(完整word版)2018届高考数学(文)大一轮复习检测第六章第3讲基本不等式Word版含答案

合集下载

2018届高考数学一轮复习6.1

2018届高考数学一轮复习6.1

第六章
知识清单ห้องสมุดไป่ตู้基础自测
第一节
不等关系与不等式
名师考点精讲 综合能力提升
主干知识回顾
-9-
1.[2016· 福建四月质检]已知a>0,b>0,则“ab>1”是“a+b>2”的 ( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 A
1 4
)
【解析】已知a>0,b>0,若ab>1,则a+b≥2 ������������ > 2, 即有������ + ������ > 2成立;
名师考点精讲 综合能力提升
主干知识回顾
-5-
1.不等式的基本性质
性质 对称性 传递性 可加性 性质内容 a>b⇔b<a a>b,b>c⇒a>c a>b⇔a+c>b+c a>b ⇒ c>0 可乘性 a>b ⇒ c<0 a>b ⇒ c>d ac>bc c的符号 ac<bc 注意 ⇔ ⇒ ⇔
同向可加性
a+c>b+d
新课标Ⅱ卷,T8,选择
新课标Ⅰ卷,T1,选择; 新课标Ⅰ卷,T1,选择; 新课标Ⅱ卷,T1,选择 新课标Ⅱ卷,T1,选择
新课标Ⅰ卷,T9,选择; 新课标Ⅱ卷,T9,选择 新课标卷,T14,填空 新课标Ⅱ卷,T9,选择
第一节 不等关系与不等式
第六章
第一节
不等关系与不等式
名师考点精讲 综合能力提升
主干知识回顾
1 1 1
������
������
第六章
知识清单 基础自测

2018版高考数学浙江专用文理通用大一轮复习讲义:第六

2018版高考数学浙江专用文理通用大一轮复习讲义:第六

基础巩固题组 (建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A.lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B.sin x +1sin x≥2(x ≠k π,k ∈Z ) C.x 2+1≥2|x |(x ∈R )D.1x 2+1<1(x ∈R ) 解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证“一正”“二定”“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确. 答案 C2.若2x+2y=1,则x +y 的取值范围是( ) A. B.C. 解析 22x +y≤2x +2y =1,所以2x +y≤14,即2x +y ≤2-2,所以x +y ≤-2. 答案 D3.(2017·浙江省名校协作体联考)若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ·⎝⎛⎭⎪⎫1+4a b 的最小值为( )A.7B.8C.9D.10解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号.故选C. 答案 C4.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A.1ab ≤14 B.1a +1b≤1C.ab ≥2D.a 2+b 2≥8解析 4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,选项A ,C 不成立;1a +1b =a +b ab =4ab≥1,选项B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8,选项D 成立.答案 D5.(2015·湖南卷)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b=ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为22,故选C.答案 C6.(2017·日照模拟)若实数x ,y 满足xy >0,则xx +y +2yx +2y的最大值为( )A.2- 2B.2+ 2C.4+2 2D.4-2 2解析 xx +y +2y x +2y =x (x +2y )+2y (x +y )(x +y )(x +2y )=x 2+4xy +2y 2x 2+3xy +2y 2=1+xyx 2+3xy +2y 2=1+1x y +3+2y x≤1+13+22=4-22,当且仅当x y =2y x ,即x 2=2y 2时取等号.故选D.答案 D7.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43B.53C.2D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2. 答案 C8.(2017·瑞安市调研)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A.4B.2 2C.8D.16解析 由a >0,b >0,a +b =1a +1b =a +bab,得ab =1,则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.故选B. 答案 B 二、填空题9.正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ∵a ,b 是正数,∴ab =a +b +3≥2ab +3,解得ab ≥3,即ab ≥9. 答案 [9,+∞)10.(2016·嘉兴一中检测)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n的最大值为________.解析 ∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n=-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·m n =-4,当且仅当m =n =-12时,1m +1n取得最大值-4.答案 -4 11.若对于任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析xx 2+3x +1=13+x +1x, 因为x >0,所以x +1x≥2(当且仅当x =1时取等号),则13+x +1x≤13+2=15,即x x 2+3x +1的最大值为15,故a ≥15.答案 ⎣⎢⎡⎭⎪⎫15,+∞12.(2017·嵊州月考)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.解析 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=k 1x (k 1≠0),y 2=k 2x(k 2≠0),∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20,∴运费与仓储费之和为⎝ ⎛⎭⎪⎫5x +20x 万元,∵5x +20x≥25x ×20x =20,当且仅当5x =20x,即x =2时,运费与仓储费之和最小,为20万元.答案 2 20能力提升题组 (建议用时:15分钟)13.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为( ) A.0B.1C.94D.3解析 由已知得z =x 2-3xy +4y 2,(*) 则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.答案 B14.(2017·金华十校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +2by (a >0,b >0)的最大值为1,则1a 2+14b2的最小值为________.解析 不等式组所表示的平面区域是以(0,0),⎝ ⎛⎭⎪⎫23,0,(1,1)为顶点的三角形区域(包括边界),观察可知,当直线z =ax +2by 过点(1,1)时,z 有最大值,故a +2b =1,故1≥22ab ,故ab ≤18,故1a 2+14b 2≥1ab ≥8,当且仅当a =2b =12时等号成立,故1a 2+14b 2的最小值为8. 答案 815.点(a ,b )为第一象限内的点,且在圆(x +1)2+(y +1)2=8上,则ab 的最大值为________.解析 由题意知a >0,b >0,且(a +1)2+(b +1)2=8,化简得a 2+b 2+2(a +b )=6,则6≥2ab +4ab (当且仅当a =b 时取等号),令t =ab (t >0),则t 2+2t -3≤0,解得0<t ≤1,则0<ab ≤1,所以ab 的最大值为1. 答案 116.正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.解析 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥10+29=16,由题意,得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,而x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6. 答案 [6,+∞)17.(2017·浙江五校联考)设a +b =2,b >0,则当a =________时,12|a |+|a |b 取得最小值为________.解析 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b,由于b >0,|a |>0,所以b 4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54.当a <0时,12|a |+|a |b 的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2.答案 -2 34。

