回归分析练习题.pdf

合集下载

第七章 相关回归分析 思考题及练习题

第七章 相关回归分析 思考题及练习题

实用价值越小。
13、在相关分析中,要求相关的两个变量( )
A、都是随机变量
B、都不是随机变量
C、其中因变量是随机变量 D、其中自变量是随机变量
14、在简单回归直线
中,
表示( ) A、当
增加一个单位时,
增加
的数量 B、当
增加一个单位时,
增加
的数量 C、当
增加一个单位时,
的平均增加值 D、当
增加一个单位时,
按一定数额变化时,变量
也随之近似地按固定的数额变化,那么,这时变量

之间存在着( )
A、正相关关系
B、负相关关系
C、直线相关关系 D、曲线相关关系
18、两个变量间的相关关系称为( )
A、单相关
B、无相关
C、复相关
D、多相关
19、如果两个变量之间的相关系数
,说明这两个变量之间存在( )。 A、低度相关关系 B、高度相关关系 C、完全相关关系 D、显著相关关系 20、已知
第七章 思考题及练习题
(一) 填空题
1、 1、 在相关关系中,把具有因果关系相互联系的两个变
量中起影响作用的变量称为_______,把另一个说明观察结果的
变量称为________。
2、 2、 现象之间的相关关系按相关的程度分有________相
关、________相关和_______相关;按相关的方向分有________
E、 E、回归方程实用价值大小的指标 10、现象之间相互联系的类型有( )
A、函数关系 B、回归关系 C、相关关系 D、随机关系 E、结构关系 11、相关关系种类( ) A、从相关方向分为正相关和负相关 B、从相关形态分为线性相关和非线性相关 C、从相关程度分为完全相关、不完全相关和零相关

回归分析练习题与参考答案

回归分析练习题与参考答案

求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系 形态。

(2) 计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3) 求出估计的回归方程,并解释回归系数的实际意义。

(4) 计算判定系数,并解释其意义。

(5) 检验回归方程线性关系的显著性(0.05)。

⑹如果某地区的人均 GDP 为5000元,预测其人均消费水平。

(7)求人均GDP 为5000元时,人均消费水平 95%的置信区间与预测区间。

解: (1)12000- 1DOO Q-6000- 6000- 4QD0- 2000- 0- D1000020000人均GDP30000 4MOO可能存在线性关系。

(2)相关系数:a.因变量人均消费水平有很强的线性关系。

(3)回归方程: y 734.6930.309xa.因变量人均消费水平回归系数的含义:人均 GDP 没增加1元,人均消费增加 0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a )a.因变量人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (4)模型汇总a.预测变量:(常量),人均GDP人均GDP 对人均消费的影响达到 99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5) F检验:ba. 预测变量:(常量),人均GDPb. 因变量:人均消费水平回归系数的检验:t检验a.因变量人均消费水平%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

第11章回归分析习题解答

第11章回归分析习题解答
A. 是一个尚不知晓的确定的数.
B. 是随机变量,且有 y0 N (β0 + β1x0 ,σ 2 ) .
C. 当 β0 , β1 确知时等于 β0 + β1x0 .
D. 等于 βˆ0 + βˆ1x0 .
6. 在回归分析中,检验线性相关显著性常用的三种检验方法,不包含(
A. 相关系数显著性检验法.
B. t 检验法.
; 若 新 保 单 数 x0 = 1000 , 给 出 Y 的 估 计 值 为
yˆ0 = 0.118129 + 0.003585×1000 = 3.703129 .
16. 下表是 16 只公益股票某年的每股帐面价值 x 和当年红利 y ,利用 Excel 的数据分
析功能得到的统计分析结果如下:
方差分析
过 10 周时间,收集了每周加班工作时间的数据和签发的新保单数目, x 为每周签发的新保
单数目,Y 为每周加班工作时间(小时).利用 Excel 的数据分析功能得到统计分析如下表.
Coefficients
标准误差
Intercept X Variable 1
0.118129 0.003585
0.355148 0.000421
15.1
15.1
228.01
228.01
18
15.1
14.5
228.01
210.25
列和
270.1
265
计算可得:
4149.39
3996.14
∑ Syy =
y2 i

ny 2
=94.75
∑ Sxx =
x2 i

nx 2
=96.39
∑ Sxy = xi yi − nxy = 95.24

301-习题作业-第四章 多元线性回归分析

301-习题作业-第四章 多元线性回归分析

思考题4.1 为了考察城镇商品房市场的特征,有人建立了如下的模型:ii i i i Z P X Y εαααα++++=3210ln ln 其中:i Y 为第i 个城镇的商品房销售面积,i X 为该城镇居民的人均可支配收入,i P 为商品房均价,i Z 为常住人口数量。

