空间向量的运算及应用

合集下载

空间向量的基本运算

空间向量的基本运算

空间向量的基本运算在空间解析几何中,向量是表示有大小和方向的物理量。

空间向量具有三个分量,通常表示为A = (x, y, z),其中x、y、z分别代表向量在x轴、y轴、z轴上的分量。

空间向量的基本运算包括向量的加法、减法、数量乘法、点乘和叉乘。

一、向量的加法向量的加法是指将两个向量相加得到一个新向量的运算。

设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的和向量C = A + B = (x1 + x2, y1 + y2, z1 + z2)。

二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新向量的运算。

设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的差向量C = A -B = (x1 - x2, y1 - y2, z1 - z2)。

三、数量乘法数量乘法是指将向量的每个分量都乘以一个实数得到一个新的向量。

设有向量A = (x, y, z)和实数k,它们的数量乘积为kA = (kx, ky, kz)。

四、点乘点乘又称为数量积或内积,是指将两个向量相乘再相加得到一个实数的运算。

设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的点乘结果为AB = x1 * x2 + y1 * y2 + z1 * z2。

五、叉乘叉乘又称为向量积或外积,是指将两个向量相乘得到一个新向量的运算。

设有向量A = (x1, y1, z1)和向量B = (x2, y2, z2),它们的叉乘结果为C = A × B = (y1 * z2 - z1 * y2, z1 * x2 - x1 * z2, x1 * y2 - y1 * x2)。

以上是空间向量的基本运算,它们在解决空间中的几何问题和物理问题中起着重要的作用。

通过这些基本运算,我们可以进行向量的相加减、放缩,计算向量之间的夹角,求解平面和直线的方程等。

空间向量应用知识点总结

空间向量应用知识点总结

空间向量应用知识点总结一、空间向量的定义和性质1. 空间向量的定义:空间中的向量是指具有大小和方向的物理量,可以在空间中表示为一个由起点和终点确定的有向线段。

2. 空间向量的几何意义:空间向量的几何意义是指用有向线段来表示向量,其方向由箭头表示,长度由线段的长度表示。

3. 空间向量的性质:空间向量与平面向量相似,具有平行、共线、相等、相反等性质,还有长度相等、共线向量的倍数、共面向量的叉乘等性质。

二、空间向量的运算1. 空间向量的加法:空间向量的加法是指两个向量相加后得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。

2. 空间向量的减法:空间向量的减法是指一个向量减去另一个向量得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。

3. 空间向量的数量积:空间向量的数量积是指两个向量相乘后得到一个数量,其结果是一个标量,其大小等于两个向量的模的乘积,其方向由两个向量的夹角决定。

4. 空间向量的叉积:空间向量的叉积是指两个向量相乘后得到一个新的向量,其结果向量的大小等于两个向量构成的平行四边形的面积,其方向垂直于两个向量构成的平面。

5. 空间向量的混合积:空间向量的混合积是指三个向量相乘后得到一个数量,其结果是一个标量,其大小等于三个向量构成的平行六面体的体积。

三、空间向量在物理学中的应用1. 力的合成:在物体受到多个力的作用时,可以利用空间向量的加法和减法原理,将所有的力向量进行合成或分解,从而求出合力或分力的大小和方向。