2018年高考数学(理)一轮复习文档 第六章 不等式 第1讲 不等关系与不等式 Word版含答案

2018年高考数学(理)一轮复习文档 第六章 不等式 第1讲 不等关系与不等式 Word版含答案

第讲 不等关系与不等式.实数大小顺序与运算性质之间的关系->⇔>;-=⇔=;-<⇔<..不等式的基本性质()对称性:>⇔<;()传递性:>,>⇒>;()可加性:>⇒+>+;>,>⇒+>+;()可乘性:>,>⇒>,>>,>>⇒>;()可乘方:>>⇒>(∈,≥);()可开方:>>⇒>(∈,≥)..辨明两个易误点()在应用传递性时,注意等号是否传递下去,如≤,<⇒<;()在乘法法则中,要特别注意“乘数的符号”,例如当≠时,有>⇒>;若无≠这个条件,>⇒>就是错误结论(当=时,取“=”)..不等式中的倒数性质()>,>⇒<;()<<⇒<;()>>,<<⇒>;()<<<或<<<⇒<<.设=(-),=(-)·(-),则与的大小关系为( ).≥.>.≤.<-=(-+)-(-+)=>,所以>.故选..已知,是实数,则“>且>”是“+>且>”的( ).充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件⇒又当>时,与同号,由+>知>,且>.下列四个结论,正确的是( )①>,<⇒->-;②>>,<<⇒>;③>>⇒>;④>>⇒>..①②.②③.①④.①③对于①,因为>,<,所以->-,所以->-.。

2018高考数学文人教新课标大一轮复习配套文档:第六章

2018高考数学文人教新课标大一轮复习配套文档:第六章

6.2 等差数列1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的 等于同一个 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,通常用字母d 表示,即 =d (n ∈N +,且n ≥2)或=d (n ∈N +).2.等差中项三个数a ,A ,b 成等差数列,这时A 叫做a 与b 的________.3.等差数列的通项公式若{a n }是等差数列,则其通项公式a n =________. ①{a n }成等差数列⇔a n =pn +q ,其中p =________,q =________,点(n ,a n )是直线________上一群孤立的点.②单调性:d >0时,{a n }为________数列;d <0时,{a n }为________数列;d =0时,{a n }为________.4.等差数列的前n 项和公式(1)等差数列前n 项和公式S n =________=________.其推导方法是________.(2){a n }成等差数列,求S n 的最值:若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ____,a n +1____时,S n 最大;若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ____,a n +1____时,S n 最小;或利用二次函数求最值;或利用导数求最值. 5.等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列;(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)通项公式法:a n =kn +b (k ,b 是常数)(n ∈N *)⇔{a n }是等差数列;(4)前n 项和公式法:S n =An 2+Bn (A ,B 是常数)(n ∈N *)⇔{a n }是等差数列.6.等差数列的性质 (1)a m -a n = d ,即d =a m -a nm -n. (2)在等差数列中,若p +q =m +n ,则有a p +a q=a m + ;若2m =p +q ,则有 a m =a p +a q (p ,q ,m ,n ∈N *).但要注意:在等差数列a n =kn+b 中,若m =p +q ,易证得a m =a p +a q 成立的充要条件是b =0,故对一般等差数列而言,若m =p +q ,则a m =a p +a q 并不一定成立.(3)若{a n },{b n }均为等差数列,且公差分别为d 1,d 2,则数列{pa n },{a n +q },{a n ±b n }也为 数列,且公差分别为 , , .(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md .(5)等差数列的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…为等差数列,公差为n 2d .(6)若等差数列的项数为2n ,则有S 偶-S 奇=nd ,S 奇S 偶=a na n +1.自查自纠1.差 常数 公差 a n -a n -1 a n +1-a n 2.等差中项3.a 1+(n -1)d ①d a 1-d y =dx +(a 1-d )②单调递增 单调递减 常数列 4.(1)n (a 1+a n )2na 1+n (n -1)d2倒序相加法(2)≥0 ≤0 ≤0 ≥0( ( ( (S ,且⎭⎪⎫a 1-d 2x ,如图,知,抛物线的对称轴为1≤n ≤8时,S n 单调递增;当S 8=S 9.,所以当n =8或9时,S 解法二:设等差数列{a n }的公差为66d ,d =-18a 1<0.-1)d =na 1+n (n -121⎛⎫172S an。