(1)分别解释系数1α和2α的经济含义。

(2)有人认为,中国商品房市场存在严重的炒房现象,导致价格越高,商品房的销售量越火爆,你如何检验这种观点?写出你的原假设、备选假设、检验统计量和判定规则。

(3)有人认为,商品房市场存在严重泡沫,商品房的销售量已经与居民收入、人口规模严重脱节,你如何检验这种观点?写出你的原假设、备选假设、检验统计量和判定规则。

(4)如果样本中既有大城市,也有小城镇,你如何检验大小城市的商品房市场是否具有相同的特征。

4.2. 在分析变量Y 的影响因素时,学生甲建立了如下的多元回归方程: t t t t X X Y εααα+++=22110。

学生乙也在研究同样的经济问题,她只学习了一元回归模型。

为了考察在X 2不变时,X 1对Y 的影响,学生乙进行了如下的三步回归分析: t t t X Y 1210εββ++= (a ) t t t X X 22101εγγ++= (b )t t t 3211ˆˆεελε+= (c )其中:t t 21ˆ,ˆεε分别是回归方程(a )、(b )的残差项。

(1)参数1α和参数1λ有什么样的关系?解释你的理由。

(2)参数2α和参数1β是同一个参数吗?解释你的理由。

(3)回归方程(c )为什么没有截距项?4.3. 在基于受约束和无约束回归方程的估计结果检验规线性约束时,需要建立F 检验统计量。

有同学在相关文献中看到了如下的F 检验统计量:)1,(~)1/(/)(222-----=K N q F K N R qR R F ur r ur 。

(1)说明该F 统计量的形式是如何得到的。

第七章相关与回归分析习题

第七章相关与回归分析习题

第七章相关与回归分析习题第七章相关与回归分析习题⼀、填空题1.现象之间的相关关系按相关的程度分为、和。

2.相关系数的取值范围是。

3.完全相关即是关系,其相关系数为。

4.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

5.研究现象之间相关关系称作相关分析。

6.从变量之间相互关系的⽅向来看,相关关系可以分为和。

7.从变量之间相互关系的表现形式不同,相关关系可以分为和。

8.回归直线⽅程y=a+bx中的参数b称为。

9.计算回归⽅程要求资料中的因变量是⾃变量是。

10.确定样本回归⽅程最常⽤的⽅法是,其基本要求是使达到最⼩。

⼆、单项选择题1.下⾯的函数关系是( )A销售⼈员测验成绩与销售额⼤⼩的关系B圆周的长度决定于它的半径C家庭的收⼊和消费的关系D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞B -1≤r≤+1C -1D 0≤r≤+13.年劳动⽣产率z(⼲元)和⼯⼈⼯资y=10+70x,这意味着年劳动⽣产率每提⾼1千元时,⼯⼈⼯资平均( )A增加70元B减少70元C增加80元D减少80元4.下列现象之间的关系哪⼀个属于相关关系?( )A.播种量与粮⾷收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆⾯积之间关系D.单位产品成本与总成本之间关系5.判定现象之间相关关系密切程度的最主要⽅法是( )A.对现象进⾏定性分析B.计算相关系数C.编制相关表D.绘制相关图6.某校经济管理类的学⽣学习统计学的时间(x)与考试成绩(y)之间建⽴线性回归⽅程y =a+b x。

