基于PLC的锅炉温度控制系统毕业设计
基于PLC的加热炉温控制系统设计

毕业设计(论文)题目:基于PLC的加热炉温控制系统设计学院:电子信息学院专业班级:06自动化(2)指导教师:康涛职称:讲师学生姓名:雷颖倩学号:40604010225摘要在现代工业生产过程中,一些温度等作为被控参数的过程,往往其容量滞后较大,控制要求又较高,若采用单回路控制系统,其控制质量无法满足生产要求。
本文针对锅炉的结构特点以及船机控制能够有效的改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等,提出了锅炉温度串级控制的解决方案。
本系统以电加热锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为福被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度控制系统;完成了系统的硬件设计和PLC程序设计。
经过调试,PLC程序实现了数据采集、A/D转换、PID运算和D/A转换等,达到了设计要求。
关键词:锅炉,温度,串级控制,PLC,PIDABSTRACTIn modern industrial production,some course's capacity often lags behind relatively largely,control also expect relatively much regarding temperature,etc,if adopt the controlsystem of single circuit,its quality of control is unable to meet the production requirement.Because the bunches of control can improve the dynamic characteristic of the course effectively,improve operating frequency,reducing the time constant of the equivalent course and accelerating the response speed,etc.This text have proposed one bunch of solutions of control of boiler temperature.This system leaves target of accusing of on boiler with electricity,export water temperature.With boiler for accuse of parameter mainly,regard the burner hearth water temperature as one pair of parameters of accusing of,regard voltage of resistance wire of the heating furnace as the control parameter,regard PLC as the controller, form one bunch of control systems of boiler temperature;Finish the designing of systematic hardware and the program with PLC.Through debugging,PLC procedure has realized the data gathering,A/D changing,PID operation and D/A changing,etc,has reached the designing requirement.KEYWORDS:boiler,temperature,bunches of control,plc,pid前言随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。
基于PLC的锅炉温度控制系统毕业设计

目录1 绪论 (1)1.1课题背景及研究目的和意义 (1)1.2国内外研究现状 (1)1.3项目研究内容 (2)2 PLC和组态软件基础 (3)2.1可编程控制器基础 (3)2.2组态软件的基础 (5)3 PLC控制系统的硬件设计 (7)3.1PLC控制系统设计的基本原则和步骤 (7)3.3系统整体设计方案和电气连接图 (9)3.4PLC控制器的设计 (10)4 PLC控制系统的软件设计 (13)4.1PLC程序设计的方法 (13)4.2编程软件STEP7--M ICRO/WIN概述 (13)4.3程序设计 (15)5组态画面的设计 (25)5.1组态变量的建立及设备连接 (25)5.2创建组态画面 (28)6系统测试 (32)6.1启动组态王 (32)6.2实时曲线观察 (32)6.3分析历史趋势曲线 (33)6.4查看数据报表 (35)6.5系统稳定性测试 (36)总结 (38)致谢 (39)参考文献 (40)摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。
电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。
目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文