2018版高考数学文人教大一轮复习讲义 教师版文档第六

2018版高考数学文人教大一轮复习讲义 教师版文档第六

1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 【知识拓展】1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ )1.下列说法中,正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +1n }的第k 项为1+1kD .数列0,2,4,6,8,…可记为{2n } 答案 C解析 ∵数列{n +1n }的通项公式为a n =n +1n =1+1n ,∴a k =1+1k.故C 正确;数列中的数讲究顺序,而集合无序,故A 、B 均错; D 中0无对应的n .2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( )A.135 B.142 C.148 D.154答案 B3.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.4.数列{a n }中,a n =-n 2+11n ,则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-(n -112)2+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 5.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)(2016·太原模拟)数列1,3,6,10,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)C (2)2n +1n 2+1解析 (1)观察数列1,3,6,10,…可以发现1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,…第n 项为1+2+3+4+…+n =n (n +1)2.∴a n =n (n +1)2.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的绝对值的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n-32n. 题型二 由a n 与S n 的关系求通项公式例2 (1)(2017·南昌月考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n=1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.(2)已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式. ①S n =2n 2-3n ;②S n =3n +b . 解 ①a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.思维升华 已知S n ,求a n 的步骤(1)当n =1时,a 1=S 1;(2)当n ≥2时,a n =S n -S n -1;(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.(1)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.(2)已知数列{a n }的前n 项和S n =n 2-9n ,则其通项a n =________;若它的第k 项满足5<a k <8,则k =________.答案 (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)2n -10 8解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)∵a n =⎩⎪⎨⎪⎧ S 1,n =1,S n -S n -1,n ≥2,∴a n =⎩⎪⎨⎪⎧-8,n =1,2n -10,n ≥2.又∵-8也适合a n =2n -10,∴a n =2n -10,n ∈N *. 由5<2k -10<8,∴7.5<k <9,∴k =8. 题型三 由数列的递推关系求通项公式例3 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +ln(1+1n );(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln(1+1n),∴a n -a n -1=ln(1+1n -1)=ln nn -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnn n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln(n n -1.n -1n -2 (3)2·2)=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1.思维升华 已知数列的递推关系求通项公式的典型方法(1)当出现a n =a n -1+m 时,构造等差数列;(2)当出现a n =xa n -1+y 时,构造等比数列;(3)当出现a n =a n -1+f (n )时,用累加法求解;(4)当出现a n a n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2且n ∈N *),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5等于( ) A .-16 B .16 C .31 D .32答案 (1)1n(2)B解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1,∴a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16. 题型四 数列的性质 命题点1 数列的单调性例4 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=__________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3.∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)(2016·哈尔滨模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 503×4+3=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.12.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·(1011)n ,则此数列的最大项是第________项.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析. 解析 (1)∵a n +1-a n =(n +2)(1011)n +1-(n +1)(1011)n=(1011)n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9、10项. (2)由a n +1>a n 知该数列是一个递增数列, 又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. 答案 (1)9或10 (2)(-3,+∞)1.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.2.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项和第6项 答案 D解析 令a n =3,即n 2-8n +15=3,整理得n 2-8n +12=0,解得n =2或n =6.3.(2016·山西长治月考)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( ) A .16 B .20 C .33 D .120答案 C解析 a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23 答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,∴数列{a n }具有周期性,T =6, ∴a 2 018=a 336×6+2=a 2=3.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,若S n 是数列{a n }的前n 项和,则S 21为( )A .5B.72C.92D.132 答案 B解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 6.(2016·开封一模)已知函数y =f (x )的定义域为R .当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f (-2-a n )(n ∈N *),则a 2 015的值为( )A .4 029B .3 029C .2 249D .2 209答案 A解析 根据题意,不妨设f (x )=(12)x ,则a 1=f (0)=1,∵f (a n +1)=1f (-2-a n ),∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 015=4 029.7.已知数列{a n }的前n 项和为S n ,且S n =2n 2-1,则a 3=________.答案 10解析 a 3=S 3-S 2=2×32-1-(2×22-1)=10.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1. 9.已知数列{a n }的通项公式a n =(n +2)·(67)n ,则数列{a n }的项取最大值时,n =____________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎨⎧ (n +2)·(67)n ≥(n +1)·(67)n -1,(n +2)·(67)n ≥(n +3)·(67)n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. *10.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.答案 28解析 依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.11.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解 (1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)] =(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2×3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2. 12.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .*13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,2-a可知5<2<6,即-10<a<-8.。