经计算,⽅程为y c=200—0.8x,该⽅程参数的计算( )cA a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和b值都是正确的7.相关分析对资料的要求是( )A.⾃变量不是随机的,因变量是随机的B.两个变量均不是随机的C.⾃变量是随机的,因变量不是随机的D.两个变量均为随机的8.相关系数( )A.既适⽤于直线相关,⼜适⽤于曲线相关B.只适⽤于直线相关C.既不适⽤于直线相关,⼜不适⽤于曲线相关D.只适⽤于曲线相关9.两个变量之间的相关关系称为( )A.单相关B.复相关C.不相关D.负相关10.相关分析是研究( )A 变量之间的数量关系B 变量之间的变动关系C 变量之间的相互关系的密切程度D 变量之间的因果关系11.在回归直线⽅程y =a +bx 中b 表⽰( )A.当x 增加⼀个单位时,y 增加a 的数量B.当y 增加⼀个单位时,x 增加b 的数量C.当x 增加⼀个单位时,y 的平均增加量D.当y 增加⼀个单位时, x 的平均增加量12.在回归分析中,要求对应的两个变量( )A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量13.当相关系数r=0时,表明( )A 现象之间完全⽆关B 相关程度较⼩C 现象之间完全相关D ⽆直线相关关系14.下列现象的相关密切程度最⾼的是( )A 某商店的职⼯⼈数与商品销售额之间的相关系数0.87B 流通费⽤⽔平与利润率之间的相关关系为-0.94C 商品销售额与利润率之间的相关系数为0.51D 商品销售额与流通费⽤⽔平的相关系数为-0.8115.估计标准误差是反映( )A 平均数代表性的指标B 相关关系的指标C 回归直线的代表性指标D 序时平均数代表性指标三、多项选择题1.变量之间的关系按相关程度分可分为:( )A.正相关;B. 不相关;C. 完全相关;D.不完全相关;2. 下列哪些现象之间的关系为相关关系( )A .家庭收⼊与消费⽀出关系B .圆的⾯积与它的半径关系C .⼴告⽀出与商品销售额关系D .单位产品成本与利润关系3.修正⾃由度的决定系数( ) A. 22R R ≤; B.有时⼩于0 ; C. 102≤≤R ;D.⽐2R 更适合作为衡量回归⽅程拟合程度的指标4.回归预测误差的⼤⼩与下列因素有关:( )A.样本容量;B.⾃变量预测值与⾃变量样本平均数的离差C.⾃变量预测误差;D.随机误差项的⽅差5.单位成本(元)依产量(千件)变化的回归⽅程为y c =78- 2x ,这表⽰( )A .产量为1千件时,单位成本76元B .产量为1千件时,单位成本78元C .产量每增加1千件时,单位成本下降2元D .产量每增加1千件时,单位成本下降78元E .当单位成本为72元时,产量为3千件四、计算题1.设销售收⼊X为⾃变量,销售成本Y为因变量。

应用回归分析期末试题

应用回归分析期末试题

应用回归分析期末试题一元线性回归分析1.讨论家庭收入x 影响家庭消费支出y 的问题。

现已建立εββ++=x y o 1的数学模型,已知5400=x ,2997=y ,3490800002=∑x ,1234929002=∑y,193836000=∑xy ,求回归方程。

答:∧0β,∧1β的表达式如下:⎪⎪⎩⎪⎪⎨⎧=-=∧∧∧xx xyl l x y 110βββ 得:⎪⎩⎪⎨⎧==∧∧4845.053.38010ββ则回归方程为x y 4845.053.380+=∧。

2.在给定样本(){}n i y x i i ,...,1,,=后,一元线性回归模型为i i i x y εββ++=10(已经符合一元线性回归模型的假设),求0β,1β的最小二乘估计∧0β,∧1β。

答:要求0β,1β的最小二乘估计∧0β,∧1β,即求使得离差平方和()10,ββQ 达到最小时的10,ββ,满足),(min ),(10,1010ββββββQ Q =∧∧由于()10,ββQ 是一个非负二次型,对10,ββ的偏导存在,下求偏导⎪⎪⎩⎪⎪⎨⎧=---=∂∂=---=∂∂∑∑==ni ii i ni i i x x y Q x y Q110111000)(20)(2ββββββ 求解得⎪⎪⎩⎪⎪⎨⎧=-=∧∧∧xx xyl l x y 110βββ 其中∑==ni i x n x 11,∑==n i i y n y 11,2)(∑-=x x l i xx ,)()(y y x x l i i xy --=∑。

3.证明:最小二乘法的参数估计1ββ和o 具有线性性和无偏性。

答(1)线性性:估计量0β和1β为随机变量i y 的线性函数 1β:由0)(=-∑x x i ,有∑=∧-==ni i xxi xxxy y l xx l l 11)(β,所以1β是i y 的线性组合。