2. 力的平衡:当一个物体处于受力平衡状态时,可以利用空间向量的数量积或叉积原理,求出合力或力矩为零的条件,从而判断物体是否处于平衡状态。

3. 力的做功:当一个物体受到外力作用而发生位移时,可以利用空间向量的数量积原理,求出外力做功的大小和方向,从而判断外力对物体的能量变化情况。

4. 力的矢量描述:在分析物体的运动和力的作用时,可以通过空间向量的描述方法,将力的大小和方向用向量来表示,从而对物体的运动和受力情况进行分析。

空间向量的运用

空间向量的运用

空间向量的运用空间向量是三维空间中的一种表示方式,它可以用来描述物体的位置、方向和大小等特征。

在数学、物理学、工程学等领域中,空间向量被广泛应用于各种计算和分析问题中。

本文将介绍空间向量的基本概念和运用,并探讨其在几何、物理和工程等方面的具体应用。

一、空间向量的基本概念空间向量是由起点和终点确定的有向线段,具有大小和方向两个基本特征。

在三维空间中,空间向量通常用坐标表示,可以分为位移向量和力向量两类。

1. 位移向量:位移向量是用来描述物体在空间中移动的距离和方向,它的大小等于位移的长度,方向与位移的方向相同。

位移向量可以用起点坐标和终点坐标表示,也可以用分量表示。

2. 力向量:力向量是用来描述物体受力情况的向量,它的大小等于力的大小,方向与力的方向相同。

力向量通常用起点坐标和终点坐标表示,也可以用分量表示。

二、空间向量的运算空间向量的运算包括加法、减法、数乘等操作,这些运算可以对向量进行操作,得到新的向量。

1. 向量加法:向量加法是指将两个向量按照一定规则相加,得到一个新的向量。

向量的相加可以通过将两个向量的对应分量相加得到,或者通过平行四边形法则进行计算。

2. 向量减法:向量减法是指将一个向量减去另一个向量,得到一个新的向量。

向量的减法可以通过将两个向量的对应分量相减得到,或者通过平行四边形法则进行计算。

3. 数乘运算:数乘运算是指将一个向量乘以一个实数,得到一个新的向量。

数乘后的向量与原向量的方向相同,但大小变为原来的若干倍。

三、空间向量在几何中的运用空间向量在几何学中有许多应用,可以用来求解各种几何问题,比如计算线段长度、求解直线方程、判断点位置等。

1. 线段长度:通过计算线段的起点和终点坐标,可以得到线段的位移向量,进而计算线段的长度。

2. 直线方程:通过给定直线上的两个点或者一个点和一个方向向量,可以确定直线的方程,从而对直线进行分析和计算。

3. 判断点位置:通过已知点和一些向量信息,可以判断点的位置关系,比如点是否在直线上、是否在平面上等。

教案)空间向量及其运算

教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。

2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。

3. 能够运用空间向量解决实际问题,提高空间想象力。

二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。

2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。

(2) 向量减法:差向量、相反向量。

(3) 数乘向量:数乘的定义、运算规律。

(4) 向量点乘:点乘的定义、运算规律、几何意义。

三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。

2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。

四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。

2. 利用实际例子,引导学生运用空间向量解决实际问题。

3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。

五、教学安排1. 第一课时:空间向量的概念及表示方法。

2. 第二课时:空间向量的线性运算(向量加法、减法)。

3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。

4. 第四课时:空间向量线性运算的应用。

5. 第五课时:总结与拓展。

六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。

2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。

3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。

4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。

七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。

2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。

3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。

4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。

空间向量的变换与应用

空间向量的变换与应用

空间向量的变换与应用空间向量是描述空间中具有大小和方向的物理量的工具。

在数学和物理学中,空间向量广泛应用于解决空间几何、力学、电磁学等问题。

本文将探讨空间向量的变换及其在实际应用中的重要性。

一、空间向量的定义空间向量是指在空间中具有大小和方向的量,通常用箭头来表示。

在三维空间中,一个向量可以用坐标表示为(x, y, z),其中x、y、z分别表示向量在X轴、Y轴和Z轴上的投影。

向量的大小可以通过求模运算得到,即向量的大小等于各个坐标分量平方和的平方根。

二、空间向量的变换空间向量的变换包括平移、旋转和缩放。

下面将分别介绍这三种变换的定义和应用。

1. 平移变换平移变换是指将向量在空间中沿着某一方向移动一定的距离。

假设有一个向量a(x, y, z),进行平移变换时,只需要通过给向量的各个坐标分量加上对应平移量d(x, y, z),即得到平移后的向量b(x+d_x, y+d_y,z+d_z)。

