判别分析公式Fisher线性判别二次判别

合集下载

统计学中的判别分析

统计学中的判别分析

统计学中的判别分析判别分析是统计学中一种常见的分析方法,旨在通过将样本数据归类到一个或多个已知的类别中,来识别和描述不同类别之间的差异。

它在很多领域中都有广泛的应用,例如医学、市场调研、金融等。

本文将介绍判别分析的基本原理、常见的判别分析方法以及其在实际应用中的一些例子。

一、判别分析的原理判别分析的目标是构建一个判别函数,通过输入变量的值来判别或预测样本所属的类别。

它的核心思想是通过最大化类别间的差异和最小化类别内部的差异,来建立一个有效的分类模型。

判别分析的基本原理可以用以下步骤来描述:1. 收集样本数据,包括已知类别的样本和它们的属性值。

2. 对每个样本计算各个属性的平均值和方差。

3. 计算类别内部散布矩阵和类别间散布矩阵。

4. 根据散布矩阵计算特征值和特征向量。

5. 选择最具判别能力的特征值和特征向量作为判别函数的基础。

二、判别分析的方法判别分析有多种方法可以选择,常见的包括线性判别分析(Linear Discriminant Analysis,简称LDA)和二次判别分析(Quadratic Discriminant Analysis,简称QDA)。

1. 线性判别分析(LDA)线性判别分析假设每个类别的样本数据满足多元正态分布,并且各个类别的协方差矩阵相等。

它通过计算最佳投影方向,将多维属性值降低到一维或两维来实现分类。

LDA在分类问题中被广泛应用,并且在特征选择和降维方面也有一定的效果。

2. 二次判别分析(QDA)二次判别分析不同于LDA,它允许每个类别具有不同的协方差矩阵。

QDA通常适用于样本数据的协方差矩阵不相等或不满足多元正态分布的情况。

与LDA相比,QDA在处理非线性问题时可能更有优势。

三、判别分析的应用实例判别分析在多个领域中都有广泛的应用,下面列举了一些实际的例子。

1. 医学领域在医学中,判别分析可以帮助诊断疾病或判断病情。

例如,可以利用病人的临床数据(如血压、血糖等指标)进行判别分析,来预测是否患有某种疾病,或者判断疾病的严重程度。

第三章 线性判别分析_非参数判别分类方法-第三次课

第三章 线性判别分析_非参数判别分类方法-第三次课

即可判成ω1、 ω2中的任意一类。
第3章 线性判别分析
两类判决区域的分界面为
T
g 1 ( x) g 2 ( x)
g (x) w x w0 w1 x1 w2 x2 wd xd w0 0
其几何意义为d维欧几里德空间中的一个超平面。 (1) w是超平面的法向量。 如果取最大判决, w指向R1, R1中的点在H的正侧。 (2) g(x)是x到超平面距离的一种代数距离。
x
x
i
(i 1, 2)
(i 1, 2)
T S ( x μ )( x μ ) (2) 样本类内离散度矩阵Si: i i i xi
总类内离散度矩阵Sw:
S w S1 S 2
S w P(1 )S1 P(2 )S 2 若考虑先验概率, 则
(3) 样本类间离散度矩阵Sb: Sb (μ1 μ 2 )(μ1 μ 2 )T 若考虑先验概率, 则类间离散度矩阵Sb定义为
(3-20)
第3章 线性判别分析
当类概率密度函数为正态分布或接近正态分布时, 即
p( x | i ) (2 )
d 2
i

1 2
1 T 1 exp ( x i ) i ( x i ) (3-21) 2
取自然对数有
1 d 1 T 1 gi ( x) ( x i ) i ( x i ) ln(2 ) ln i ln P(i ) 2 2 2
设计线性判别函数的任务就是在一定条件下, 寻找 最好的w和w0 , 其关键在于最优准则以及相应的求解方 法。
第3章 线性判别分析
(1) 选择样本集z={x1, x2, …, xN}。 样本集中的样本来自两

判别分析(第4节_Fisher判别法)