0β:i ni xx iy x l xx n x y ∑=∧∧--=-=110)1(ββ,可见0β也是i y 的线性组合。

高中数学回归分析精选题

高中数学回归分析精选题

回归分析精选题20道一.选择题(共12小题)1.设某大学的女生体重y (单位:)k g 与身高x (单位:)cm 具有线性相关关系,根据一组样本数据(i x ,)(1i y i=,2,⋯,)n ,用最小二乘法建立的回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,)yC .若该大学某女生身高增加1c m ,则其体重约增加0.85k gD .若该大学某女生身高为170c m ,则可断定其体重必为58.79k g2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是()A .ˆ10200yx =-+ B .ˆ10200yx =+ C .ˆ10200yx =-- D .ˆ10200yx =-3.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱4.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R 依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数2R 为( )A .0.95B .0.81C .0.74D .0.365.已知四个命题:①在回归分析中,2R 可以用来刻画回归效果,2R 的值越大,模型的拟合效果越好; ②在独立性检验中,随机变量2K 的值越大,说明两个分类变量有关系的可能性越大;③在回归方程ˆ0.212yx =+中,当解释变量x 每增加1个单位时,预报变量ˆy平均增加1个单位;④两个随机变量相关性越弱,则相关系数的绝对值越接近于1; 其中真命题是( )A .①④B .②④C .①②D .②③6.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (万公顷)关于年数x (年)的函数关系较为接近的是( )A .0.2yx= B .20.10.1y x x=+ C .40.2lo g yx=+ D .210xy=7.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是212,,a a R 的值分别为1b ,2b ,下列说法正确的是( )A .若12a a <,则12b b <,A 的拟合效果更好 B .若12a a <,则12b b <,B 的拟合效果更好 C .若12a a <,则12b b >,A 的拟合效果更好 D .若12a a <,则12b b >,B 的拟合效果更好8.下列结论正确的是( )①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①②B .①②③C .①②④D .①②③④9.某车间加工零件的数量x 与加工时间y 的统计数据如表:现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A .84分钟B .94分钟C .102分钟D .112分钟10.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的22121()1()ni i i ni i y y Ry y ==-=--∑∑的值如下,其中拟合效果最好的模型是()A .模型1对应的20.48R =B .模型3对应的20.15R =C .模型2对应的20.96R =D .模型4对应的20.30R =11.对于回归分析,下列说法错误的是( )A .在残差图中,纵坐标表示残差B .若散点图中的一组点全部位于直线ˆ32yx =-+的图象上,则相关系数1r =C .若残差平方和越小,则相关指数2R 越大D .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 12.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A .总偏差平方和B .残差平方和C .回归平方和D .相关指数二.多选题(共1小题)13.下列有关回归分析的结论中,正确的有()A .运用最小二乘法求得的回归直线一定经过样本点的中心(x ,)yB .若相关系数r 的绝对值越接近于1,则相关性越强C .若相关指数2R 的值越接近于0,表示回归模型的拟合效果越好D .在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高 三.填空题(共4小题)14.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如表:假设得到的关于x 和y 之间的回归直线方程是ˆˆˆy bx a =+,那么该直线必过的定点是 .15.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5y x a=+,据此模型预测,当10x=时,y 的估计值是16.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程ˆ 2.10.85y x =+,则m 的值为 .17.对某城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,若该城市居民人均消费水平为7.5(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为 . 四.解答题(共3小题)18.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-19.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y(万元)有如下的数据资料:(1)在给出的坐标系中做出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa、ˆb ; (3)估计使用年限为10年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-.20.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画散点图;(2)如果y对x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:511380 i iix y==∑,521145)iix==∑回归分析精选题20道参考答案与试题解析一.选择题(共12小题)1.