2018届高考新课标数学文大一轮复习检测:第六章 数列

2018届高考新课标数学文大一轮复习检测:第六章 数列

A 组 专项基础训练(时间:35分钟)1.(2016·宁夏大学附中上学期月考)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19 【解析】 设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9, 解得⎩⎪⎨⎪⎧q 2=9,a 1=19.【答案】 C2.(2016·山西四校联考)等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n(n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2 【解析】 由等比数列的性质, 得a 3·a 2n -3=a 2n =22n,从而得a n =2n.方法一 log 2a 1+log 2a 2+…+log 2a 2n -1=log 2=log 22n (2n -1)=n (2n -1).方法二 取n =1,log 2a 1=log 22=1,而(1+1)2=4,(1-1)2=0,排除B ,D ;取n =2,log 2a 1+log 2a 2+log 2a 3=log 22+log 24+log 28=6,而22=4,排除C ,选A.【答案】 A3.(2016·山东潍坊重点高中联考)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73C.83D .3 【解析】 依题意知等比数列的公比q ≠±1,设S 3=k ,则S 6=3k (k ≠0),结合S 3,S 6-S 3,S 9-S 6成等比数列可知S 9-3k =4k ,故S 9=7k .所以S 9S 6=73.【答案】 B4.(2016·湖南师大附中月考)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2·b 8·b 11=( )A .1B .2C .4D .8【解析】 由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2·b 8·b 11=b 2b 7b 12=b 37=23=8.【答案】 D5.(2016·甘肃河西五市部分普通高中第一次联考)正项等比数列{a n }中的a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2 016=( )A .-1B .1 C. 2 D .2【解析】 ∵f ′(x )=x 2-8x +6,∴a 1·a 4 031=6.又∵{a n }为正项等比数列, ∴a 22 016=a 1·a 4 031=6,∴log 6a 2 016=log66=1.【答案】 B6.(2016·广州综合测试)已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( )A .10B .20C .100D .200【解析】 a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 【答案】 C7.(2016·长春调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.【解析】 设数列{a n }的公比为q , 由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q 3n -3=324,因此q3n -6=81=34=q 36,所以3n -6=36,即n =14. 【答案】 148.(2016·南宁测试)在各项均为正数的等比数列{a n }中,a 1=2,且2a 1,a 3,3a 2成等差数列.则a n =________.【解析】 设数列{a n }的公比为q ,∵2a 1,a 3,3a 2成等差数列,∴2a 1+3a 2=2a 3, 2a 1+3a 1q =2a 1q 2,2q 2-3q -2=0,解得q =2或q =-12.∵q >0,∴q =2.∵a 1=2,∴数列{a n }的通项公式为a n =a 1q n -1=2n.【答案】 2n9.(2016·河南实验中学期中)数列{b n }满足:b n +1=2b n +2,b n =a n +1-a n ,且a 1=2,a 2=4.(1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .【解析】 (1)由b n +1=2b n +2,得b n +1+2=2(b n +2), ∴b n +1+2b n +2=2,又b 1+2=a 2-a 1+2=4, ∴数列{b n +2}是首项为4,公比为2的等比数列. ∴b n +2=4·2n -1=2n +1,∴b n =2n +1-2.(2)由(1)知,a n -a n -1=b n -1=2n-2(n ≥2), ∴a n -1-a n -2=2n -1-2(n >2),…,a 2-a 1=22-2,∴a n -2=(22+23+ (2))-2(n -1), ∴a n =(2+22+23+ (2))-2n +2 =2(2n-1)2-1-2n +2=2n +1-2n .∴S n =4(1-2n)1-2-n (2+2n )2=2n +2-(n 2+n +4).10.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n+1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.【解析】 (1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.B 组 专项能力提升 (时间:20分钟)11.(2016·河南洛阳期中)下列结论正确的是( )A .若数列{a n }的前n 项和为S n ,S n =n 2+n +1,则{a n }为等差数列 B .若数列{a n }的前n 项和为S n ,S n =2n -2,则{a n }为等比数列C .非零实数a ,b ,c 不全相等,若a ,b ,c 成等差数列,则1a ,1b ,1c 可能构成等差数列D .非零实数a ,b ,c 不全相等,若a ,b ,c 成等比数列,则1a ,1b ,1c一定构成等比数列 【解析】 在A 中,∵数列{a n }的前n 项和为S n ,S n =n 2+n +1,∴a 1=S 1=1+1+1=3,a n =S n -S n -1=(n 2+n +1)-=2n (n ≥2),故{a n }不为等差数列,故A 错误;在B 中,∵数列{a n }的前n 项和为S n ,S n =2n-2,∴a 1=S 1=2-2=0,∴{a n }不为等比数列,故B 错误;在C 中,若1a ,1b ,1c 构成等差数列,则2b =1a +1c =a +c ac =2b ac ,∴b 2=ac ,∴ac =⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2+2ac 4,∴a =c ,从而a =c =b ,与非零实数a ,b ,c 不全相等矛盾,∴1a ,1b ,1c不可能构成等差数列,故C 错误;在D 中,∵非零实数a ,b ,c 不全相等,a ,b ,c 成等比数列,∴b 2=ac ,∴1b 2=1ac =1a ·1c ,∴1a ,1b ,1c一定成等比数列,故D 正确.故选D. 【答案】 D12.(2016·宁夏大学附中上学期月考)在正项等比数列{a n }中,存在两项a m ,a n (m ,n ∈N *)使得a m a n =4a 1,且a 7=a 6+2a 5,则1m +5n的最小值是( )A.74 B .1+53 C.256 D.253【解析】 在正项等比数列{a n }中,设公比为q ,∵a 7=a 6+2a 5,∴a 7a 5=a 6a 5+2,即q 2-q -2=0,解得q =2或q =-1(舍去),∴a m =a 12m -1,a n =a 12n -1.∵a m a n =4a 1,∴a m a n =a 212m +n -2=16a 21,即m +n -2=4,∴m +n =6,列举(m ,n )=(1,5),(2,4),(3,3),(4,2),(5,1),即有1m +5n =2,74,2,114,265.当m =2,n =4时,1m +5n 取得最小值74.【答案】 A13.(2016·兰州诊断)数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2 017110,则a 21=________.【解析】 由b n =a n +1a n ,且a 1=1,得b 1=a 2a 1=a 2. b 2=a 3a 2,a 3=a 2b 2=b 1b 2.b 3=a 4a 3,a 4=a 3b 3=b 1b 2b 3,…,a n =b 1b 2…b n -1,∴a 21=b 1b 2…b 20. ∵数列{b n }为等比数列,∴a 21=(b 1b 20)(b 2b 19)…(b 10b 11)=(b 10b 11)10=(2 017110)10=2 017. 【答案】 201714.(2016·全国卷Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.【解析】 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列, 通项公式为a n =3n -1.(2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=b n 3,因此数列{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n1-13=32-12×3n -1. 15.(2017·兰州模拟)设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =m +1-ma n (m 为常数,且m >0).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比q =f (m ),数列{b n }满足b 1=2a 1,b n =f (b n -1)(n ≥2,n ∈N *),求数列{b n }的通项公式.【解析】 (1)证明 当n =1时,a 1=S 1=m +1-ma 1,解得a 1=1. 当n ≥2时,a n =S n -S n -1=ma n -1-ma n ,即(1+m )a n =ma n -1. 又m 为常数,且m >0,∴a n a n -1=m 1+m(n ≥2). ∴数列{a n }是首项为1,公比为m1+m 的等比数列.(2)由(1)得,q =f (m )=m1+m ,b 1=2a 1=2.∵b n =f (b n -1)=b n -11+b n -1,∴1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).∴数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.∴1b n =12+(n -1)·1=2n -12,即b n =22n -1(n ∈N *).。

