青岛科技大学算法设计与分析实验报告-算法实训-背包问题

合集下载

背包问题实验报告

背包问题实验报告

背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。

在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。

1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。

在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。

2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。

下面将对每种算法的具体步骤进行介绍。

2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。

在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。

2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。

在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。

2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。

在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。

3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。

下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。

【优质】背包问题实验报告-范文word版 (13页)

【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。

二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。

三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。

动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。

0-1背包问题具有最优子结构性质。

假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。

i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。

背包问题实验报告

背包问题实验报告

背包问题实验报告1. 引言背包问题是一类经典的组合优化问题,在现实生活中有着广泛的应用。

背包问题可以描述为:有一个背包容量为W的背包和N个物品,每个物品有一定的重量和价值,要求将物品放入背包中使得背包的总价值最大。

本实验旨在通过比较不同的算法策略,找到解决背包问题的最佳方法,以提高背包问题的求解效率。

2. 实验环境•操作系统:Windows 10•编程语言:Python 3.8•开发环境:Visual Studio Code3. 实验过程3.1 暴力穷举法暴力穷举法是解决背包问题的一种基本策略。

该方法通过遍历所有可能的组合,计算每个组合的价值,并找到最大价值的组合作为最优解。

具体步骤如下:1.初始化最大价值max_value为0,最优解combo为空集。

2.遍历所有可能的物品组合:–将组合中的物品放入背包中,计算背包中物品的总价值。

–若背包总价值超过max_value,则更新max_value和combo。

3.输出最优解combo和最大价值max_value。

该方法的时间复杂度为O(2^N),其中N为物品的数量,在物品数量较大时效率较低。

3.2 动态规划法动态规划法是解决背包问题的一种高效策略。

该方法通过构建价值表,利用子问题的最优解来求解背包问题的最优解。

具体步骤如下:1.初始化一个二维数组value_table,其中value_table[i][j]表示前i个物品放入容量为j的背包中的最大价值。

2.根据以下递推关系来填充value_table的值:–若第i个物品的重量大于背包容量j,则value_table[i][j]等于value_table[i-1][j],表示第i个物品不能放入背包中。

–若第i个物品的重量小于等于背包容量j,则value_table[i][j]等于max(value_table[i-1][j], value_table[i-1][j-w[i]]+v[i]),表示第i个物品可以选取并放入背包中,或不选取第i个物品。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。

