数值分析实验报告2

合集下载

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数值分析实验报告2

数值分析实验报告2

实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。

要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。

数值分析实验报告二

数值分析实验报告二

数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。

(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。

(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。

2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析实验报告二2汇总

数值分析实验报告二2汇总
legend('数据点(xi,yi)','牛顿插值曲线y=f(x)');xlabel('x');ylabel('y');
title('数据点(xi,yi)和牛顿插值曲线y=f(x)的图形')
运行结果:
实验结果分析:
最小二乘法拟合的曲线误差最小。
也可以得到三图合一的图像:
在以上命令的基础上
运行命令plot(x1,y1,'r*',x,y,'b-',t,p1,'k-',x,P2,'y-')
% f积分函数
% a/b:积分上下限
% tol:积分误差
% R:Romberg积分值
% k:二分次数
k=1;
h=b-a;
%第一步
T(k,1)=h/2*(f(a)+f(b));
err=1;
whileerr>=eps
T(k,k)= Tห้องสมุดไป่ตู้k,1);
h=h/2;
%第二步求梯形值T0
temp=0;
i=1;
whilei<2^k
实验结果分析:
本题用了三种方法计算,虽然三种方法的结果差别不大,但得到结果的过程不同,每个方法都有其优缺点。
成绩评定
签字:年月日
-3002399751579999/9007199254740992*x^3-311/1125899906842624*x^2+4128299658423301/562949953421312*x-2533274790396013/281474976710656
拉格朗日插值
实验步骤:

数值分析Runge现象计算实验

数值分析Runge现象计算实验

数值分析实验报告(02)一、实验目的通过上机绘制Runge 函数图像,理解高次插值的病态性质。

二、实验内容在区间[-1,1]上分别取n=10,n=20用两组等距节点对龙格(Runge)函数21()125f x x =+作多项式插值,对每个n 值分别画出()f x 和插值函数的图形。

三、编程思路(相关背景知识、算法步骤、流程图、伪代码)四、程序代码(Matlab 或C 语言的程序代码)function yt=Untitled8(x,y,xt)%UNTITLED5 ´Ë´¦ÏÔʾÓйش˺¯ÊýµÄÕªÒª% ´Ë´¦ÏÔʾÏêϸ˵Ã÷n=length(x);ny=length(y);if n~=nyerror('²åÖµ½ÚµãxÓ뺯ÊýÖµy²»Ò»ÖÂ');endm=length(xt);yt=zeros(1,m);for k=1:nlk=ones(1,m);for j=1:nif j~=klk=lk.*(xt-x(j))/(x(k)-x(j));endend ;yt=yt+y(k)*lk;endn=input('n=');x=linspace(-1,1,n);y=1./(1+25.*x.^2);xf=linspace(-1,1,100);yf=1./(1+25.*xf.^2)xl=xf;yl=Untitled8(x,y,xf);plot(xf,yf,'-b',xl,yl,'-r')五、数值结果及分析(数值运行结果及对结果的分析)当n=10时当n=20六、实验体会(计算中出现的问题,解决方法,实验体会)出现符号错误,代码函数变量不明重新输入,查询错误,找到并改正编码需要认真仔细,一定要头脑清晰,避免出现一些低级错误。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析实验报告

数值分析实验报告

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。

2.实验过程:实验代码:#include &quot;stdio.h&quot;#include &quot;math.h&quot;#includeiostreamusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;kn-1;k++){for(j=k,i=k;jn;j++){if(j==k)temp=fabs(a[j][k]);else if(tempfabs(a[j][k])){temp=fabs(a[j][k]);i=j;}}if(temp==0){cout&quot;无解\n; return;}else{for(j=k;jn;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;in;i++) {l=a[i][k]/a[k][k];for(j=k;jn;j++)a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}if(a[n-1][n-1]==0){cout&quot;无解\n;return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i=0;i--){temp=0;for(j=i+1;jn;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;in;i++){printf(&quot;x%d=%lf\t&quot;,i+1,x[i]); printf(&quot;\n&quot;);}}//平方根法void pfg(double **a,double *b,int n)int i,k,m;double x[8],y[8],temp;for(k=0;kn;k++){temp=0;for(m=0;mk;m++)temp=temp+pow(a[k][m],2);if(a[k][k]temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;in;i++){temp=0;for(m=0;mk;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;mk;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k=0;k--){temp=0;for(m=k+1;mn;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;in;i++){printf(&quot;x%d=%lf\t&quot;,i+1,x[i]);printf(&quot;\n&quot;);}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;in;i++){a0[i]=a[i][i];if(in-1)c[i]=a[i][i+1];if(i0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;in-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;in;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;in;i++){printf(&quot;x%d=%lf\t&quot;,i+1,x[i]); printf(&quot;\n&quot;);}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;in;i++){A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout&quot;第一题(Gauss列主元消去法):&quot;endlendl; cout&quot;请输入阶数n:&quot;endl;cinn;cout&quot;\n请输入系数矩阵:\n\n&quot;;for(i=0;in;i++)for(j=0;jn;j++){篇三:数值分析实验报告(包含源程序) 课程实验报告课程实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
一、实验名称
复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求
1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.
2. 培养Matlab 编程与上机调试能力. 三、实验环境
计算机,MATLAB 软件 四、实验内容
1.用不同数值方法计算积分9
4
ln 1
0-=⎰
xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤
1.复合梯形公式
将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(),得
)]()([2
)(b f a f a b dx x f b a
+-≈⎰ () )]()(2)([2)]()([21
1
110b f x f b f h
x f x f h T n k k k n k k n ++=+=∑∑-=+-= ()
),(),(12
)('
'2b a f h a b f R n ∈--
=ηη () 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式
将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(),得
)]()2
(4)([6b f b a f a f a b S +++-= ()
)]()(2)(4)([6)]
()()([61
1
102/112/11
b f x f x f b f h
x f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= () ),(),()2
(180)()
4(4b a f h a b f R n ∈-=
ηη () 其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