平移变换在计算机图形学中广泛应用,用于实现物体在空间中的移动效果。

比如,在游戏中,我们可以通过平移变换来实现角色的行走和物体的位置调整。

2. 旋转变换旋转变换是指通过旋转角度来改变向量的方向。

一般来说,旋转变换可以绕空间中的任意轴进行,包括X轴、Y轴、Z轴,以及不过原点的任意轴。

旋转变换的具体计算涉及到复杂的三角函数运算,这里不做详细介绍。

在实际应用中,旋转变换常用于计算机动画、机器人运动控制和三维建模中。

3. 缩放变换缩放变换是指通过乘以一个比例因子来改变向量的大小。

假设有一个向量a(x, y, z),进行缩放变换时,只需要将向量的各个坐标分量分别乘以对应的缩放因子s(x, y, z),即得到缩放后的向量b(s_x*x, s_y*y,s_z*z)。

缩放变换在计算机图形学和模型设计中非常常见,用于控制物体的大小和比例。

例如,在电影特效中,我们可以通过缩放变换来实现巨大怪兽的呈现效果。

三、空间向量的应用空间向量在物理学、工程学和计算机科学等领域有着广泛的应用。

空间向量的概念与运算

空间向量的概念与运算

空间向量的概念与运算空间向量是指在空间中有大小和方向的量。

它在物理学、几何学和工程学等领域具有重要的应用。

空间向量的概念和运算是研究空间中物体位置和运动的基础。

一、空间向量的概念空间向量由大小和方向来确定。

空间中的向量通常用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

例如,一个位移向量可以表示为⃗d,箭头的长度表示位移的大小,箭头的方向表示位移的方向。

空间向量的大小也称为向量的模或长度,通常使用两点之间的距离来计算。

二、空间向量的运算1. 向量的加法空间中的两个向量可以进行加法运算。

向量的加法可以表示为:⃗a + ⃗b = ⃗c其中,⃗a和⃗b是两个空间向量,⃗c是它们的和向量。

向量的加法满足交换律和结合律。

即:⃗a + ⃗b = ⃗b + ⃗a(⃗a + ⃗b) + ⃗c = ⃗a + (⃗b + ⃗c)2. 向量的减法空间中的两个向量可以进行减法运算。

向量的减法可以表示为:⃗a - ⃗b = ⃗d其中,⃗a和⃗b是两个空间向量,⃗d是它们的差向量。

向量的减法可以通过向量的加法来实现,即:⃗a - ⃗b = ⃗a + (-⃗b)3. 向量的数量积空间中的两个向量可以进行数量积运算。

向量的数量积可以表示为:⃗a ⋅ ⃗b = abcosθ其中,⃗a和⃗b是两个空间向量,a和b分别是它们的大小,θ是它们之间的夹角。

向量的数量积满足交换律和分配律。

即:⃗a ⋅ ⃗b = ⃗b ⋅ ⃗a⃗a ⋅(⃗b + ⃗c) = ⃗a ⋅ ⃗b + ⃗a ⋅ ⃗c4. 向量的矢量积空间中的两个向量可以进行矢量积运算。

向量的矢量积可以表示为:⃗a × ⃗b = |⃗a||⃗b|sinθ⃗n其中,⃗a和⃗b是两个空间向量,|⃗a|和|⃗b|分别是它们的大小,θ是它们之间的夹角,⃗n是法向量。

向量的矢量积满足反交换律和分配律。

即:⃗a × ⃗b = -⃗b × ⃗a⃗a ×(⃗b + ⃗c) = ⃗a × ⃗b + ⃗a × ⃗c以上是对空间向量的概念与运算进行的简要介绍。

高中数学中的空间向量应用重点知识点归纳

高中数学中的空间向量应用重点知识点归纳

高中数学中的空间向量应用重点知识点归纳在高中数学的学习中,空间向量是一个重要的概念,它在几何问题的解决中具有广泛的应用。

本文将对高中数学中的空间向量应用的重点知识点进行归纳,帮助同学们更好地理解和掌握相关内容。

一、基本概念1. 空间向量的定义:空间向量是指具有大小和方向的量,用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