判别分析(第4节_Fisher判别法)
本章主要内容
第一节 第二节 第三节 第四节 第五节
绪论 距离判别法 贝叶斯判别法 Fisher判别法 判别效果检验问题
第三节 贝叶斯(BAYES)判别法

多元正态总体的贝叶斯判别法
设 Gi ~ N p ( (i ) , i )(i 1,2,, k ) ,并假定错判损失相等,先 验概率 q1 , q2 ,, qk ,有时先验概率确定起来不是很明 n qi i 确的,这时可用“样品频率”代替,即可令 。 n
第三节 贝叶斯(BAYES)判别法
其中 ( h ) , h 意义同前,已知后验概率为
P(Gh | x) qh f h ( x)
q f ( x)
i i i 1
k
由于上式中,分母部分为常数,所以有
P(Gh | x) max qh f h ( x) max
同时
1 1 qh f h ( x) qh (2 ) p / 2 | h |1/ 2 exp ( X ( h ) )h ( X (h) ) 2
* 故问题化简为 Z (Gh | x) max . h
ห้องสมุดไป่ตู้
注意:这里取对数可起到简化算式的作用,同时对数 函数是严格单调的,所以取对数不改变原问题的性质。
第三节 贝叶斯(BAYES)判别法
◆ 判别准则 下面分两种不同的情形考虑。

假设协方差阵都相等( 1 2 k )
2 2
exp[ y(G x]
i| i 1
k
注意:这意味着 P(Gh | x) max y(Gh | x) max
第三节 贝叶斯(BAYES)判别法
证明 因为 y(Gh | x) ln[qh f h ] ( x) ,其中 ( x) 是ln[ qh f h ]

线性判别分析

线性判别分析
线性判别分析(LDA)
介绍
线性判别分析(Linear Discriminant Analysis, LDA),也 叫做Fisher线性判别(Fisher Linear Discriminant ,FLD), 是模式识别的经典算法,1936年由Ronald Fisher首次提出, 并在1996年由Belhumeur引入模式识别和人工智能领域。
LDA
对于N(N>2)分类的问题,就可以直接写出以下的结论:
这同样是一个求特征值的问题,求出的第i大的特征向量,即为 对应的Wi。
LDA在人脸识别中的应用
要应用方法
K-L变换 奇异值分解 基于主成分分析 Fisher线性判别方法
主要应用方法
K-L变换
为了得到彩色人脸图像的主分量特征灰度图像,可以采用Ohta[3]等人提 出的最优基来模拟K-L变换方法,从而得到新的包含了彩色图像的绝大多 数特征信息的主分量特征图像.
LDA
LDA与PCA(主成分分析)都是常用的降维技术。PCA主要是从 特征的协方差角度,去找到比较好的投影方式。LDA更多的是 考虑了标注,即希望投影后不同类别之间数据点的距离更大, 同一类别的数据点更紧凑。
下面给出一个例子,说明LDA的目标:
可以看到两个类别,一个绿色类别,一个红色类别。左图是两个 类别的原始数据,现在要求将数据从二维降维到一维。直接投影 到x1轴或者x2轴,不同类别之间 会有重复,导致分类效果下降。 右图映射到的直线就是用LDA方法计算得到的,可以看到,红色 类别和绿色类别在映射之后之间的距离是最大的,而且每个类别 内 部点的离散程度是最小的(或者说聚集程度是最大的)。
LDA
假设用来区分二分类的直线(投影函数)为: LDA分类的一个目标是使得不同类别之间的距离越远越好,同 一类别之中的距离越近越好,所以我们需要定义几个关键的值:

Fisher判别-jing

Fisher判别-jing

i 1
综上(1),(2) Fisher最优判别准则为函数
L(l1 , l2 , l p ) ( y 0 y 1 )2
(y
i 1
s
0 i
y ) ( yi1 y 1 ) 2
0 2 i 1
t
越大越好。从而最优判别函数的系数 c1 , c2 , c p 为函数 L(l1 , l2 ,l p ) 的极大值点。由微分学可知, 1 , c2 , c p 为方 c 程组
编号 1 购 买 者 2 3 4 5 6
式样X1 包装X2 耐久 性X3
编号 8 非 9 购 买 10 者 11
式样X1 包装X2
耐久 性X3
0 0 ( x11 , x12 , x10p )
1 1 1 ( x11 , x12 , x1 p )
组A的数据
0 0 0 ( x21 , x22 , x2 p )

