. 牛顿内摩擦定律:液体运动时,相邻液层间所产生的切应力与剪切变形的速率成正比。
即(N/m2,Pa)(1-6)τ—粘性切应力,是单位面积上的内摩擦力。
说明:1)流体的切应力与剪切变形速率,或角变形率成正比。
——区别于固体的重要特性:固体的切应力与角变形的大小成正比。
2)流体的切应力与动力粘度μ成正比。
3)对于平衡流体d u /d y =0,对于理想流体μ=0,所以均不产生切应力,即t =0。
b.牛顿平板实验与内摩擦定律图1-1 流体的绝对粘度设板间的y 向流速呈直线分布,即:则:实验表明,对于大多数流体满足:引入动力粘度μ,则得牛顿内摩擦定律(1-7)式中:流速梯度代表液体微团的剪切变形速率。
线性变化时,即;非线性变化时,即是u 对y求导。
证明:在两平板间取一方形质点,高度为d y,d t时间后,质点微团从abcd运动到a′b′c′d′。
由图1-2得:图1-2则:说明:流体的切应力与剪切变形速率,或角变形率成正比。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
三、层流、紊流的判别标准——临界雷诺数临界雷诺数上临界雷诺数:层流→紊流时的临界雷诺数,它易受外界干扰,数值不稳定。
下临界雷诺数:紊流→层流时的临界雷诺数,是流态的判别标准,它只取决于水流边界的形状,即水流的过水断面形状。