2. 空间向量的表示:空间向量可以用坐标表示,也可以用位置矢量表示,其中位置矢量由起点和终点确定。

3. 零向量:零向量是长度为0,方向任意的特殊向量,用0表示。

4. 相等向量:具有相同大小和方向的向量称为相等向量,记作→AB = →CD。

二、向量的运算1. 向量的加法:向量的加法是指将两个向量相加得到一个新的向量,具有平行四边形法则和三角形法则两种运算法则。

2. 向量的减法:向量的减法是指将两个向量相减得到一个新的向量,可利用向量加法实现。

3. 向量的数乘:向量的数乘是指将向量的每个分量与一个实数相乘得到一个新的向量。

4. 点乘:点乘又称为数量积或内积,表示为A·B,结果是一个实数。

点乘有几何意义和代数意义,具有交换律和分配律等运算规则。

5. 叉乘:叉乘又称为向量积或外积,表示为A×B,结果是一个向量。

叉乘有几何意义和代数意义,具有反交换律和满足叉乘的运算规则。

三、空间向量的应用1. 直线的方程:通过两个不共线的点可以确定一条直线,可以利用向量求解直线的方程。

2. 平面的方程:通过三个不共线的点可以确定一个平面,可以利用向量求解平面的方程。

3. 点到直线的距离:点到直线的距离可以通过向量的投影求得,利用这一点可以解决点到直线的最短距离问题。

4. 点到平面的距离:点到平面的距离可以通过向量的投影求得,利用这一点可以解决点到平面的最短距离问题。

5. 直线的位置关系:通过向量的共线性可以判断直线的位置关系,包括相交、平行和重合等情况。

6. 平面的位置关系:通过向量的共面性可以判断平面的位置关系,包括相交、平行和重合等情况。

空间向量的运算及应用

空间向量的运算及应用

空间向量的运算及应用一、基础知识1.空间向量及其有关概念2.数量积及坐标运算(1)两个空间向量的数量积:①a·b=|a||b|cos〈a,b〉;②a⊥b⇔a·b=0(a,b为非零向量);③设a=(x,y,z),则|a|2=a2,|a|=x2+y2+z2.(2)空间向量的坐标运算:3.直线的方向向量与平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或或共线,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.4.空间位置关系的向量表示1.空间向量基本定理的3点注意(1)空间任意三个不共面的向量都可构成空间的一个基底.(2)由于0与任意一个非零向量共线,与任意两个非零向量共面,故0不能作为基向量.(3)基底选定后,空间的所有向量均可由基底唯一表示. 2.有关向量的数量积的2点提醒(1)若a ,b ,c (b ≠0)为实数,则ab =bc ⇒a =c ;但对于向量就不正确,即a ·b =b ·ca =c .(2)数量积的运算只适合交换律、加乘分配律及数乘结合律,但不适合乘法结合律,即(a ·b )c 不一定等于a (b ·c ).这是由于(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.3.方向向量和法向量均不为零向量且不唯一二、常用结论1.证明空间任意三点共线的方法对空间三点P ,A ,B 可通过证明下列结论成立来证明三点共线: (1)P A ―→=λPB ―→(λ∈R );(2)对空间任一点O ,OP ―→=OA ―→+t AB ―→(t ∈R ); (3)对空间任一点O ,OP ―→=x OA ―→+y OB ―→(x +y =1). 2.证明空间四点共面的方法对空间四点P ,M ,A ,B 除空间向量基本定理外也可通过证明下列结论成立来证明四点共面:(1) MP ―→=x MA ―→+y MB ―→;(2)对空间任一点O ,OP ―→=OM ―→+x MA ―→+y MB ―→;(3) PM ―→∥AB ―→ (或P A ―→∥MB ―→或PB ―→∥AM ―→). 3.确定平面的法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两条相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·a =0,n ·b =0,解方程组求得.考点一 空间向量的线性运算[1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB ―→=a ,AD ―→=b ,AA 1=c ,则下列向量中与BM ―→相等的是( )A .-12a +12b +c B.12a +12b +c C .-12a -12b +cD.12a -12b +c解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1+12(AD ―→-AB ―→)=c +12(b -a )=-12a +12b +c .2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1―→=a ,AB ―→=b ,AD ―→=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1) AP ―→; (2) A 1N ―→; (3)MP ―→+NC 1―→.