0 ( xs01 , xs02 , xsp )
组B的数据
( x1 , x1 , x1 p ) 21 22 2

1 ( xt11 , xt12 , xtp )
组B的数据矩阵
1 x11 1 1 x21 W 1 xt1
1 1 x12 x1 p x1 x1 p 22 2 1 1 xt 2 xtp
矩阵 W 和 W
0
1
的列平均数分别为 ( x10 , x20 , x p0 ) 和 ( x1 , x2 , x p )
判别分析分为两组判别分析和多组判别分析, 两组判别分析就是将要判别的对象分为两组,例 如,判别一个地区的消费者对某种产品的反应是 “喜欢”还是“不喜欢”,判别一种产品在某地 区是处于“饱和”状态还是“有需求”,多组判 别分析则是将要判别的对象分为三组或更多组, 例如某种产品的市场潜力可分为:“大”,“一 般”,“没有”三种。 判别分析的方法很多,我们这里只涉及 Fisher判别方法,且重点放在两组判别问题上。

判别分析方法及其应用效果评估

判别分析方法及其应用效果评估

判别分析方法及其应用效果评估判别分析方法是一种常用的统计分析方法,用于确定分类系统中哪些变量最能有效地区分不同的组别。

它基于一组预测变量(或称为自变量)的输入值,以及一组已知类别(或称为因变量)的输出值,通过构建分类模型来判断新样本属于哪个组别。

本文将介绍判别分析方法的基本原理、常见的判别分析方法及其应用效果评估。

## 一、判别分析方法的基本原理判别分析方法基于贝叶斯决策理论,旨在通过最小化错判率来实现最优分类。

假设有K个已知的类别,以及p个预测变量。

判别分析方法假设预测变量满足多元正态分布,并利用已知类别的样本数据估计每个类别的均值向量和协方差矩阵。

根据这些参数,可以建立判别函数来判断新样本的分类。

判别函数的形式根据具体的判别分析方法而定。

常见的判别分析方法有线性判别分析(LDA)、二次判别分析(QDA)和最近邻判别分析(KNN)等。

这些方法使用不同的数学模型和算法来构建判别函数,具有不同的优势和适用范围。

## 二、常见的判别分析方法及其特点### 1. 线性判别分析(LDA)线性判别分析是一种最常用的判别分析方法。

它假设各类别的协方差矩阵相等,即样本来自同一多元正态分布。

LDA通过计算类别间散布矩阵和类别内散布矩阵的比值来确定最优的判别函数。

LDA的优点是计算简单、效果稳定,并且不受样本数量和维度的限制。

然而,它对样本的分布假设要求较高,如果样本不满足多元正态分布,LDA可能会出现较大偏差。

### 2. 二次判别分析(QDA)二次判别分析是一种放宽了协方差矩阵相等假设的判别分析方法。

QDA假设每个类别的协方差矩阵各不相同,通过计算类别间散布矩阵和类别内散布矩阵的比值来确定最优的判别函数。

相比于LDA,QDA更加灵活,可以适应更加复杂的数据分布。

然而,由于需要估计更多的参数,QDA的计算复杂度较高,并且对样本数量和维度的要求较高。

### 3. 最近邻判别分析(KNN)最近邻判别分析是一种基于样本距离的判别分析方法。

判别分析(2)费希尔判别

判别分析(2)费希尔判别

两总体的Fisher判别法 判别法 两总体的
其中, 其中,S 即
jl
= ∑ ( x Aij − x Aj )( x Ail − x Al ) + ∑ ( x Bij − x Bj )( x Bil − x Bl )
i =1 i =1
na
nb
F = ∑ ∑ c j c l s jl
j =1 l =1
Fisher判别 判别
内容:
1、建立判别准则; 2、建立判别函数 3、回代样本; 4、估计回代的错误率; 5、判别新的样本。
Fisher判别 判别
y 是线性函数, 由于 ( X ) 是线性函数,一般可将 y( X )表示为