物品i 的重量是iw ,其价值为i v,背包容量为C 。

问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。

因此0/1背包问题是一个特殊的整数规划问题。

0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。

由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。

背包问题实验报告

背包问题实验报告

背包问题实验报告《背包问题实验报告》背包问题是一个经典的组合优化问题,它在计算机科学和运筹学领域被广泛应用。

在这个问题中,我们需要从一组物品中选择一些放入背包,使得它们的总重量不超过背包的承载能力,同时价值最大化。

在本实验中,我们将探讨不同算法在解决背包问题时的表现,并分析它们的优缺点。

首先,我们使用了贪心算法来解决背包问题。

贪心算法的基本思想是每次选择当前最有利的物品放入背包,直到背包装满或者没有物品可选。

虽然贪心算法在一些情况下能够得到较好的解,但它并不保证能够得到最优解,因为它只考虑了局部最优解而没有综合考虑所有可能的选择。

接着,我们使用了动态规划算法来解决背包问题。

动态规划算法通过将问题分解成子问题,并保存子问题的解来避免重复计算,从而得到最优解。

动态规划算法在解决背包问题时能够得到最优解,但它需要额外的空间来保存子问题的解,因此在处理大规模问题时可能会消耗较多的内存。

最后,我们使用了回溯算法来解决背包问题。

回溯算法通过不断尝试所有可能的选择,并在满足条件时继续向下搜索,直到找到解或者搜索完所有可能的选择。

回溯算法能够得到最优解,但它的时间复杂度较高,因为它需要尝试所有可能的选择。

通过实验我们发现,不同算法在解决背包问题时有各自的优缺点。

贪心算法简单快速,但不能保证得到最优解;动态规划算法能够得到最优解,但需要额外的空间;回溯算法能够得到最优解,但时间复杂度较高。

因此,在实际应用中需要根据具体情况选择合适的算法来解决背包问题。

综上所述,通过本实验我们对背包问题的解决算法有了更深入的了解,并且能够根据具体情况选择合适的算法来解决实际问题。

希望本实验能够对相关领域的研究和应用有所帮助。

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)
BBnode enode =null;
inti = 1;
doublebestp = 0.0;
doubleup = bound(1);
while(i !=n+ 1) {
doublewt =cw+w[i];
//检查当前扩展节点的左儿子节点
if(wt <=c) {
if(cp+p[i] > bestp) {
}
do{
System.out.println("请输入背包的容量:");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");
}while(input.equals(""));
if(input.equals("2")){
w=newdouble[n+ 1];
for(inti = 1; i <=n; i++) {
p[i] = pp[q[i - 1].id- 1];
w[i] = ww[q[i - 1].id- 1];
}
backtrack(1);
returnbestp;
}
//回溯过程
privatevoidbacktrack(inti) {
c= cc;
n= pp.length;
Element[] q =newElement[n];
doublews = 0.0;
doubleps = 0.0;
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);

常见算法设计实验报告(3篇)

常见算法设计实验报告(3篇)

第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。

通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。

二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。

2. 查找算法:顺序查找、二分查找。

3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。

4. 动态规划算法:0-1背包问题。

三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。

2. 查找算法:查找算法用于在数据集中查找特定的元素。

常见的查找算法包括顺序查找和二分查找。

3. 图算法:图算法用于处理图结构的数据。

常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。

4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。

常见的动态规划算法包括0-1背包问题。

四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。

(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。

(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。

(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。

(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。

(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。

2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构与算法分析2 课程设计报告书班级学号姓名指导教师庞志永课程设计项目名称:背包问题的多项式时间近似方案1.问题描述:背包问题可描述为如下的整数规划形式,其中M 为背包的容量,P 为物体的价值,W 为物体的体积。

2.基本要求:(1)在给定参数K 的条件下,设计背包问题的满足近似性能比不大于1+1/(k+1)的多项式时间近似方案,并选择适当的编程语言在计算机上实现。

(2)程序能够正常运行,计算结果正确,满足设计要求。

3.算法描述:将装入背包的物体进行多次尝试,其方法是:取K 为确定的非负整数,考虑背包问题的实例I 中的n 个物体的合的K 元素子集C ,|C|=K 。

(1)尝试将每个K 元素子集C 中的物体优先装入背包;(2)利用解答背包问题的贪心算法A 将(n-K)个物体尝试装入背包。

合并先装入的K 个物体和用算法A 装入的剩余物体作为算法的最终解。

过程如下:Procedure ε-APPROX(P,W,M,n,K)(1) P MAX =0;(2) For all combinations C of size=K & weight≤M do(3) P C =∑i∈C P i(4) P MAX =max{P MAX ,P C + L(I, P, W, M, n)};(5) End for(6) End ε-APPROXProcedure L(I,P,W,M,n)(1) S 1=0; T=M - ∑i∈C W i ;(2) For i=1 to n do(3) If i ∉C and W i ≤T then(4) S 1=S 1+P i , T=T – W i(5) End if(6) End for11max {0,1},1n i i i i n i i i Px x i n W x M==⎧⎪∈≤≤⎨≤⎪⎩∑∑(7) S=max{S1,max{P i| i ∉C}};(8) Return (S)(9) End L4.模块划分(仅供参考):(1)输入及存储原始数据模块(2)ε-APPROX(P,W,M,n,K)模块(3)L(I,P,W,M,n)模块(4)存储及输出结果模块5.本课程设计中遇到的关键问题及其解决方法:背包使用面向对象方法:package knapsack;public class Knapsack {/** 背包重量 */private int weight;/** 背包物品价值 */private int value;/**** 构造器*/public Knapsack(int weight, int value) {this.value = value;this.weight = weight;}public int getWeight() {return weight;}public int getValue() {return value;}public String toString() {return"[weight: "+ weight+ "\t"+ "value: "+ value + "]";}}获取最优解:package knapsack;import java.util.ArrayList;import java.util.List;import javax.swing.JOptionPane;import algorithm.dynamicplan.Knapsack;/*** 背包* 首先将最多 k件物品放人背包,* 如果这k件物品重量大于 c,则放弃它。