解:(1)∵P 是C 1D 1的中点,∴AP ―→=AA 1―→+A 1D 1―→+D 1P ―→=a +AD ―→+12D 1C 1―→=a +c +12AB ―→=a +12b +c . (2)∵N 是BC 的中点,∴A 1N ―→=A 1A ―→+AB ―→+BN ―→=-a +b +12BC ―→=-a +b +12AD ―→=-a +b +12c . (3)∵M 是AA 1的中点,∴MP ―→=MA ―→+AP ―→=12A 1A ―→+AP ―→=-12a +⎝ ⎛⎭⎪⎫a +12b +c =12a +12b +c ,又NC 1―→=NC ―→+CC 1―→=12BC ―→+AA 1―→=12AD ―→+AA 1―→=a +12c , ∴MP ―→+NC 1―→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c =32a +12b +32c .考点二 共线、共面向量定理的应用1.若A (-1,2,3),B (2,1,4),C (m ,n,1)三点共线,则m +n =________. 解析:∵AB ―→=(3,-1,1),AC ―→=(m +1,n -2,-2), 且A ,B ,C 三点共线,∴存在实数λ,使得AC ―→=λAB ―→. 即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ), ∴⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得λ=-2,m =-7,n =4.∴m +n =-3. 答案:-32.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM ―→=13(OA ―→+OB ―→+OC ―→).(1)判断MA ―→,MB ―→, MC ―→三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解:(1)由已知OA ―→+OB ―→+OC ―→=3OM ―→, 所以OA ―→-OM ―→=(OM ―→-OB ―→)+(OM ―→-OC ―→), 即MA ―→=BM ―→+CM ―→=-MB ―→-MC ―→, 所以MA ―→,MB ―→,MC ―→共面.(2)由(1)知MA ―→,MB ―→,MC ―→共面且过同一点M .所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 3.如图所示,已知斜三棱柱ABC -A1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM ―→=kAC 1―→,BN ―→=k BC ―→(0≤k ≤1).判断向量MN ―→是否与向量AB ―→,AA 1―→共面.解:∵AM ―→=kAC 1―→,BN ―→=k BC ―→,∴MN ―→=MA ―→+AB ―→+BN ―→=k C 1A ―→+AB ―→+k BC ―→=k (C 1A ―→+BC ―→)+AB ―→=k (C 1A ―→+B 1C 1―→)+AB ―→=kB 1A ―→+AB ―→=AB ―→-kAB 1―→=AB ―→-k (AA 1―→+AB ―→)=(1-k )AB ―→-kAA 1―→,∴由共面向量定理知向量MN ―→与向量AB ―→,AA 1―→共面.考点三 空间向量数量积及应用[典例精析]如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1) EF ―→·BA ―→;(2) EG ―→·BD ―→.[解] 设AB ―→=a ,AC ―→=b ,AD ―→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°. (1)因为EF ―→=12BD ―→=12(AD -AB )=12c -a ,BA ―→=-a , 所以EF ―→·BA ―→=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14.(2)EG ―→·BD ―→=(EA ―→+AG ―→)·(AD ―→-AB ―→) =⎝ ⎛⎭⎪⎫-12 AB ―→+12 AC ―→+12 AD ―→ ·(AD ―→-AB ―→) =⎝ ⎛⎭⎪⎫-12a +12b +12c ·(c -a ) =-14+12+14-14+12-14=12.