基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
基于PLC锅炉温度控制系统的设计报告.doc

基于PLC锅炉温度控制系统的设计报告.doc一、设计目的本设计旨在搭建一个基于PLC的锅炉温度控制系统,通过对锅炉水温度的检测和控制,实现锅炉水温度的稳定控制,提高锅炉的工作效率,确保锅炉的稳定运行,降低发生事故的概率,保证工业生产的平稳进行。
二、设计内容1、系统硬件设计2、系统软件设计3、系统调试与实验三、系统设计的可行性分析本系统采用PLC作为控制核心,辅以温度传感器,执行元件等辅助部件,相比于传统的控制方法,其具有反应速度快,可靠性高,维护方便等优点,所以具有高度的可行性。
四、系统工作流程1、温度传感器将温度信号传输给PLC控制器2、PLC控制器根据设定的温度值和实时检测的温度值进行比较,判断当前温度状态3、根据判断结果,控制PLC输出的控制信号,控制加热电源调整电压,使锅炉水温度达到设定值4、如温度达到设定值,系统返回到检测阶段,进行下一轮温度检测和控制,如温度未达到设定值,锅炉继续加热,直至达到设定值,系统返回到检测阶段。
五、系统设计的技术要点1、采用模拟信号采集电路;2、采用PID算法控制,通过比较设定值和实际值来调节加热元件输出;3、使用触摸屏界面设计,用户可以通过界面设置温度值和查询运行状态;4、前后台通信采用Modbus协议。
六、系统检测与调试本系统设计完成后,需要进行硬件和软件的实现,并进行整体的调试测试,工程师需严格按照设计流程,全面检查各个部件的连接情况和参数设置,确保系统能够正常稳定地运行,运行过程中出现问题要及时解决。
七、总结与展望本设计成功地搭建了基于PLC的锅炉温度控制系统,系统具有实时性强,稳定性高,调节精度高等优点,提高了设备工作效率,大大降低了工业生产过程中锅炉事故的发生可能性。
在未来的研究中,可以通过结合智能算法等技术,进一步优化系统设计,提升锅炉温度控制系统的性能和应用范畴。
基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。
作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。
本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。
文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。
然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。
在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。
通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。
也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。
二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。
该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。
锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。
其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。
锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。
燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。
燃烧器的性能直接影响到锅炉的热效率和污染物排放。
燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。
热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。
热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。
毕业设计-基于PLC控制的电热锅炉

电热锅炉是把电能转化为热能,把水加热至有压力的热水或蒸汽(饱和蒸汽)的一种电力设备。
电热锅炉无需炉膛、烟道和烟囱,同样无需储存燃料的空间,很大程度上减少了常规燃煤锅炉使用产生的污染。
电热锅炉具有低污染,低噪声,体积小,安装使用便利,自动化程度高,安全可靠,热效率高达98%以上等特点,电热属于一种绿色环保产品。
一些国家在20世纪70年代后期到80年代初期就已经开始研究设计电热锅炉。
中国在80年代中期,开始设计电热锅炉产品,到了90年代中期,许多公司将电热锅炉用来采暖、中央空调和热水供应。
1 绪论1.1电热锅炉的介绍在当今社会,电加热锅炉的使用领域已经越来越广泛了。
它的经济性,安全性和较高的自动化程度越来越受到人们的认同。
可是电加热锅炉的性能优劣充分的反映了电热锅炉的质量好坏。
电加热锅炉已逐渐进入人民的生活,成为洗浴,供热等场所的首选设备。
目前电热锅炉的控制系统多采用以微处理器为核心的PLC控制技术,既提高产品的自动化程度又增加了锅炉的控制精度。
现在使用的大部分电加热锅炉控制系统的设计还不完善,因此需要设计一种全新的、自动化程度较高的电加热锅炉控制系统来代替和完善以前的控制系统。
现在工业生产所使用的控制器大多数是用继电器、接触器为主的控制装置。
使用继电器电路组成的控制系统出现的误操作较多,其可靠性不好。
而该设计所使用的是以PLC来取代原有的控制系统。
控制系统的要求:补水泵和循环泵交替使用,互为备用;缺相报警,水泵停止运行;循环泵主/备用泵能手动选择。
1.2 电热锅炉的分类电热锅炉就是以电为能量来加热的锅炉,即使用清洁的电能转化为热能,从而把常温水加热为高温度热水或具有压力蒸汽的热能电气设备。
电热锅炉分为两大类:LDR(WDR)电热蒸汽锅炉和CLDZ(CWDZ)电热热水锅炉及KS-D电开水锅炉。
其中电开水锅炉又分为KS-D电开水锅炉和XKS-D电蓄热开水锅炉。
电开水锅炉配置微电脑控制器、陶瓷电热管,采用电磁阀作为补水装置配合水位电极、感温探头全自动工作,连续大量供应饮用开水,广泛适用于政府机关、企业、工厂、医院、学校、宾馆、酒店等企事业单位使用。
基于PLC和组态技术的锅炉水温串级控制系统设计

2011 届毕业设计说明书基于PLC和组态技术的锅炉水温串级控制系统设计摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。
下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。
上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。
上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。
锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。
锅炉内胆与夹套构成串级控制。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。
串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。
综合以上得到一个品质比较高的控制系统。
关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
基于plc的锅炉供热控制系统的设计