3.龙贝格算法 统一的公式:
)(1
41
)2(144)(11h T h T h T m m m m m m -----= ()
经过m (m=1,2...)次加速后,余项便取下列形式:
...)()2(22)1(21+++=++m m m h h I h T ξξ ()
上述处理方法通常称为理查森外推加速法。

设以)(0k T 表示二分k 次后求得的梯形值,且以)
(k m T 表示序列{)(0k T }的m 次加
速值,则依递推公式()可得
,...2,1,1
41144)()
(1)1(1)(=---=-+-k T T h T
k m m
k m m m k m
() 公式()也称为龙贝格求积算法,计算过程如下:
(1)取k=0,h=b-a,求)]
()([2)0(0b f a f h
T +=。

令k →1(k 记区间[a,b]的二分次数)。

(2)求梯形值T 0((b-a)/2k ),即按递推公式()计算)(0k T 。

∑-=++=1
2/12)(221n k k n n x f h T T ()
(3)求加速值,按公式()逐个求出T 值。

(4)若ε<--)
0(1)0(k k T T (预先给定的精度),则终止计算,并取I T k ≈)0(;否则
令k k →+1转(2)继续计算。

4.自适应积分方法
设给定精度要求0>ε,计算积分dx x f f I b
a
⎰=)()(的近似值。

先取步长h=b-a ,
应用辛普森公式有
),(),()2
(180),()()(4
4b a f h a b b a S dx x f f I b
a ∈--
==⎰ηη ()
表区间[a,b]对分,步长h 2=h/2=(b-a)/2,在每个小区间上用辛普森公式,得
),(),()2
(180),()(4
422b a f h a b b a S f I ∈--
=ξξ () 上式即为
),(),()4
(180),()(4
42b a f h a b b a S f I ∈--
=ξξ () 将()与()比较得 212215
1),(),(151),()(S S b a S b a S b a S f I -=-≈
- 则期望得到
ε<-),()(2b a S f I () 此时可取S 2(a,b)作为dx x f f I b
a ⎰=)()(的近视,则可达到给定的误差精度ε。

如果不行,则细分区间,进行计算。

六、调试过程及实验结果
取不同的步长,得到的不同结果如下表:
七、总结
通过本次学习Matlab ,掌握了复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分的程序和算法,为以后处理数据提供一种更加简便,准确的方法。

八、附录(源程序清单)
1.复合梯形
function s=fuhetixing(f,a,b,n) %f 为被积分函数 %a ,b 是积分上下限 %n 是子区间个数 %s 是积分值 h=(b-a)/n; s=0;
for k=1:(n-1) x=a+h*k;
s=s+feval('f',x); end
format long
s=h*(feval('f',a)+feval('f',b))/2+h*s;
2.复合辛普森
function S=Comsimpson(f,a,b,n)
%f为被积分函数
%a,b是积分上下限
%n是子区间个数
%s是积分值
h=(b-a)/(2*n);
s1=0;s2=0;
for k=1:n
x=a+h*(2*k-1);
s1=s1+feval('f',x);
end
for k=1:(n-1)
x=a+h*2*k;
s2=s2+feval('f',x);
end
format long
S=h*(feval('f',a)+feval('f',b)+4*s1+2*s2)/3;
3.龙贝格
function [T,quad,err,h]=Romberg(f,a,b,n,delta) %f为被积分函数
%a,b是积分上下限
%n+1是T数表的列数
%T表示T数表
%quad是所求积分值
%delta是设定的允许误差限
m=1;
h=b-a;
err=1;J=0;
T=zeros(n,n);%定义T表初始值
T(1,1)=h*(feval('f',a)+feval('f',b))/2;
while ((err>delta)&(J<n))
J=J+1;
h=h/2;
s=0;
for k=1:m
x=a+h*(2*k-1);
s=s+feval('f',x);
end
T(J+1,1)=T(J,1)/2+h*s;
m=2*m;
for i=1:J
T(J+1,i+1)=T(J+1,i)+(T(J+1,i)-T(J,i))/(4^i-1);
end
err=abs(T(J,J)-T(J+1,i+1));
end
format long
quad=T(J+1,J+1)
err
T
4.自适应辛普森求积公式
function s=S_Adapt_Simpson(a,b,err,M)
%input: a--下限
% b--下限
% err--the tolerance(容差)
% m--初始设置的步数
format long
h=(b-a)/M;%步距
s=0;
for i=1:M
x=a+(i-1)*h;
y=a+i*h;
e=abs(simpson(x,y,2)+simpson(x,y,1))/10;
j=1;
while(e>=err) %循环直到to<tol为止
j=j+1;
e=(abs(simpson(x,y,2^j)-simpson(x,y,1)))/10; %精度测试式
end
s=s+simpson(x,y,2^j);
end。

相关文档
最新文档