简述基于仪表的锅炉温度控制系统设计
基于PLC锅炉温度控制系统的设计报告.doc

基于PLC锅炉温度控制系统的设计报告.doc一、设计目的本设计旨在搭建一个基于PLC的锅炉温度控制系统,通过对锅炉水温度的检测和控制,实现锅炉水温度的稳定控制,提高锅炉的工作效率,确保锅炉的稳定运行,降低发生事故的概率,保证工业生产的平稳进行。
二、设计内容1、系统硬件设计2、系统软件设计3、系统调试与实验三、系统设计的可行性分析本系统采用PLC作为控制核心,辅以温度传感器,执行元件等辅助部件,相比于传统的控制方法,其具有反应速度快,可靠性高,维护方便等优点,所以具有高度的可行性。
四、系统工作流程1、温度传感器将温度信号传输给PLC控制器2、PLC控制器根据设定的温度值和实时检测的温度值进行比较,判断当前温度状态3、根据判断结果,控制PLC输出的控制信号,控制加热电源调整电压,使锅炉水温度达到设定值4、如温度达到设定值,系统返回到检测阶段,进行下一轮温度检测和控制,如温度未达到设定值,锅炉继续加热,直至达到设定值,系统返回到检测阶段。
五、系统设计的技术要点1、采用模拟信号采集电路;2、采用PID算法控制,通过比较设定值和实际值来调节加热元件输出;3、使用触摸屏界面设计,用户可以通过界面设置温度值和查询运行状态;4、前后台通信采用Modbus协议。
六、系统检测与调试本系统设计完成后,需要进行硬件和软件的实现,并进行整体的调试测试,工程师需严格按照设计流程,全面检查各个部件的连接情况和参数设置,确保系统能够正常稳定地运行,运行过程中出现问题要及时解决。
七、总结与展望本设计成功地搭建了基于PLC的锅炉温度控制系统,系统具有实时性强,稳定性高,调节精度高等优点,提高了设备工作效率,大大降低了工业生产过程中锅炉事故的发生可能性。
在未来的研究中,可以通过结合智能算法等技术,进一步优化系统设计,提升锅炉温度控制系统的性能和应用范畴。
基于MCGS的模拟锅炉温度控制系统的设计

基于MCGS的模拟锅炉温度控制系统的设计摘要:针对人工控制锅炉温度系统误差大、安全性低以及控制过程繁琐等问题,提出应用计算机与MCGS组态软件自动控制锅炉温度的方法解决了控制精度低与安全性的问题。
利用MCGS工程组态软件良好的人机界面、数据采集功能,结合脚本程序编写的便利性,利用MCGS良好的控制界面及模拟运行环境,运用脚本语言编写程序,采取PID算法实现对锅炉内胆水温的精确控制。
关键词:MCGS组态软件,PLC,锅炉内胆水温,PID算法,温度控制系统,上位机1 引言锅炉在日常生活生产中的影响非常大。
在工业锅炉里面燃烧化石燃料(比如说煤、石油、天然气等)产生的热水或水蒸汽的可直接提供工农业生产和生活所需要的热能。
以及电热锅炉,将电能转化为热能,把水加热至有压力的热水或蒸汽(饱和蒸汽),不少企业将电热锅炉应用于采暖、中央空调和热水供应。
在这种情况下,结合MCGS组态软件设计出一套针对温度的较为理想的控制系统其价值必定会具有非常深远的意义。
2 MCGS组态软件MCGS是为工业过程控制和实时监测领域服务的通用计算机系统软件,具有功能完善、操作简便、可视性好、可维护性强的突出特点。
它的特点可以归结成以下几点:概念简单,易于理解和使用。
利用丰富的“动画组态”功能,快速构造各种复杂生动的动态画面。
引入“运行策略”的概念。
用户可以选用系统提供的各种条件和功能的“策略构件”,用图形化的方法构造多分支的应用程序,实现自由、精确地控制运行流程。
MCGS系统由五大功能部件组成,主要的功能部件以构件的形式来构造。
支持OLE Automation技术。
MCGS允许用户在Visual Basic中操作MCGS中的对象,提供了一套开放的可扩充接口,用户可根据自己的需要用VB编制特定的功能构件来扩充系统的功能。
(6)MCGS中数据的存储不再使用普通的文件,而是用数据库来管理一切。
(7)设立“对象元件库”,解决了组态结果的积累和重新利用问题。
基于plc的锅炉控制系统的设计方案

设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。
以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。
-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。
2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。
-压力传感器:监测锅炉的压力情况。
-液位传感器:监测水箱水位,确保水位在安全范围内。
-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。
3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。
-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。
4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。
-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。
5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。
-设置报警系统,当参数超出设定范围时及时警示操作员。