[题组训练]如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .解:(1)设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b =2×1×c os 120°=-1. ∵AC 1―→=AC ―→+CC 1―→=AB ―→+AD ―→+AA 1―→=a +b +c , ∴|AC 1―→|=|a +b +c |=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +b ·c +c ·a ) =12+12+22+2×(0-1-1)= 2.∴线段AC 1的长为 2.(2)设异面直线AC 1与A 1D 所成的角为θ,则c os θ=|c os 〈AC 1―→, A 1D ―→〉|=|AC 1―→·A 1D ―→||AC 1―→||A 1D ―→|.∵AC 1―→=a +b +c ,A 1D ―→=b -c , ∴AC 1―→·A 1D ―→=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D ―→|=(b -c )2=|b |2-2b ·c +|c |2=12-2×(-1)+22=7.∴c os θ=|AC 1―→·A 1D ―→||AC 1―→||A 1D ―→|=|-2|2×7=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明:∵AA 1―→=c ,BD ―→=b -a ,∴AA 1―→·BD ―→=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0,∴AA 1―→⊥BD ―→,即AA 1⊥BD .考点四 利用向量证明平行与垂直问题[典例精析]如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,过点E 作EF ⊥PB 于点F .求证:(1)P A ∥平面EDB ; (2)PB ⊥平面EFD .[证明] 以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝ ⎛⎭⎪⎫0,a 2,a 2.因为底面ABCD 是正方形, 所以G 为AC 的中点 故点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,所以P A ―→=(a,0,-a ),EG ―→=⎝ ⎛⎭⎪⎫a2,0,-a 2,则P A ―→=2EG ―→,故P A ∥EG .而EG ⊂平面EDB ,P A ⊄平面EDB , 所以P A ∥平面EDB .(2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ). 又DE ―→=⎝ ⎛⎭⎪⎫0,a 2,a 2,故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE , 所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E , 所以PB ⊥平面EFD .[解题技法]利用空间向量证明空间垂直、平行的一般步骤(1)建立空间直角坐标系,建系时要尽可能地利用条件中的垂直关系. (2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素.(3)通过空间向量的运算求出直线的方向向量或平面的法向量,再研究平行、垂直关系.(4)根据运算结果解释相关问题.[提醒] 运用向量知识判定空间位置关系时,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行时,仍需强调直线在平面外.[题组训练]如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明:(1)以O 为坐标原点,以射线OD 为y 轴正半轴,射线OP 为z 轴正半轴建立如图所示的空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP ―→=(0,3,4),BC ―→=(-8,0,0), 所以AP ―→·BC ―→=(0,3,4)·(-8,0,0)=0, 所以AP ―→⊥BC ―→,即AP ⊥BC .(2)由(1)知AP =5,又AM =3,且点M 在线段AP 上, 所以AM ―→=35AP ―→=⎝ ⎛⎭⎪⎫0,95,125,又BA ―→=(-4,-5,0),所以BM ―→=BA ―→+AM ―→=⎝ ⎛⎭⎪⎫-4,-165,125,则AP ―→·BM ―→=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, 所以AP ―→⊥BM ―→,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BC ∩BM =B , 所以AP ⊥平面BMC ,于是AM ⊥平面BMC .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、填空题 7.在空间直角坐标系中,A(1,1,-2),B(1,2,-3),C(- 1,3,0),D(x,y,z)(x,y,z∈R),若A,B,C,D四点共面,则2x+y +z=________. 1 [∵A(1,1,-2),B(1,2,-3),C(-1,3,0),D(x,y,z)(x,y, z∈R),∴A→B=(0,1,-1),A→C=(-2,2,2),A→D=(x-1,y-1,z+ 2).