* 否则,剩余的重量用来考虑将剩余物品按价值重量比递减的顺序装入。

* 通过考虑最多为 k件物品的所有可能的子集来得到最优解。

** @author**/public class KSMethod {/*** 输入及存储原始数据模块* @param n* @return P*/static List<Knapsack> InputData(int n){String weight = JOptionPane.showInputDialog("Input W(空格隔开):");String value = JOptionPane.showInputDialog("Input P(空格隔开):");String[] values = value.split(" ");String[] weights = weight.split(" ");List<Knapsack> P = new ArrayList<Knapsack>();for (int i = 0; i < n; i++) {P.add(new Knapsack(Integer.valueOf(weights[i]), Integer.valueOf(values[i])));}System.out.println("原始数据:");printlist(P);return P;}/*** e-APPROX(P,W,M,n,K)模块** @param bags1* @param M* @param n* @param K* @return 解*/static int Solve(Knapsack[] bags1, int M, int n, int K) {List<List<Knapsack>> allSubLists = getSubLists(bags1);List<Knapsack> P = new ArrayList<Knapsack>();for (Knapsack knapsack : bags1) {P.add(knapsack);}int Pmax = 0;for (List<Knapsack> I : allSubLists) {int weight = 0;for (Knapsack knapsack : I) {weight = weight + knapsack.getWeight();}if ((I.size() <= K) && weight <= M) {int Pi = 0;for (Knapsack knapsack : P) {// i++;if (I.contains(knapsack)) {Pi = Pi + knapsack.getValue();}}Pmax = max(Pmax, Pi + L(I, P, M, n));}}// end forreturn Pmax;}/*** L(I,P,W,M,n)模块** @param I* @param P* @param M* @param n* @return*/static int L(List<Knapsack> I, List<Knapsack> P, int M, int n) {int S = 0, S1 = 0;int SumWi = 0;for (Knapsack knapsack : I) {SumWi = SumWi + knapsack.getWeight();}int T = M - SumWi;for (Knapsack knapsack : P) {int Wi = knapsack.getWeight();int Pi = knapsack.getValue();if ((!I.contains(knapsack)) && Wi <= T) {S1 = S1 + Pi;T = T - Wi;}}int[] t = max(P, I);if (t[1] + SumWi < M) {S = max(S1, t[0]);}return S;}/*** 遍历集合** @param list*/static void printlist(List<Knapsack> list) { for (Knapsack knapsack : list) {System.out.println(knapsack);}}/*** 最大值** @param a* @param b* @return max*/static int max(int a, int b) {return a > b ? a : b;}/*** 计算max{Pi|i不属于I}** @param P* @param I* @return max*/static int[] max(List<Knapsack> P, List<Knapsack> I) { int max = 0;int w = 0;for (Knapsack knapsack : P) {if (I.contains(knapsack)) {continue;}int temp = knapsack.getValue();if (max > temp) {max = temp;w = knapsack.getWeight();}}return new int[] { max, w };}/*** 得到所有子集** @param array* @return*/static List<List<Knapsack>> getSubLists(Knapsack[] array) {List<List<Knapsack>> allsubLists = new ArrayList<List<Knapsack>>();int max = 1 << array.length;for (int i = 0; i < max; i++) {List<Knapsack> subList = new ArrayList<Knapsack>();int k = i;int index = 0;while (k > 0) {if ((k & 1) > 0) {subList.add(array[index]);}k >>= 1;index++;}allsubLists.add(subList);}return allsubLists;}}程序入口:package knapsack;import java.util.ArrayList;import java.util.List;import javax.swing.JOptionPane;import algorithm.dynamicplan.Knapsack;public class K7_4 {public static void main(String[] args) {int n =Integer.valueOf(JOptionPane.showInputDialog("Input N:"));int m =Integer.valueOf(JOptionPane.showInputDialog("Input M:"));System.out.println("背包容量:"+m);List<Knapsack> P=new ArrayList<Knapsack>();P = KSMethod.InputData(n);int k =Integer.valueOf(JOptionPane.showInputDialog("Input K:"));Knapsack[] bags = P.toArray(new Knapsack[0]);String res = null;for (int i = 0; i < k; i++) {res= "最优解(价值总和):"+KSMethod.Solve(bags, m, n, i);System.out.println("当k="+i+":"+res);}}}6.运行结果及其相关描述:要求实例中物体的数量在20—100之间。

相关文档
最新文档