设某大学的女生体重y (单位:)k g 与身高x (单位:)cm 具有线性相关关系,根据一组样本数据(i x ,)(1i y i=,2,⋯,)n ,用最小二乘法建立的回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,)yC .若该大学某女生身高增加1c m ,则其体重约增加0.85k gD .若该大学某女生身高为170c m ,则可断定其体重必为58.79k g【分析】根据回归方程为ˆ0.8585.71yx =-,0.85>,可知A ,B ,C 均正确,对于D 回归方程只能进行预测,但不可断定. 【解答】解:对于A ,0.85>,所以y 与x 具有正的线性相关关系,故正确;对于B ,回归直线过样本点的中心(x ,)y ,故正确;对于C ,回归方程为ˆ0.8585.71yx =-,∴该大学某女生身高增加1c m ,则其体重约增加0.85k g,故正确;对于D ,170xc m=时,ˆ0.8517085.7158.79y =⨯-=,但这是预测值,不可断定其体重为58.79k g,故不正确故选:D .【点评】本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题. 2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是()A .ˆ10200yx =-+ B .ˆ10200yx =+ C .ˆ10200yx =-- D .ˆ10200yx =-【分析】本题考查的知识点是回归分析的基本概念,根据某商品销售量y (件)与销售价格x(元/件)负相关,故回归系数应为负,再结合实际进行分析,即可得到答案.【解答】解:由x 与y 负相关, 可排除B 、D 两项,而C 项中的ˆ102000yx =--<不符合题意.故选:A .【点评】两个相关变量之间的关系为正相关关系,则他们的回归直线方程中回归系数为正;两个相关变量之间的关系为负相关关系,则他们的回归直线方程中回归系数为负.3.有一散点图如图所示,在5个(,)D后,下列说法正确的是()x y数据中去掉(3,10)A.残差平方和变小B.相关系数r变小C.相关指数2R变小D.解释变量x与预报变量y的相关性变弱【分析】利用散点图分析数据,判断相关系数,相关指数,残差的平方和,的变化情况.【解答】解:从散点图可分析得出:只有D点偏离直线远,去掉D点,变量x与变量y的线性相关性变强,相关系数变大,相关指数变大,残差的平方和变小,故选:A.【点评】本题考查了利用散点图分析数据,判断变量的相关性问题,属于运用图形解决问题的能力,属于容易出错的题目.4.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数2R为()A.0.95B.0.81C.0.74D.0.36【分析】根据两个变量y与x的回归模型中,它们的相关指数2R越接近于1,这个模型的拟合效果就越好,由此选出选项中的答案.【解答】解:两个变量y与x的回归模型中,它们的相关指数2R越接近于1,这个模型的拟合效果就越好,在所给的四个选项中0.95是相关指数最大的值,∴其拟合效果也最好.故选:A.【点评】本题考查了相关指数,这里不用求相关指数,而是根据所给的相关指数判断模型的拟合效果,解题的关键是理解相关指数越大拟合效果越好.5.已知四个命题:①在回归分析中,2R可以用来刻画回归效果,2R的值越大,模型的拟合效果越好;②在独立性检验中,随机变量2K的值越大,说明两个分类变量有关系的可能性越大;③在回归方程ˆ0.212y x=+中,当解释变量x每增加1个单位时,预报变量ˆy平均增加1个单位;④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;其中真命题是()A.①④B.②④C.①②D.②③【分析】对4个选项分别进行判断,即可得出结论.【解答】解:①相关指数2R是用来刻画回归效果的,2R表示解释变量对预报变量的贡献率,2R越接近于1,表示解释变量和预报变量的线性相关关系越强,越趋近0,关系越弱,故2R的值越大,说明回归模型的拟合效果越好,故①正确.②由2K的计算公式可知,对分类变量X与Y的随机变量2K的观测值k来说,k越小,判断“X与Y有关系”的把握越小,随机变量2K的值越大,说明两个分类变量有关系的可能性越大,故②正确;③在回归直线方程ˆ0.212=+中,当解释变量x每增加一个单位时,预报变量ˆy平均增加y x0.2个单位,故③错误.④两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故④不正确.故选:C.【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.6.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (万公顷)关于年数x (年)的函数关系较为接近的是( )A .0.2yx= B .20.10.1y x x=+ C .40.2lo g yx=+D .210xy=【分析】将(1,0.2),(2,0.39),(3,0.78)分别代入0.2y x=,20.10.1yx x=+,40.2lo g yx=+和210xy=中,验证即可.【解答】解:将(1,0.2),(2,0.39),(3,0.78)代入0.2y x=,当3x=时,0.6y=,和0.78相差较大;将(1,0.2),(2,0.39),(3,0.78)代入20.10.1y x x=+,当2x=时,0.6y=,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入40.2lo g y x=+,当2x=时,0.7y=,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入210xy =,当1x =时,0.2y =,当2x =时,0.4y =,与0.39相差0.01, 当3x=时,0.8y=,和0.78相差0.02;综合以上分析,选用函数关系210xy =较为近似.故选:D .【点评】本题考查了函数模型的应用问题,也考查了运算求解能力,是基础题.7.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是212,,a a R 的值分别为1b ,2b ,下列说法正确的是( )A .若12a a <,则12b b <,A 的拟合效果更好 B .若12a a <,则12b b <,B 的拟合效果更好 C .若12a a <,则12b b >,A 的拟合效果更好D .若12a a <,则12b b >,B 的拟合效果更好【分析】比较两个模型的拟合效果时,如果模型残差平方和越小,则相应的相关指数2R 越大,该模型拟合的效果越好,即可得出结论.