1 2 3 4 5 6 7 8 9 10 11
∵A,B,C,D四点共面,∴存在实数λ,μ使得A→D=λA→B+μA→C, 即(x-1,y-1,z+2)=λ(0,1,-1)+μ(-2,2,2),
x-1=-2μ,
∴y-1=λ+2μ, z+2=-λ+2μ,
解得2x+y+z=1.]
1 2 3 4 5 6 7 8 9 10 11
故DE∥平面ABC.
1 2 3 4 5 6 7 8 9 10 11
(2)由(1)知B→1F=(-2,2,-4), E→F=(2,-2,-2),A→F=(2,2,0). B→1F·E→F=(-2)×2+2×(-2)+(-4)×(-2)=0,B→1F·A→F= (-2)×2+2×2+(-4)×0=0. 所以B→1F⊥E→F,B→1F⊥A→F,即B1F⊥EF,B1F⊥AF,又因为 AF∩FE=F,所以B1F⊥平面AEF.
1 2 3 4 5 6 7 8 9 10 11
三、解答题 10.如图所示,已知直三棱柱ABC-A1B1C1中, △ABC为等腰直角三角形,∠BAC=90°,且AB= AA1,D,E,F分别为B1A,C1C,BC的中点.求 证: (1)DE∥平面ABC; (2)B1F⊥平面AEF.
1 2 3 4 5 6 7 8 9 10 11
因为D→M·P→A=32×1+0×(-2)+ 23×(- 3)=0,所以D→M⊥P→A, 即DM⊥PA.
又因为PA∩PB=P,PA,PB⊂平面PAB,所以DM⊥平面PAB. 因为DM⊂平面PAD,所以平面PAD⊥平面PAB.
1 2 3 4 5 6 7 8 9 10 11
02 B组 综合运用练
1.(2020·潍坊期末)如图所示的平行六面体 ABCD-A1B1C1D1中,已知AB=AA1=AD,∠BAD =∠DAA1=60°,∠BAA1=30°,N为A1D1上一 点,且A1N=λA1D1.
课后限时集训(四十四) 空间向量的运算 及应用
01 A组 基础巩固练
一、选择题
1.(多选)(2020·福建省晋江市南侨中学月考)已知向量a=(1,1,0),
则与a共线的单位向量e=( )
A.-
22,-
22,0
C.
22,
22,0
B.(0,1,0) D.(1,1,1)
1 2 3 4 5 6 7 8 9 10 11
为( )
A.-2
B.-134
C.154
D.2
D [∵a⊥(a-λb),∴a·(a-λb)=0,即a2=λa·b.
又a=(-2,1,3),b=(-1,2,1),∴a·b=2+2+3=7,|a|=
4+1+9= 14. ∴14=7λ,∴λ=2.故选D.]
1 2 3 4 5 6 7 8 9 10 11
3.已知a=(1,0,1),b=(x,1,2),且a·b=3,则向量a与b的夹角为
22a,0,-
26a,
则O→C·S→D=0.故OC⊥SD.从而AC⊥SD.
(2)棱SC上存在一点E,使BE∥平面PAC. 理由如下:由已知条件知D→S是平面PAC的一个法向量,且D→S=
1 2 3 4 5 6 7 8 9 10 11
11.如图所示,已知四棱锥P-ABCD的底面是 直角梯形,∠ABC=∠BCD=90°,AB=BC=PB =PC=2CD,侧面PBC⊥底面ABCD.
证明:(1)PA⊥BD; (2)平面PAD⊥平面PAB.
1 2 3 4 5 6 7 8 9 10 11
[证明] (1)取BC的中点O,连接PO, 因为平面PBC⊥底面ABCD,△PBC为等边三角形, 平面PBC∩底面ABCD=BC,PO⊂平面PBC, 所以PO⊥底面ABCD. 以BC的中点O为坐标原点,以BC所在直线为 x轴,过点O与AB平行的直线为y轴,OP所在直线 为z轴,建立空间直角坐标系,如图所示.
4.对于空间一点O和不共线的三点A,B,C,有6O→P=O→A+2O→B +3O→C,则( )
A.O,A,B,C四点共面 B.P,A,B,C四点共面 C.O,P,B,C四点共面 D.O,P,A,B,C五点共面
1 2 3 4 5 6 7 8 9 10 11
B [由6O→P=O→A+2O→B+3O→C, 得O→P-O→A=2(O→B-O→P)+3(O→C-O→P), 即A→P=2P→B+3P→C, 故A→P,P→B,P→C共面,又它们有公共点P, 因此,P,A,B,C四点共面,故选B.]