6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。
7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。
-测试程序逻辑,确保系统稳定可靠,符合设计要求。
以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。
在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。
组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计1.设计背景锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。
它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。
随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。
为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。
随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。
2.任务要求(1) 按照题目设计监控画面及动态模拟;(2) 在数据字典中定义需要的内存变量和I/O变量;(3) 实现监控系统的实时、历史曲线及报警界面显示;(4) 实现保存数据和参数报表打印功能;(5) 实现登陆界面和帮助界面。
3. 界面功能3.1 系统说明本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。
此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。
实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。
实时报警界面可以随时进行提醒,防止发生意外情况。
帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。
登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。
该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。
3.2主监控界面主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。
基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。
作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。
本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。
文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。
然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。
在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。
通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。
也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。
二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。
该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。
锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。
其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。
锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。
燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。
燃烧器的性能直接影响到锅炉的热效率和污染物排放。
燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。
热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。
热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。
锅炉温度控制系统设计

XXXXXXXX大学本科生过程控制课程设计说明书题目:热电厂锅炉炉膛温度控制系统的设计学生姓名:学号:专业:班级:指导教师:摘要锅炉是热电厂重要且基本的设备 ,其最主要的输出变量之一就是主蒸汽温度。
主汽温度自动调节的任务是维持过热器出口汽温在允许范围内 ,以确保机组运行的安全性和经济性。
如果该温度过高 ,会使锅炉受热面及蒸汽管道金属材料的蠕变速度加快 ,降低使用寿命。