基于plc的锅炉供热控制系统的设计工业控制系统中,PLC(可编程逻辑控制器)被广泛应用于各种设备的控制和监控。
本文将重点讨论基于PLC的锅炉供热控制系统的设计。
一、系统概述锅炉供热控制系统是指通过对锅炉进行温度、压力等参数的监测和控制,实现对供热系统的稳定运行和效率优化。
基于PLC的控制系统能够实现自动化控制,节约人力资源,提高系统运行效率。
二、系统组成1. PLC控制器:作为控制系统的核心,PLC负责接收各种传感器采集的数据,并根据预先设定的控制策略执行相应的控制动作。
2. 传感器:用于监测锅炉的各项参数,如温度传感器、压力传感器等。
3. 执行元件:包括电磁阀、泵等执行元件,通过PLC控制输出信号来实现对锅炉操作的控制。
三、系统设计1. 硬件设计:选择适合的PLC型号和合适的IO模块,根据实际需要设计合理的接线和布置。
2. 软件设计:编写PLC程序,包括主控程序和各个子程序,实现对供热系统的全面控制和监控。
四、系统功能1. 温度控制:根据设定的温度范围,实现对锅炉加热的自动控制,确保供热系统温度稳定。
2. 压力保护:设定压力上下限,一旦超过范围即刻停止加热,确保系统安全运行。
3. 水位控制:通过水位传感器监测水位,保持恰当的水位以确保供热效果。
4. 故障诊断:PLC系统能够实时监测各个元件的运行状态,一旦有异常即可及时报警并进行故障诊断。
五、系统优势1. 自动化程度高:基于PLC的供热控制系统可以实现全自动化控制,减少人为干预,节约人力成本。
2. 稳定可靠:系统通过对各项参数的实时监测和控制,确保供热系统的稳定性和可靠性。
3. 灵活性强:PLC程序可以根据实际需要进行定制化设计,满足不同应用场景的需求。
六、总结基于PLC的锅炉供热控制系统的设计,能够实现对供热系统的智能化控制和监测,提高系统的稳定性和效率,减少运行成本,是目前工业控制领域的主流趋势。
希望本文的介绍能够对您有所帮助。
感谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PLC的锅炉温度控制系统作者姓名xxx专业自动化指导教师姓名xxx专业技术职务讲师目录摘要 (1)第一章绪论 (3)1.1课题背景及研究目的和意义 (3)1.2国内外研究现状 (3)1.3项目研究内容 (4)第二章 PLC和组态软件基础 (5)2.1可编程控制器基础 (5)2.1.1可编程控制器的产生和应用 (5)2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。
2.1.3可编程控制器的分类及特点 (7)2.2组态软件的基础 (8)2.2.1组态的定义 (8)2.2.2组态王软件的特点 (8)2.2.3组态王软件仿真的基本方法 (8)第三章 PLC控制系统的硬件设计 (9)3.1 PLC控制系统设计的基本原则和步骤 (9)3.1.1 PLC控制系统设计的基本原则 (9)3.1.2 PLC控制系统设计的一般步骤 (9)3.1.3 PLC程序设计的一般步骤 (10)3.2 PLC的选型和硬件配置 (11)3.2.1 PLC型号的选择 (11)3.2.2 S7-200CPU的选择 (12)3.2.3 EM235模拟量输入/输出模块 (12)3.2.4 热电式传感器 (12)3.2.5 可控硅加热装置简介 (12)3.3 系统整体设计方案和电气连接图 (13)3.4 PLC控制器的设计 (14)3.4.1 控制系统数学模型的建立 (14)3.4.2 PID控制及参数整定 (14)第四章 PLC控制系统的软件设计 (16)4.1 PLC程序设计的方法 (16)4.2 编程软件STEP7--Micro/WIN 概述 (17)4.2.1 STEP7--Micro/WIN 简单介绍 (17)4.2.2 计算机与PLC的通信 (18)4.3 程序设计 (18)4.3.1程序设计思路 (18)4.3.2 PID指令向导 (19)4.3.3 控制程序及分析 (25)第五章组态画面的设计 (29)5.1组态变量的建立及设备连接 (29)5.1.1新建项目 (29)5.2创建组态画面 (33)5.2.1新建主画面 (33)5.2.2新建PID参数设定窗口 (34)5.2.3新建数据报表 (34)5.2.4新建实时曲线 (35)5.2.5新建历史曲线 (35)5.2.6新建报警窗口 (36)第六章系统测试 (37)6.1启动组态王 (37)6.2实时曲线观察 (38)6.3分析历史趋势曲线 (38)6.4查看数据报表 (40)6.5系统稳定性测试 (42)结束语 (43)参考文献 (44)致谢 (45)山东轻工业学院2010届本科生毕业设计(论文)摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC 逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。
电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。
目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
本文分别就电热锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设计等几方面进行阐述。
通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。