1 2 3 4 5 6 7 8 9 10 11
(2)取PA的中点M,连接DM,则M12,-1, 23. 因为D→M=32,0, 23,P→B=(1,0,- 3), 所以D→M·P→B=32×1+0×0+ 23×(- 3)=0, 所以D→M⊥P→B,即DM⊥PB.
1 2 3 4 5 6 7 8 9 10 11
3.如图所示,四棱锥S-ABCD的底面是正方形, 每条侧棱的长都是底面边长的 2倍,点P为侧棱SD 上的点.
(1)求证:AC⊥SD; (2)若SD⊥平面PAC,则侧棱SC上是否存在一 点E,使得BE∥平面PAC,若存在,求SE∶EC的值;若不存在,试说 明理由.
[解] (1)证明:连接BD,设AC交BD于点O,则
2.如图所示,在平行四边形ABCD中,AB=AC=CD=1,∠ ACD=90°,把△ADC沿对角线AC折起,使AB与CD成60°角,则BD的 长为________.
2或 2 [∵AB与CD成60°角,
∴〈B→A,C→D〉=60°或120°. 又∵AB=AC=CD=1,AC⊥CD,AC⊥AB, ∴|B→D|= B→D2= B→A+A→C+C→D2 = B→A2+A→C2+C→D2+2B→A·A→C+2A→C·C→D+2B→A·C→D = 1+1+1+0+0+2×1×1×cos〈B→A,C→D〉 = 3+2cos〈B→A,C→D〉, ∴|B→D|=2或 2.∴BD的长为2或 2.]
又因为 M1B⊄平面 AB1N,NB1⊂平面 AB1N, 所以 M1B∥平面 AB1N, 又因为 BM∥平面 AB1N,且 BM∩M1B=B, 所以平面 M1MB∥平面 AB1N, 所以 MM1∥平面 AB1N. 又因为 平面AA1D1D∩平面AB1N=AN,且MM1⊂平面AA1D1D, 所以M1M∥AN,所以△AA1N∽△MDM1, 所以DAM1N1=MAAD1=1-λAλ1DA11D1=2,所以λ=23.]
1 2 3 4 5 6 7 8 9 10 11
不妨设CD=1,则AB=BC=2,PO= 3, 所以A(1,-2,0),B(1,0,0), D(-1,-1,0),P(0,0, 3), 所以B→D=(-2,-1,0), P→A=(1,-2,- 3). 因为B→D·P→A=(-2)×1+(-1)×(-2)+0×(- 3)=0, 所以P→A⊥B→D,所以PA⊥BD.
8.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中
点,则sin〈C→M,D→1N〉的值为________.
45 9
[如图建立空间直角坐标系D-xyz,设正方体
棱长为2,则易得C→M=(2,-2,1),D→1N=(2,2,-1),
∴cos〈C→M,D→1N〉=
→→ CM·D1N →→
AC [由题意得,a=λe,因而|a|=|λe|=|λ|,得λ=±|a|.故e=±|aa|,
而|a|=
1+1+0=
2,所以e=
22,
22,0或e=-
22,-
22,0.故
选AC.]
1 2 3 4 5 6 7 8 9 10 11
2.已知a=(-2,1,3),b=(-1,2,1),若a⊥(a-λb),则实数λ的值
()
A.56π
B.23π
C.π3
D.π6
1 2 3 4 5 6 7 8 9 10 11
D [∵a=(1,0,1),b=(x,1,2),
∴a·b=x+2=3.
∴x=1.
∴|a|= 2,|b|= 6.
∴cos〈a,b〉=
3 2×
= 6
3 2.
又〈a,b〉∈[0,π],故〈a,b〉=π6.故选D.]
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11
①②③ [∵A→B·A→P=0,A→D·A→P=0, ∴AB⊥AP,AD⊥AP,则①②正确. 又A→B与A→D不平行, ∴A→P是平面ABCD的法向量,则③正确. ∵B→D=A→D-A→B=(2,3,4),A→P=(-1,2,-1), ∴B→D与A→P不平行,故④错误.]
AC⊥BD.连接SO,由题意知SO⊥平面ABCD.
以O为坐标原点,O→B,O→C,O→S所在直线分别
为x轴,y轴,z轴,建立空间直角坐标系,如图.
设底面边长为a,则高SO= 26a,
于是S0,0,
26a,D-
22a,0,0,B
22a,0,0,C0,
22a,0,
O→C=0,
22a,0,
S→D=-
[证明] (1)建立如图所示的空间直角坐标系, 令AB=AA1=4,则A(0,0,0),E(0,4,2), F(2,2,0),B(4,0,0),B1(4,0,4).取AB的中点N,连 接CN,则N(2,0,0),C(0,4,0),D(2,0,2), 所以D→E=(-2,4,0),N→C=(-2,4,0), 所以D→E=N→C,所以DE∥NC. 又因为NC⊂平面ABC,DE⊄平面ABC,
相关文档
最新文档