2018届高考数学文大一轮复习教师用书:第六章 不等式

2018届高考数学文大一轮复习教师用书:第六章 不等式

第五节合情推理与演绎推理1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理.3.了解合情推理和演绎推理之间的联系和差异.知识点一合情推理1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的________都具有这些特征的推理,或者由个别事实概括出一般结论的推理.(2)特点:是由______到______,由______到______的推理.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有________的推理.(2)特点:类比推理是由______到______的推理.答案1.(1)全部对象(2)部分整体个别一般2.(1)这些特征(2)特殊特殊1.判断正误(1)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(3)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).( )答案:(1)√(2)×(3)×2.(选修1-1P32练习第1题改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -1B .a n =4n -3C .a n =n 2D .a n =3n -1解析:a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 答案:C3.(选修1-1P32练习第3题改编)在平面上,若两个正三角形的边长的比为12,则它们的面积比为14.类似地,在空间中,若两个正四面体的棱长的比为12,则它们的体积比为________.解析:由平面图形的面积类比立体图形的体积得出:在空间内,若两个正四面体的棱长的比为12,则它们的底面积之比为14,对应高之比为12,所以体积比为18.答案:18知识点二 演绎推理 1.模式:三段论(1)大前提——已知的________; (2)小前提——所研究的________;(3)结论——根据一般原理,对________做出的判断. 2.特点:演绎推理是由______到______的推理.答案1.(1)一般原理 (2)特殊情况 (3)特殊情况 2.一般 特殊4.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错解析:当a >1时,y =a x为增函数;当0<a <1时,y =a x为减函数.故大前提错误. 答案:A热点一 归纳推理考向1 与数、式有关的归纳推理 【例1】 (2016·山东卷)观察下列等式: (sin π3)-2+(sin 2π3)-2=43×1×2;(sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2=43×2×3;(sin π7)-2+(sin 2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4;(sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5;…… 照此规律,(sin π2n +1)-2+(sin 2π2n +1)-2+(sin 3π2n +1)-2+…+(sin 2n π2n +1)-2=________.【解析】 分析各等式的形式特点: 第1个等式右边为:43×1×2;第2个等式右边为:43×2×3;第3个等式右边为:43×3×4依次类推第n 个等式的右边为43×n ×(n +1)即43n (n +1).【答案】 43n (n +1)考向2 与图形有关的归纳推理【例2】 如图所示,用全等的小正方体木块叠放立体图形,按照这样的规律继续逐个叠放下去,那么在第7个叠放的立体图形中小正方体木块数应是( )A.25 B.66C.91 D.120【解析】图中前三个立体图形中,用到的小正方体木块数依次为1,2+1×4,3+(1+2)×4,按照前三个立体图形所反映出来的规律,归纳推理可知,第7个叠放的立体图形中用到的小正方体木块数应是7+(1+2+3+…+6)×4=91.【答案】 C(1)(2017·广州模拟)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算法》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )A.2 017×22 013 B.2 017×22 014C.2 016×22 015 D.2 016×22 014(2)(2017·湖南桃江检测)地震后需搭建简易帐篷,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.解析:(1)当第一行为2个数时,最后一行仅一个数,为3=3×1=3×20; 当第一行为3个数时,最后一行仅一个数,为8=4×2=4×21; 当第一行为4个数时,最后一行仅一个数,为20=5×4=5×22; 当第一行为5个数时,最后一行仅一个数,为48=6×8=6×23. 归纳推理得,当第一行为2 016个数时,最后一行仅一个数,为2 017×22 014,故选B.(2)由题意可知,图①的单顶帐篷要(17+0×11)根钢管,图②的帐篷要(17+1×11)根钢管,图③的帐篷要(17+2×11)根钢管,……所以串7顶这样的帐篷需要17+6×11=83(根)钢管.答案:(1)B (2)83 热点二 类比推理【例3】 已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))图象上任意不同的两点,则类似地有________成立.【解析】 由题意知,点A ,B 是函数y =a x的图象上任意不同的两点,该函数是一个变化率逐渐变大的函数,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有ax 1+ax 22>ax 1+x 22成立;而函数y =sin x (x ∈(0,π)),其变化率逐渐变小,线段AB 总是位于A ,B 两点之间函数图象的下方,故可类比得到结论sin x 1+sin x 22<sin x 1+x 22.【答案】 sin x 1+sin x 22<sin x 1+x 22平面几何中有如下结论:如图(1),设O 是等腰直角△ABC 底边BC 的中点,AB =1,过点O 的动直线与两腰或其延长线的交点分别为Q ,R ,则有1AQ +1AR=2.类比此结论,将其拓展到空间,如图(2),设O 是正三棱锥A -BCD 底面BCD 的中心,AB ,AC ,AD 两两垂直,AB =1,过点O 的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q ,R ,P ,则有________.解析:设O 到各个侧面的距离为d ,而V三棱锥R -AQP=13S △AQP ·AR =13·12·AQ ·AP ·AR =16AQ ·AP ·AR ,又∵V 三棱锥R -AQP =V 三棱锥O -AQP +V 三棱锥O -ARP +V 三棱锥O -AQR =13S △AQP ·d +13S △ARP ·d +13S △AQR ·d=16(AQ ·AP +AR ·AP +AQ ·AR )d ,∴16AQ ·AP ·AR =16(AQ ·AP +AR ·AP +AQ ·AR )d ,即1AQ +1AR +1AP =1d ,而V 三棱锥A -BDC =13S △BDC ·AO =13×34×2×33=16. ∴V 三棱锥O -ABD =13V 三棱锥A -BDC =118,即13·S △ABD ·d =13·12·d =118⇒d =13,∴1AQ +1AR +1AP=3.答案:1AQ +1AR +1AP=3热点三 演绎推理【例4】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n ,故S n +1n +1=2·S nn,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(1)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁(2)已知在△ABC 中,∠A =30°,∠B =60°,求证:a <b . 证明:∵∠A =30°,∠B =60°,∴∠A <∠B .∴a <b . 其中,画线部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析:(1)若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故仅有丁猜测正确,所以选D.答案:(1)D (2)B1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.演绎推理从一般的原理出发,推出某个特殊情况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).类比推理命题的特点类比推理是由特殊到特殊的推理,借助类比推理可以推测未知、发现新结论、探索和提供解决问题的思路和方法.这正像著名数学家波利亚所说的:“类比是一个伟大的引路人.”因此,在解决某些数学问题时,若能合理地运用类比,可为问题的解决开辟一条便捷之路.在近年各类考试中,类比推理题频频亮相.下面就通过介绍类比推理的一些命题特点,揭示求解规律,希望对同学们求解此类问题有所帮助.1.类比定义【例1】 等和数列的定义是:若数列{a n }(n ∈N *)从第二项起,以后每一项与前一项的和都是同一常数,则此数列叫做等和数列,这个常数叫做等和数列的公和.如果数列{a n }是等和数列,且a 1=1,a 2=3,则数列{a n }的一个通项公式是________.【解析】 由定义知公和为4,且a n +a n -1=4(n ≥2,n ∈N *),那么a n -2=-(a n -1-2),依次类推,于是有a n -2=(-1)n -1(a 1-2).因为a 1=1,所以a n =2+(-1)n.【答案】 a n =2+(-1)n2.类比性质【例2】 我们知道:圆的任意一弦(非直径)的中点和圆心的连线与该弦垂直,那么,若椭圆b 2x 2+a 2y 2=a 2b 2的一弦(非过原点的弦)的中点与原点连线及弦所在直线的斜率均存在,你能得到什么结论?请予以证明.【解】 假设在圆中,弦(非直径)所在直线的斜率与弦的中点和圆心连线的斜率都存在,由两线垂直,我们可以知道两斜率之积为-1.对于方程b 2x 2+a 2y 2=a 2b 2,若a =b ,则方程为圆的方程,由此可以猜测两斜率之积为-b 2a 2或-a 2b2.于是,设椭圆的弦AB 的两端点的坐标分别为A (x 1,y 1),B (x 2,y 2),中点为P ,则⎩⎪⎨⎪⎧b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2⇒b 2(x 22-x 21)+a 2(y 22-y 21)=0⇒y 2+y 1x 2+x 1·y 2-y 1x 2-x 1=-b 2a 2⇒k OP ·k AB =-b 2a 2,即两斜率之积为-b 2a2. 3.类比方法【例3】 已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”. OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 请运用类比思想,对于空间中的四面体A ­BCD ,存在什么类似的结论?并证明. 【解】 在四面体A ­BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OHCH=1. 在四面体O ­BCD 与A ­BCD 中, OE AE =h O ­BCD h A ­BCD =13S △BCD ·h O ­BCD13S △BCD ·h A ­BCD =V O ­BCDV A ­BCD. 同理,OF DF =V O ­ABC V D -ABC ,OG BG =V O ­ACD V B ­ACD ,OH CH =V O ­ABDV C ­ABD,∴OE AE +OF DF +OG BG +OH CH =V O ­BCD +V O ­ABC +V O ­ACD +V O ­ABD V A ­BCD =V A ­BCDV A ­BCD=1.。