【解答】解:比较两个模型的拟合效果时,如果模型残差平方和越小, 则相应的相关指数2R 越大,该模型拟合的效果越好. 故选:C .【点评】本题是基础题.考查残差平方和、相关指数. 8.下列结论正确的是()①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①②B .①②③C .①②④D .①②③④【分析】本题是一个对概念进行考查的内容,根据相关关系的定义与回归分析的统计意义进行判断.【解答】解:①函数关系是一种确定性关系,这是一个正确的结论. ②相关关系是一种非确定性关系,是一个正确的结论.③回归分析是对具有相关关系的两个变量进行统计分析的一种方法,所以③不对. 与③对比,依据定义知④是正确的, 故选:C .【点评】本题的考点是相关关系,对本题的正确判断需要对相关概念的熟练掌握. 9.某车间加工零件的数量x 与加工时间y 的统计数据如表:现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A .84分钟B .94分钟C .102分钟D .112分钟【分析】根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,代入样本中心点求出a 的值,写出线性回归方程.将100x=代入回归直线方程,得y ,可以预测加工100个零件需要102分钟,这是一个预报值,不是生产100个零件的准确的时间数. 【解答】解:由表中数据得:20x =,30y=,又ˆb 值为0.9,故300.92012a=-⨯=,0.912y x ∴=+.将100x=代入回归直线方程,得0.910012102y =⨯+=(分钟).∴预测加工100个零件需要102分钟.故选:C .【点评】本题考查线性回归方程的求法和应用,解题的关键是正确应用最小二乘法求出线性回归方程的系数的运算,再一点就是代入样本中心点可以求出字母a 的值,是一个中档题目. 10.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的22121()1()ni i i ni i y y Ry y ==-=--∑∑的值如下,其中拟合效果最好的模型是()A .模型1对应的20.48R =B .模型3对应的20.15R =C .模型2对应的20.96R =D .模型4对应的20.30R =【分析】根据回归分析中相关指数2R 越接近于1,拟合效果越好,即可得出答案. 【解答】解:回归分析中,相关指数2R 越接近于1,拟合效果越好; 越接近0,拟合效果越差,由模型2对应的2R 最大,其拟合效果最好. 故选:C .【点评】本题考查了利用相关指数判断模型拟合效果的应用问题,是基础题. 11.对于回归分析,下列说法错误的是( )A .在残差图中,纵坐标表示残差B .若散点图中的一组点全部位于直线ˆ32y x =-+的图象上,则相关系数1r =C .若残差平方和越小,则相关指数2R 越大D .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 【分析】根据题意,对选项种的命题分析判断正误即可.【解答】解:对于A ,在残差图中,纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值等,所以A 正确;对于B,散点图中的一组点全部位于直线ˆ32=-+的图象上,则x,y成负相关,且相关y x关系最强,此时相关系数1r=-,所以B错误;对于C,若残差平方和越小,则残差点分布的带状区域的宽度越窄,其相关性越强,相关指数2R越大,所以C正确;对于D,回归分析中,变量间的关系若是非确定关系,即变量间的关系不是函数关系,因变量不能由自变量唯一确定,所以D正确.故选:B.【点评】本题考查了统计知识的概念与应用问题,掌握相关概念的含义是解题的关键,是基础题.12.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是() A.总偏差平方和B.残差平方和C.回归平方和D.相关指数【分析】本题考查的回归分析的基本概念,根据拟合效果好坏的判断方法我们可得,数据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.【解答】解:拟合效果好坏的是由残差的平方和来体现的,而拟合效果即数据点和它在回归直线上相应位置的差异故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.故选:B.【点评】拟合效果好坏的是由残差的平方和来体现的,也可以理解为拟合效果即数据点和它在回归直线上相应位置的差异,故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.二.多选题(共1小题)13.下列有关回归分析的结论中,正确的有()A.运用最小二乘法求得的回归直线一定经过样本点的中心(x,)yB.若相关系数r的绝对值越接近于1,则相关性越强C.若相关指数2R的值越接近于0,表示回归模型的拟合效果越好D.在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高【分析】利用回归分析中的相关知识对四个选项逐一分析判断即可.【解答】解:对于A,回归方程必定经过样本中心(x,)y,故选项A正确;对于B,由相关系数的意义可知,相关系数r的绝对值越接近于1,则相关性越强,故选项B正确;对于C ,若相关指数2R 的值越接近于1,表示回归模型的拟合效果越好,故选项C 错误; 对于D ,在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高,故选项D 正确. 故选:A B D .【点评】本题考查了回归分析的理解,主要考查了回归方程的性质,相关系数的意义等,属于基础题.三.填空题(共4小题)14.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如表:假设得到的关于x 和y 之间的回归直线方程是ˆˆˆy bx a =+,那么该直线必过的定点是13(2,8).【分析】根据回归方程必过点(,)x y ,计算出,x y 即可求得答案. 【解答】解:35289121362x+++++==,4639121486y+++++==,回归方程必过点(,)x y ,∴该直线必过的定点是13(2,8).故答案为:13(2,8).【点评】本题考查了回归方程,线性回归方程必过样本中心点(,)x y ,这是线性回归中最常考的知识点,希望大家熟练掌握.属于基础题.15.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5y x a=+,据此模型预测,当10x=时,y 的估计值是 106.5【分析】根据表中数据计算x 、y ,代入回归直线方程求得ˆa的值, 写出回归直线方程,利用方程求出10x =时ˆy的值即可. 