若长期超温 ,则会导致过热器爆管 ,在汽机侧还会导致汽轮机的汽缸、汽阀、前几级喷嘴和叶片、高压缸前轴承等部件的寿命缩短 ,甚至损坏;假如该汽温过低 ,会降低机组的循环热效率 ,一般汽温每降低5 ℃~10 ℃,效率约降低1 % ,同时会使通过汽轮机最后几级的蒸汽湿度增加 ,引起叶片磨损;当汽温变化过大时 ,将导致锅炉和汽轮机金属管材及部件的疲劳 ,还将引起汽轮机汽缸和转子的胀差变化 ,甚至产生剧烈振动 ,危及机组的安全 ,所以有效精准的控制策略是十分必要的锅炉炉膛温度的控制效果直接影响着产品的质量,温度低于或者高于要求时都不能达到生产质量指标,有时甚至会发生生产事故,此设计控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计热电厂锅炉温度控制系统,以达到精度在正负5 ℃范围内。
关键词:热电厂;锅炉;炉膛温度;串级控制目录引言 (4)第一章热电厂的工艺流程及要求 (5)第二章锅炉的工艺流程及控制要求 (7)2.1锅炉的工艺流程 (7)2.2锅炉的控制要求 (8)第三章锅炉炉膛温度的分析 (8)第四章锅炉炉膛温度控制系统的设计 (12)4.1炉膛温度控制的理论数学模型 (12)4.2炉膛温度控制方法的选择 (12)4.3 系统单元元件的选择 (12)4.3.1温度检测变送器的选择 (12)4.3.2流量检测变送器的选择 (14)4.3.3主、副调节器正反作用的选择 (15)4.3.4主、副回路调节器调节规律的选择 (16)4.3.5控制器仪表的选择 (16)4.3.6控制阀的选择 (18)第五章锅炉炉膛温度控制系统的工作原理 (19)第六章总结 (20)参考文献 (21)引言随着现代工业生产的迅速发展,对工艺操作条件的要求更加严格,对安全运行及对控制质量的要求也更高。
锅炉温度控制系统的设计

锅炉温度控制系统的设计(共17页)-本页仅作为预览文档封面,使用时请删除本页-综述锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。
尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。
因此,在锅炉运行中,保证温度在正常范围是非常重要的。
本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。
该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。
当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。
通过定量的计算表明该控制系统设计合理、可行。
一.系统总体设计1.1 系统总体设计方案设计框图如下所示:图1-1系统框图1.2 单元电路方案的论证与选择硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。
在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。
1.2.1 温度信号采集电路的论证与选择采用温度传感器DS18B20美国DALLAS公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。
DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。
基于MCGS锅炉液位和温度控制系统的设计

基于MCGS锅炉液位和温度控制系统的设计锅炉液位和温度控制是锅炉系统中至关重要的一环,它直接影响到锅炉的运行安全和燃烧效率。
本文将基于MCGS系统设计锅炉液位和温度控制系统。
首先,我们需要了解MCGS系统的基本特点和功能。
MCGS系统是一种基于工控机和触摸屏的人机界面软件,具有友好的图形化界面和强大的数据处理能力。
它能够实时获取锅炉的液位和温度数据,并进行监测、分析和控制。
在设计锅炉液位控制系统时,我们需要考虑以下几个方面。
首先是液位传感器的选择和安装。
液位传感器可以采用浮球式或者超声波式传感器。
浮球式传感器适用于小容量的锅炉,而超声波式传感器则适用于大容量的锅炉。
传感器的安装位置需要考虑到液位的准确性和稳定性。
接下来是液位控制阀的选择和配置。
液位控制阀是控制锅炉液位的关键设备,它能够根据液位信号自动调控进水和排污。
根据实际需求和系统特点,我们可以选择常开式或常闭式的控制阀,设置合适的开启和关闭压力值,以实现锅炉液位的稳定控制。
设计锅炉温度控制系统时,我们需要考虑以下几个方面。
首先是温度传感器的选择和安装。
温度传感器可以采用热电阻或热电偶传感器。
传感器的安装位置需要考虑到锅炉的热交换区域和传感器的灵敏度。
接下来是温度调节器的选择和配置。
温度调节器是控制锅炉温度的核心设备,它能够根据温度信号自动调控燃烧器和循环水泵。
根据实际需求和系统特点,我们可以选择PID控制器或者模糊控制器,设置合适的调节参数,以实现锅炉温度的稳定控制。
除了液位和温度控制,MCGS系统还可以实现其他功能,如报警监测、数据记录和远程操作等。
通过设置合适的报警阈值,MCGS系统能够实时监测并提醒操作人员液位和温度异常。
同时,MCGS系统还可以记录和存储历史数据,方便后续的数据分析和故障排查。
此外,MCGS系统还可以通过远程访问和操作,实现对锅炉液位和温度的远程监控和控制。