2018高考数学(文)(人教新课标)大一轮复习配套文档第六章数列单元测试卷Word版含答案

2018高考数学(文)(人教新课标)大一轮复习配套文档第六章数列单元测试卷Word版含答案

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·太原一模)在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C.14D.12解:由题意知a 2+a 4=2a 3=2,又因为a 2a 4=34,数列{a n }单调递增,所以a 2=12,a 4=32.所以公差d =a 4-a 22=12.所以a 1=a 2-d =0.故选B . 2.(2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .3.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B . 4.(2015·西安模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( )A.212B .6C .10D .11解:S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21)=1+10×12=6.故选B .5.(2016·开封联考)已知{a n }为正项等比数列,S n 是它的前n 项和,若a 1=16,且a 4与a 7的等差中项为98,则S 5的值为( ) A .29B .31C .33D .35解:设正项等比数列{a n }的公比为q ,则a 4=16q 3,a 7=16q 6,因为a 4与a 7的等差中项为98,所以a 4+a 7=94,即16q 3+16q 6=94,解得q =12(负值舍去),S 5=a 1(1-q 5)1-q =16×⎝ ⎛⎭⎪⎫1-1251-12=31.故选B .6.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *,且m ≥2),则必定有( )A .S m >0,且S m +1<0B .S m <0,且S m +1>0C .S m >0,且S m +1>0D .S m <0,且S m +1<0解:-a m <a 1<-a m +1⇔⎩⎪⎨⎪⎧a 1+a m >0,a 1+a m +1<0,得S m =a 1+a m2·m >0,S m +1=a 1+a m +12·(m +1)<0.故选A .7.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( )A .2B .4C .8D .16解:设该等比数列的公比为q ,项数为2n ,则有S 偶=q ·S奇,所以q =17085=2.又S 2n =S 偶+S奇=a 1(1-q 2n )1-q=85+170=255,所以22n-1=255.所以2n =8.故这个数列的项数为8.故选C .8.下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3D .p 1,p 4解法一:对于p 1,由a n +1-a n =d >0知其为真命题; 对于p 2,举反例数列:{-3,-2,-1},而数列{-3,-4,-3}非递增数列,p 2为假命题;对于p 3,举反例数列:{1,2,3},而数列{1,1,1}非递增数列,p 3为假命题;对于p 4,a n +1+3(n +1)d -(a n +3nd )=4d >0,因此{a n +3nd }是递增数列,p 4为真命题.解法二:a n =a 1+(n -1)d =dn +(a 1-d ),令f (x )=dx +(a 1-d ).因此只需要考查f (x ),xf (x ),f (x )x,f (x )+3dx 四个函数的图象和性质即可知,只有p 1,p 4为真命题.故选D .9.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=nn +1.则a n =lg x n=lgn n +1,所以a 1+a 2+…+a 2017=lg ⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C . 10.(2015·合肥联考)已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为( )A .3B .4C .5D .6解:因为a 2a 4=4,a n >0,所以a 3=2,所以a 1+a 2=12,所以⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2. 消去a 1得,1+qq2=6.因为q >0,所以q =12,所以a 1=8,所以a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n.所以不等式a n a n +1a n +2>19化为29-3n >19,当n =4时,29-3×4=18>19,当n =5时,29-3×5=164<19.故选B . 11.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10等于( )A .24B .32C .48D .64解:依题意有a n a n +1=2n,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列,而a 1=1,a 2=2,所以a 10=2×24=32,a 11=1×25=32,又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64.故选D .12.(2016·青岛二模)设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解:设等差数列{b n }的公差为d (d ≠0),S nS 2n=k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n=2n -1.故选B .二、填空题:本大题共4小题,每小题5分,共20分.13.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.14.(2016·北京)已知{a n }为等差数列,S n 为其前n 项和,若a 1=6,a 3+a 5=0,则S 6=________.解:因为{a n }是等差数列,所以a 3+a 5=2a 4=0,a 4=0,a 4-a 1=3d =-6,d =-2,所以S 6=6a 1+15d =6×6+15×(-2)=6.故填6.15.(2014·四川模拟)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.记数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=__________.解:由题中调和数列的定义,易得x n +1-x n =d ,所以数列{x n }是等差数列,则x 1+x 20=x 2+x 19=…=x 10+x 11,所以x 1+x 2+…+x 20=10(x 5+x 16)=200,x 5+x 16=20.故填20.16.(2015·扬州模拟)如图所示是毕达哥拉斯(Pythagoras)的生长程序:正方形上连接着等腰直角三角形,等腰直角三角形边上再连接正方形,…,如此继续,若共得到1 023个正方形,设初始正方形的边长为22,则最小正方形的边长为________.解:设1+2+4+…+2n -1=1 023,即1-2n1-2=1 023,2n=1 024,n =10.正方形边长构成数列22,⎝ ⎛⎭⎪⎫222,⎝ ⎛⎭⎪⎫223,…,其中第10项为⎝ ⎛⎭⎪⎫2210=132,即所求最小正方形的边长为132.故填132.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(2015·云南检测)在数列{a n }中,a 1=1,数列{a n +1-3a n }是9为首项,3为公比的等比数列.(1)求a 2,a 3;(2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和S n .解:(1)因为数列{a n +1-3a n }是9为首项,3为公比的等比数列,所以a n +1-3a n =9×3n -1=3n +1,所以a 2-3a 1=9,a 3-3a 2=27,所以a 2=12,a 3=63. (2)因为a n +1-3a n =3n +1,所以a n +13n +1-a n3n =1,所以数列⎩⎨⎧⎭⎬⎫a n 3n 是13为首项,1为公差的等差数列,所以数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和S n =n 3+n (n -1)2=3n 2-n6.的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.解:(1)由已知a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1.(2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=b n3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n 1-13=32-12×3n -1.19.(12分)(2016·天津)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解:(1)设数列{a n }的公比为q ,由已知有1a 1-1a 1q=2a 1q 2,解得q =2,或q =-1,又由S 6=a 1(1-q 6)1-q=63知q ≠-1,所以a 1(1-26)1-2=63,解得a 1=1,所以a n=2n -1.