【解答】解:根据表中数据,计算1(24568)55x=⨯++++=,1(2040607080)545y =⨯++++=,代入回归直线方程ˆˆ10.5y x a=+中,求得ˆ5410.55 1.5a =-⨯=,∴回归直线方程为ˆ10.5 1.5yx =+,据此模型预测,10x=时,ˆ10.510 1.5106.5y=⨯+=,即y 的估计值是106.5. 故答案为:106.5.【点评】本题考查了线性回归方程的应用问题,是基础题. 16.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程ˆ 2.10.85y x =+,则m 的值为 0.5 .【分析】首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出m 的值. 【解答】解:0123342x +++==,3 5.5715.544m m y++++==,∴这组数据的样本中心点是3(2,15.5)4m +, 关于y 与x 的线性回归方程ˆ 2.10.85y x =+,∴15.532.10.8542m +=⨯+,解得0.5m =,m∴的值为0.5.故答案为:0.5.【点评】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目,并且题目所用的原理不复杂,是一个好题.17.对某城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,若该城市居民人均消费水平为7.5(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为 75%.【分析】根据y 与x 具有线性相关关系,且满足回归方程,和该城市居民人均消费水平为,把消费水平的值代入线性回归方程,可以估计该市的职工均工资水平,做出人均消费额占人均工资收入的百分比. 【解答】解:y与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,该城市居民人均消费水平为7.5y=,∴可以估计该市的职工均工资水平7.50.6 1.5x =+,10x ∴=,∴可以估计该城市人均消费额占人均工资收入的百分比约为7.5100%75%10⨯=,故答案为:75%【点评】本题考查线性回归方程的应用,考查用线性回归方程估计方程中的一个变量,利用线性回归的知识点解决实际问题. 四.解答题(共3小题)18.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-【分析】(1)用数组(,)m n 表示选出2天的发芽情况,用列举法可得m ,n 的所有取值情况,分析可得m ,n 均不小于25的情况数目,由古典概型公式,计算可得答案;(2)根据所给的数据,先做出x ,y 的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)用数组(,)m n 表示选出2天的发芽情况,m,n 的所有取值情况有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(30,26),共有10个设“m ,n 均不小于25”为事件A ,则包含的基本事件有(25,30),(25,26),(30,26) 所以3()10P A =,故事件A 的概率为310(2)由数据得12,27xy ==,3972x y=,31977i i i x y ==∑,321434i i x ==∑,23432x =由公式,得9779725ˆ4344322b -==-,5ˆ271232a=-⨯=-所以y 关于x 的线性回归方程为5ˆ32yx =-(3)当10x =时,ˆ22y=,|2223|2-<,当8x=时,ˆ17y=,|1716|2-<所以得到的线性回归方程是可靠的.【点评】本题考查回归直线方程的计算与应用,涉及古典概型的计算,是基础题,在计算线性回归方程时计算量较大,注意正确计算.19.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y(万元)有如下的数据资料:(1)在给出的坐标系中做出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa、ˆb ; (3)估计使用年限为10年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-.【分析】(1)利用描点法作出散点图;(2)把数据代入公式,利用最小二乘法求回归方程的系数,可得回归直线方程; (3)把10x=代入回归方程得y 值,即为预报变量.【解答】解:(1)散点图如图,由图知y 与x 间有线性相关关系.(2)4x=,5y=,52190i i x ==∑,51112.3i i i x y ==∑,∴112.354512.3ˆ 1.239054210a-⨯⨯===-⨯;ˆˆ5 1.2340.08a y b x =-=-⨯=.(3)线性回归直线方程是ˆ 1.230.08y x =+,当10x=(年)时,ˆ 1.23100.0812.38y=⨯+=(万元),即估计使用10年时,支出总费用是12.38万元.【点评】本题考查了线性回归直线方程的求法及利用回归方程估计预报变量,解答此类问题的关键是利用公式求回归方程的系数,计算要细心.20.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画散点图;(2)如果y 对x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:511380i i i x y ==∑,521145)i i x ==∑【分析】(1)根据表格数据,可得散点图;(2)先求出横标和纵标的平均数,代入求系数b 的公式,利用最小二乘法得到系数,再根据公式求出a 的值,写出线性回归方程,得到结果.(3)允许每小时的产品中有缺点的零件最多为89个,即线性回归方程的预报值不大于89,写出不等式,解关于x 的一次不等式,得到要求的机器允许的转数. 【解答】解:(1)散点图如图;(2)5x =,50y=,511380i i i x y ==∑,521145i i x ==∑∴13805550ˆ 6.5145555b-⨯⨯==-⨯⨯,ˆˆ17.5ay b x =-=∴回归直线方程为:ˆ 6.517.5yx =+;(3)由89y …得6.517.589x+…,解得11x …∴机器的运转速度应控制11转/秒内【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.。