关键词:电热锅炉的控制系统温度控制串级控制PLC PID1山东轻工业学院2010届本科生毕业设计(论文)ABSTRACTFrom the last century to 90 in the mid 80's, PLC has been rapid development in this period, PLC capability in dealing with analog and digital computing power, man-machine interface capabilities and network capabilities are greatly improved, PLC gradually entering the field of process control, replaced in some applications in the field of process control dominant DCS.PLC has the versatility, ease of use, wide adaptation, high reliability and strong anti-interference, simple to program and so on.PLC control, especially in the industrial automation sequence control the position, in the foreseeable future, is no substitute.This paper introduces the boiler as the charged object to the boiler water temperature of the main accused of the export parameters to furnace temperature as deputy accused of parameters to control the heating resistance wire voltage parameters to PLC, controller, constitutes a series of boiler temperaturelevel control system; using PID algorithm, the use of PLC ladder programming language, programming, boiler temperature control.Electric boilers a wide range of applications, in a considerable number of field, the electric boiler performance advantages and disadvantages of the decision The quality of the product.Electric boiler control systems currently used mostly for computer control microprocessor core technology, both to improve the automation equipment have improved the control precision equipment.This paper on the heating boiler control system works, selection of temperature transmitter, PLC configurations, the configuration software design aspects were described.Through the transformation of electric boiler control system has fast response, good stability, high reliability, control accuracy and good features, practical significance for industrial control.Key words:heating boiler control system temperature control cascade control PLC PID2山东轻工业学院2010届本科生毕业设计(论文)3 第一章 绪论1.1课题背景及研究目的和意义电热锅炉的应用领域相当广泛,电热锅炉的性能优劣决定了产品的质量好坏。
目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
PLC 的快速发展发生在上世纪80年代至90年代中期。
在这时期,PLC 在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了很大的提高和发展。
PLC 逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS 系统。
PLC 具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
[4]电热锅炉是机电一体化的产品,可将电能直接转化成热能,具有效率高,体积小,无污染,运行安全可靠,供热稳定,自动化程度高的优点,是理想的节能环保的供暖设备。
加上目前人们的环保意识的提高,电热锅炉越来越受人们的重视,在工业生产和民用生活用水中应用越来越普及。
电热锅炉目前主要用于供暖和提供生活用水。
主要是控制水的温度,保证恒温供水。
PID 控制是迄今为止最通用的控制方法之一。
因为其可靠性高、算法简单、鲁棒性好,所以被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性系统。
PID 控制的效果完全取决于其四个参数,即采样周期t s 、比例系数 K p 、积分系数K i 、微分系数K d 。
因而,PID 参数的整定与优化一直是自动控制领域研究的重要课题。
PID 在工业过程控制中的应用已有近百年的历史,在此期间虽然有许多控制算法问世,但由于PID 算法以它自身的特点,再加上人们在长期使用中积累了丰富经验,使之在工业控制中得到广泛应用。
在PID 算法中,针对P 、I 、D 三个参数的整定和优化的问题成为关键问题。
[5]1.2 国内外研究现状自70年代以来,由于工业过程控制的需要,特别是微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国内外温度控制系统的发展迅速,并在智能化,自适应、参数整定等方面取得成果,在这方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行各业广泛应用。