总之,基于MCGS系统设计锅炉液位和温度控制系统可以实现对锅炉运行的实时监测和稳定控制,提高锅炉的运行安全性和燃烧效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1 锅炉温度控制系统现状锅炉在现代生活中起着不可估量的作用,是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。
它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。
随着工业生产规模的不断扩大,生产设备的不断创新,向着大容量、高参数、高效率发展。
为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。
随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。
其优越性主要在于:首先,通过对锅炉加热过程进行有效控制,使加热在合理的条件下进行,可以提高加热效率。
其次,锅炉控制过程的自动化处理以及监控软件良好的人机界面使运行参数在CRT 上的集中监测,操作人员在监控计算机上能根据控制效果及时修改运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。
随着计算机控制技术应用的普及、可靠性的提高及价格的下降,工业锅炉的微机控制必将得到更加广泛的应用。
为此,生产过程的各个主要参数必须严格控制。
锅炉设备是一个多输入、多输出的复杂控制对象,这些输入变量与输出变量之间是相互关联的。
如果蒸汽负荷发生变化,必将引起汽包水位、蒸汽压力和蒸汽温度等的变化,不仅影响蒸汽压力,同时还会影响汽包水位、蒸汽温度、炉膛负压;给水量的变化不仅影响汽包水位,而且对蒸汽压力、蒸汽温度等亦有影响;所以锅炉设备是多输入,多输出且相互关联的控制对象。
1.2 锅炉自动控制的发展历程锅炉是一个比较复杂的工业设备,有几十个测量参数、控制参数和扰动参数,它们之问相互作用,相互影响,存在明显的或不明显的复杂因果关系,而且测控参数也经常变化,存在一定的非线性特性,这一切都给锅炉的控制增加了难度。
锅炉控制技术的发展经历了四个历史阶段:1.纯手动阶段在六十年代以前,由于自动化技术与电子技术发展不成熟,人们的自动化观念还比较淡薄,这段时期的锅炉一般采用纯手动的控制方式,即操作工人通过经验决定送风、给水、引风、给煤的多少,通过手动操作器等方式来达到控制锅炉的目的。
这样就要求司炉人员必须有丰富的经验,增加了工人的劳动强度,事故率高,更谈不上保证锅炉的高效率运行。
2.自动化单元组合仪表控制阶段随着自动化技术与电子技术的发展,国外己经开发并广泛应用了全自动工业锅炉控制技术。
60年代前期,我国工业锅炉的控制技术开始发展,60年代后期我国引进了国外的全自动燃油工业锅炉的控制技术,70年代后期己经研制了一些工业锅炉的自动化仪表,正式将自动化技术应用于工业锅炉控制领域,因而热效率有所提高,事故率也有所下降。
但是,由于采用单元组合仪表靠硬件来实现控制功能,可靠性低,精度不高,而且只能完成一些简单的控制算法,不能实现一些较先进的算法和控制技术,控制效果仍然不理想。
3.采用微机测控阶段随着电子技术的发展,高集成度、高可靠性、价格低廉的微型计算机、单板机、单片机、工业专用控制计算机的出现以及在我固的广泛应用,为锅炉控制领域开辟了一片广阔的天地。
运用计算机技术,开发出高效率、高可靠性、全自动的微机工业测控系统同时得到重视。
80年代后期至今,国内己经陆续出现了各种各样的锅炉微机测控系统,明显地改善了锅炉的运行状况,但还不够完善,并对环境和抗干扰要求较高。
4.分散控制阶段分散控制系统(DCS)称集成控制系统,其本质是采用分散控制和集中管理的设计思想,分而自治和综合协调的设计,采用层次化的体系结构,从下到上依次分为直接控制层、操作监控层、生产管理层和决策管理层。
DCS是以多台DDC计算机为基础,集分散型控制系统。
目前分散控制系统大多采用可编程控制器(PLC)进行系统设计,工控机机PLC 的组合,不但系统体积小、可靠性高,而且造价较低,得到了广大用户的青睐。
第2章控制系统的设计及设备安装本次设计的锅炉温度控制系统采用集散型控制系统结构,将锅炉控制与数据采集任务放在各个现场控制单元,而数据显示和管理等功能则由上位计算机操作站完成,当上位监视计算机系统故障或没有使用时,现场各控制单元设备还可以继续工作,对整个工艺过程没有影响。
2.1 组态软件介绍“组态”的概念是伴随着集散型控制系统(Distributed Control System,简称DCS)的出现,才被广大的过程自动化技术人员所熟悉的。
在工业控制技术的不断发展和应用过程中,PC(包括工控机)相比以前的专用系统具有的优势日趋明显。
这些优势主要体现在:PC技术保持了较快的发展速度,各种相关技术成熟;由PC构建的工业控制系统具有相对较低的成本;PC的软件资源和硬件资源丰富,软件之间的互操作性强;基于PC的控制系统易于学习和使用,可以容易地得到技术方面的支持。
在PC技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。
组态的概念最早来自英文Configuration,含义是使用软件工具对计算机及软件的各种资源进行配置,达到让计算机或软件按照预先设置自动执行特殊任务、满足用户要求的目的。