张敏强《教育与心理统计学》(第3版)章节题库(回归分析)【圣才出品】

张敏强《教育与心理统计学》(第3版)章节题库(回归分析)【圣才出品】

第7章回归分析一、单项选择题1.如果要建立两个变量之间的数学模型,下列统计方法中,最恰当的是()。

[统考2009研]A.方差分析法B.因素分析法C.回归分析法D.聚类分析法【答案】C【解析】回归分析是用数学模型来表示变量之间的关系;方差分析法是两个及两个以上样本均数差别的显著性检验;因素分析法是对问卷的结构等进行分析;聚类分析也是适合对结构进行分类等。

2.在回归分析中,考察回归效果使用的指标是()。

[统考2008研]A.内部一致性系数B.决定系数C.概化系数D.列联系数【答案】B【解析】回归分析中的决定系数表示因变量的变异中有多少是由自变量的变异引起,是用来考察回归效果的指标;内部一致性系数即同质性信度是信度的一种;概化系数是概化理论的指标;列联系数是表示相关的指标。

3.回归分析的主要功能是()。

A.量化描述事物之间的关系B.根据一个变量预测另一个变量C.使变量关系中不确定的部分给予严格确定D.确定变量关系的方向【答案】B【解析】回归分析的基本思想是试图对不确定的关系进行确定,然后依据所能得到的最大程度的确定关系,由已知变量预测未知变量。

4.在回归分析中,决定系数等于()。

A.相关系数B.相关系数的平方C.相关系数的平方根D.回归系数的平方【答案】B【解析】相关系数的平方等于回归平方和在总平方和中的比例,因此相关系数的平方能够说明一个变量对另一个变量解释的比例,称为决定系数。

5.如果要研究两个自变量对因变量的解释量,应选用的统计方法是()。

A.方差分析法B.因素分析法C.回归分析法D.聚类分析法【答案】C【解析】当研究两个或两个以上的自变量对因变量的预测时,采用的研究方法是回归分析中的多元线性回归分析法,可以计算多个自变量对因变量的解释量,指标就是多元决定系数(R2)。

6.对一元线性回归方程回归系数进行显著性检验通常采用的方法是()。

A.2χ检验B.F检验C.t检验D.Z检验【答案】C【解析】对回归系数b进行显著性检验,实则就是假设总体回归系数β=0,考察b是否也为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档