(2)由题意得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12,b 1=12,即数列{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+…+b 2n =2n (b 1+b 2n )2=2n 2.20.(12分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式. (2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值.(用m 表示)解:(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d , a n +1=a n (1+50%)-d =32a n -d .(2)由(1)知a n =32a n -1-d (n ≥2),即a n -2d =32(a n -1-2d ),所以{a n -2d }是以3 000-3d为首项,32为公比的等比数列,则a n =(3 000-3d )·⎝ ⎛⎭⎪⎫32n -1+2d .由题意a m =⎝ ⎛⎭⎪⎫32m -1()3 000-3d +2d =4 000,解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 000()3m -2m +13m -2m. 故该企业每年上缴资金d 的值为1 000()3m-2m +13m -2m时,经过m ()m ≥3年企业的剩余资金为4 000万元.答略.21.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列.所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时,1b n b n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, 所以T n =120+12[⎝ ⎛⎭⎪⎫15-17+⎝ ⎛⎭⎪⎫17-19+…+⎝ ⎛⎭⎪⎫12n +1-12n +3]=120+12⎝ ⎛⎭⎪⎫15-12n +3=120+n -110n +15=6n -120(2n +3).当n =1时仍成立,所以T n =6n -120(2n +3).22.(12分)已知数列{a n }的前n 项和为S n ,且a 2a n=S 2+S n 对一切正整数n 都成立.(1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg10a 1a n 的前n 项和为T n .当n为何值时,T n 最大?并求出T n 的最大值.解:(1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③ (Ⅰ)若a 2=0,由①知a 1=0, (Ⅱ)若a 2≠0,由③知a 2-a 1=1.④由①④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.2;或a 1=1-2,a 2=2- 2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2. 当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1,所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2),所以{a n }是首项为2+1,公比为2的等比数列. 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=12lg 1002n -1,所以数列{b n }是单调递减的等差数列⎝ ⎛⎭⎪⎫公差为-12lg2, 从而b 1>b 2>…>b 7=lg 54>lg1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg1=0,故n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg2)2=7-212lg2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 基本不等式, [学生用书P115])1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为两个正实数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1.辨明两个易误点(1)使用基本不等式求最值,“一正,二定,三相等”三个条件缺一不可; (2)连续使用基本不等式求最值要求每次等号成立的条件一致. 2.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab≥2(a ,b 同号且都不为0);ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). 3.巧用“拆”“拼”“凑” 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.1.教材习题改编 将正数m 分成两个正数a 与b 之和,则ab 的范围为( )A .(0,m 22]B .(0,m 24]C .[m 22,+∞)D .[m 24,+∞)B [解析] a +b =m ≥2ab ,所以ab ≤m 24,故选B.2.教材习题改编 函数f (x )=x +1x的值域为( )A .[-2,2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .RC [解析] 当x >0时,x +1x ≥2x ·1x =2.当x <0时,-x >0.-x +1-x ≥2(-x )·1(-x )=2.所以x +1x≤-2.所以f (x )=x +1x的值域为(-∞,-2]∪[2,+∞).故选C.3.教材习题改编 用长为a (a >0)的铁丝折成一个矩形,则矩形面积的最大值为( )A .a 22B .a 24C .a 28D .a 216D [解析] 设折成的矩形的两边分别为x ,y (x >0,y >0).则x +y =a2.因为x +y ≥2xy ,所以xy ≤14(x +y )2=a 216,即S 矩形≤a216.当且仅当x =y =a 4时,(S 矩形)max =a 216.故选D.4.若x >1,则x +4x -1的最小值为________.[解析] x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立. [答案] 55.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为______.[解析] 因为xy =1,所以y =1x,所以x 2+2y 2=x 2+2x 2≥2 x 2·2x 2=2 2.即x 2+2y 2的最小值为2 2. [答案] 2 2利用基本不等式求最值(高频考点)[学生用书P115]利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题.高考对利用基本不等式求最值的考查主要有以下三个命题角度:(1)知和求积的最值;(2)知积求和的最值;(3)求参数的值或范围.[典例引领](1)(2017·安徽合肥二模)若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8 C .9D .10(2)(2017·安徽安庆二模)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16【解析】 (1)因为a ,b 都是正数,所以⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4a b ≥5+2b a ·4a b =9,当且仅当b =2a >0时取等号.故选C.(2)由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b≥21a ·2b =2 2.当且仅当1a =2b,即a =22,b =2时等号成立.故选B.【答案】 (1)C (2)B[题点通关]角度一 知和求积的最值1.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A .2B .2C .2 2D .4C [解析] 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab, 即ab ≥22, 当且仅当⎩⎨⎧1a =2b,1a +2b=ab ,即a =42,b =242时取“=”, 所以ab 的最小值为2 2.角度二 知积求和的最值2.已知函数y =a x +3-2(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +y n=-1上,且m ,n >0,则3m +n 的最小值为________.[解析] 易知函数y =a x +3-2(a >0,a ≠1)恒过定点(-3,-1), 所以A (-3,-1).又因为点A 在直线x m +yn=-1上,所以3m +1n=1.所以3m +n =(3m +n )·⎝⎛⎭⎫3m +1n =10+3m n +3n m ≥10+2 3m n ·3nm=16, 当且仅当m =n 时,等号成立, 所以3m +n 的最小值为16.[答案] 16角度三 求参数的值或范围3.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.