监控组态软件是面向监控与数据采集(SCADA)的软件平台工具,具有丰富的设置项目,使用方式灵活,功能强大。
监控组态软件最早出现时,HMI或MMI是其主要内涵,即主要解决人机图形界面问题。
随着其快速发展,实时数据库、实时控制、SCADA、通信及联网、开放数据接口、对I/O设备的广泛支持已经成为主要内容。
随着技术的发展,监控组态软件将会不断被赋予新的内容。
目前看到的所有组态软件都能完成类似的功能:比如,几乎所有运行于32位Windows平台的组态软件都采用类似资源浏览器的窗口结构,并且对工业控制系统中的各种资源(设备、标签量、画面等)进行配置和编辑;都提供多种数据驱动程序;都使用脚本语言提供二次开发的功能,等等。
但是,从技术上说,各种组态软件提供实现这些功能的方法却各不相同。
从这些不同之处,以及PC技术发展的趋势,可以看出组态软件未来发展的方向。
大多数组态软件提供多种数据采集程序,用户可以进行配置。
然而,在这种情况下,驱动程序只能由组态软件开发商提供,或者由用户按照某种组态软件的接口规范编写,这为用户提出了过高的要求。
由OPC基金组织提出的OPC规范基于微软的OLE/DCOM技术,提供了在分布式系统下,软件组件交互和共享数据的完整的解决方案。
在支持OPC的系统中,数据的提供者作为服务器(Server),数据请求者作为客户(Client),服务器和客户之间通过DCOM接口进行通信,而无需知道对方内部实现的细节。
随着以工业PC为核心的自动控制集成系统技术的日趋完善和工程技术人员的使用组态软件水平的不断提高,用户对组态软件的要求已不像过去那样主要侧重于画面,而是要考虑一些实质性的应用功能,如软件PLC,先进过程控制策略等。
随着企业提出的高柔性、高效益的要求,以经典控制理论为基础的控制方案已经不能适应,以多变量预测控制为代表的先进控制策略的提出和成功应用之后,先进过程控制受到了过程工业界的普遍关注。
先进过程控制(Advanced Process Control,APC)是指一类在动态环境中,基于模型、充分借助计算机能力,为工厂获得最大理论而实施的运行和控制策略。
先进控制策略主要有:双重控制及阀位控制、纯滞后补偿控制、解耦控制、自适应控制、差拍控制、状态反馈控制、多变量预测控制、推理控制及软测量技术、智能控制(专家控制、模糊控制和神经网络控制)等,尤其智能控制已成为开发和应用的热点。
目前,国内许多大企业纷纷投资,在装置自动化系统中实施先进控制。
国外许多控制软件公司和DCS厂商都在竞相开发先进控制和优化控制的工程软件包。
据资料报道,一个乙烯装置投资163万美元实施先进控制,完成后预期可获得效益600万美元/年。
从上可以看出能嵌入先进控制和优化控制策略的组态软件必将受到用户的极大欢迎。
2.2 智能仪表概述微电子技术和计算机技术的不断发展,引起了仪表结构的根本性变革,以微型计算机(单片机)为主体,将计算机技术和检测技术有机结合,组成新一代“智能化仪表”,在测量过程自动化、测量数据处理及功能多样化方面与传统仪表的常规测量电路相比较,取得了巨大进展。
智能仪表不仅能解决传统仪表不易或不能解决的问题,还能简化仪表电路,提高仪表的可靠性,更容易实现高精度、高性能、多功能的目的。
随着科学技术的进一步发展,仪表的智能化程度将越来越高,例如深圳科立恒公司的智能仪表,不但能完成多种物理量的精确显示,同时可以带变送输出、继电器控制输出、通讯、数据保持等多种功能。
智能式仪表是以微处理器为中央控制单元,能完成物理信号的输入输出、信号转换和计算控制等功能,并可与外界通讯的仪器仪表。
与其他常规仪表相比,有以下几个优点:a.先进的微机技术,高性能的集成芯片,功能强大,性能优越。
b.可靠性高,稳定性好,长期工作维护量小。
c.可采用LCD显示,清晰直观,读数方便。
d.适用范围广,使用灵活:可选择不同的测量值和输出值;可在线修改参数,流量小信号切除、失败模式电流输出等功能;具有内部计算、数据存储、自诊断、自校验等多种功能。
e.具有大量的非控制性信息管理信息 ,可供用户参考。
2.3 实验设备的使用以及连线说明实验系统流程图如下所示:图2-1 锅炉温度控制实验流程图1.本次试验所用到的设备按图2-2接好实验导线和通讯线。
图2-2 锅炉温度控制实验接线图2.将手动阀门1V10、1V3打开,其余阀门全部关闭。
3.先打开实验对象的系统电源,然后打开控制台的总电源,再打开仪表控制单元电源。
4.在控制板上打开水泵1开关,待水标内水位超过总高度的2/3,打开V3,手动调节1V3,V3,使水标高度基本不变。
其他阀门关闭。
5.打开计算机上的PCS-E-仪表 MCGS运行环境,选择系统管理菜单中的用户登录,登录用户。
如图2-3所示:图 2-3 登陆界面示意图6.选择单回路控制实验的锅炉温度控制实验。
7.选择计算机控制方式。
8.按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。
Ts=1 (参考值)SV=30 (参考值)Kc=20 (参考值)Ti=150 (参考值)Td=0 (参考值)9.在信号板上打开加热信号输入、温度信号输出。
第3章控制原理锅炉温度控制系统主要包括水温控制回路、给水控制回路等,系统中主要对给水、水温等主要参数进行调节控制。
如图3-1所示:图 3-1 设置界面系统中主要采用的PID算法为双相积分的PID智能控制算法。
3.1 水温控制回路通过调节锅炉内水的温度与设定值的差值来调节锅炉的出水温度。