[解析] (x +y )⎝⎛⎭⎫1x +a y =1+a +y x +axy ≥1+a +2a =(a +1)2(x ,y ,a >0), 当且仅当y =ax 时取等号,所以(x +y )·⎝⎛⎭⎫1x +a y 的最小值为(a +1)2, 于是(a +1)2≥9恒成立. 所以a ≥4.[答案] 4利用基本不等式解决实际问题[学生用书P116][典例引领]小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝⎛⎭⎫13x 2+x -3=-13x 2+4x -3; 当x ≥8时,L (x )=5x -⎝⎛⎭⎫6x +100x -38-3=35-⎝⎛⎭⎫x +100x . 所以L (x )=⎩⎨⎧-13x 2+4x -3,0<x <8,35-⎝⎛⎭⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎫x +100x ≤35-2 x ·100x=35-20=15, 此时,当且仅当x =100x ,即x =10时,L (x )取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域. (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.[解] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2., [学生用书P117])——忽视最值取得的条件致误(1)已知x >0,y >0,且1x +2y=1,则x+y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.【解析】 (1)因为x >0,y >0,所以x +y =(x +y )⎝⎛⎭⎫1x +2y=3+y x +2xy ≥3+22(当且仅当y =2x 时取等号),所以当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)因为x <0,所以y =1-2x -3x =1+(-2x )+(-3x )≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 【答案】 (1)3+22 (2)1+2 6(1)利用基本不等式求最值,一定要注意应用条件,如本例(2)易忽视条件x <0而误用基本不等式得2x +3x≥2 6.(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.当3<x <12时,函数y =(x -3)(12-x )x的最大值为________.[解析] y =(x -3)(12-x )x=-x 2+15x -36x=-⎝⎛⎭⎫x +36x +15 ≤-2x ·36x +15=3.当且仅当x =36x ,即x =6时,y max =3. [答案] 3, [学生用书P269(独立成册)])1.(2017·海口调研)已知a ,b ∈(0,+∞),且a +b =1,则ab 的最大值为( )A .1B .14C .12D .22B [解析] 因为a ,b ∈(0,+∞),所以1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立.2.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4C [解析] 因为x <0,所以f (x )=-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时取等号.3.(2017·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4A [解析] 因为正实数x ,y 满足x +y =2,所以xy ≤(x +y )24=224=1,所以1xy≥1;又1xy≥M 恒成立,所以M ≤1,即M 的最大值为1. 4.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( )A .-3B .2C .3D .8C [解析] y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0.所以由基本不等式, 得y =x +1+9x +1-5≥2(x +1)·9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3.5.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6 D .8 C [解析] 由已知得x +3y =9-xy ,又因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时,即x =3,y =1时取等号,(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6即x +3y ≥6.6.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件B [解析] 若每批生产x 件产品,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是800x +x 8≥2800x ·x8=20,当且仅当800x =x8,即x =80时取等号.7.(2017·郑州检测)已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.[解析] 由a +2b =3得13a +23b =1,所以2a +1b =⎝⎛⎭⎫13a +23b ⎝⎛⎭⎫2a +1b =43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83. 当且仅当a =2b =32时取等号.[答案] 838.已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.[解析] f (x )=4x +a x ≥24x ·a x =4a ,当且仅当4x =ax ,即a =4x 2时取等号,则由题意知a =4×32=36.[答案] 369.正实数x ,y 满足x +2y =2,则3x +9y 的最小值是______.[解析] 利用基本不等式可得 3x +9y =3x +32y ≥23x ·32y =23x +2y .因为x +2y =2, 所以3x +9y ≥232=6,当且仅当3x =32y ,即x =1,y =12时取等号.[答案] 610.不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是________.[解析] 根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b amin ,因为a b +b a ≥2a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).[答案] (-2,1)11.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[解] (1)由2x +8y -xy =0, 得8x +2y=1, 又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+2 2x y ·8y x =18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.12.(2017·东北育才学校模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4B .92C .8D .9D [解析] 因为AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线,则有AB →∥AC →,所以(a -1)×2-1×(-b -1)=0,所以2a +b =1, 又a >0,b >0,所以2a +1b =⎝⎛⎭⎫2a +1b ·(2a +b ) =5+2b a +2a b ≥5+22b a ·2a b=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.13.已知x >0,y >0,且2x +5y =20. 求:(1)u =lg x +lg y 的最大值; (2)1x +1y 的最小值. [解] (1)因为x >0,y >0,所以由基本不等式,得2x +5y ≥210xy . 因为2x +5y =20,所以210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg 10=1.所以当x =5,y =2时,u =lg x +lg y 有最大值1. (2)因为x >0,y >0,所以1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+25y x ·2x y =7+21020. 当且仅当5y x =2xy 时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.所以1x +1y 的最小值为7+21020.14.(2017·常州期末调研)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.[解] (1)由题设,得S =(x -8)⎝⎛⎭⎫900x -2=-2x -7 200x +916,x ∈(8,450). (2)因为8<x <450, 所以2x +7 200x≥22x ×7 200x=240.当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.。

相关文档
最新文档