(4.2) ) 对于线性函数 y( X ) ,它的几何表示就是空间中 的一条直线或平面,或超平面, 的一条直线或平面,或超平面,如果我们把两 B 看成空间的两个点集, 总体 A、 看成空间的两个点集,该平面所起的 B 分开, 作用就是尽可能将空间两个点集 A 、 分开,如 所示。 图4.1所示。 所示
Fisher判别 判别
Fisher判别 判别
Fisher判别 判别
费希尔判别的基本思想是投影(或降维)
Fisher方法是要找到一个(或一组)投 影轴w使得样本投影到该空间后能 在保证方差最小的情况下,将不同 类的样本很好的分开。并将度量类 别均值之间差别的量称为类间方差 (或类间散布矩阵);而度量这些均值 周围方差的量称为类内方差(或类内 散布矩阵)。Fisher判决的目标就是: 寻找一个或一组投影轴,能够在最 小化类内散布的同时最大化类间布。
两总体的Fisher判别法 判别法 两总体的
两总体的Fisher判别法 判别法 两总体的
max I = max ( ya − yb )

(完整版)判别分析中Fisher判别法的应用

(完整版)判别分析中Fisher判别法的应用

1 绪论1.1课题背景随着社会经济不断发展,科学技术的不断进步,人们已经进入了信息时代,要在大量的信息中获得有科学价值的结果,从而统计方法越来越成为人们必不可少的工具和手段。

多元统计分析是近年来发展迅速的统计分析方法之一,应用于自然科学和社会各个领域,成为探索多元世界强有力的工具。

判别分析是统计分析中的典型代表,判别分析的主要目的是识别一个个体所属类别的情况下有着广泛的应用。

潜在的应用包括预测一个公司是否成功;决定一个学生是否录取;在医疗诊断中,根据病人的多种检查指标判断此病人是否有某种疾病等等。

它是在已知观测对象的分类结果和若干表明观测对象特征的变量值的情况下,建立一定的判别准则,使得利用判别准则对新的观测对象的类别进行判断时,出错的概率很小。

而Fisher判别方法是多元统计分析中判别分析方法的常用方法之一,能在各领域得到应用。

通常用来判别某观测量是属于哪种类型。

在方法的具体实现上,采用国内广泛使用的统计软件SPSS(Statistical Product and Service Solutions),它也是美国SPSS公司在20世纪80年代初开发的国际上最流行的视窗统计软件包之一1.2 Fisher判别法的概述根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。

Fisher 判别法是判别分析中的一种,其思想是投影,Fisher判别的基本思路就是投影,针对P维空间中的某点x=(x1,x2,x3,…,xp)寻找一个能使它降为一维数值的线性函数y(x):()j j xy=x∑C然后应用这个线性函数把P维空间中的已知类别总体以及求知类别归属的样本都变换为一维数据,再根据其间的亲疏程度把未知归属的样本点判定其归属。

这个线性函数应该能够在把P维空间中的所有点转化为一维数值之后,既能最大限度地缩小同类中各个样本点之间的差异,又能最大限度地扩大不同类别中各个样本点之间的差异,这样才可能获得较高的判别效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判别分析公式Fisher线性判别二次判别
判别分析是一种常用的数据分析方法,用于根据已知的类别信息,
将样本数据划分到不同的类别中。

Fisher线性判别和二次判别是两种常
见的判别分析方法,在实际应用中具有广泛的应用价值。

一、Fisher线性判别
Fisher线性判别是一种基于线性变换的判别分析方法,该方法通过
寻找一个合适的投影方向,将样本数据投影到一条直线上,在保持类
别间离散度最大和类别内离散度最小的原则下实现判别。

其判别函数
的计算公式如下:
Fisher(x) = W^T * x
其中,Fisher(x)表示Fisher判别函数,W表示投影方向的权重向量,x表示样本数据。

具体来说,Fisher线性判别的步骤如下:
1. 计算类别内离散度矩阵Sw和类别间离散度矩阵Sb;
2. 计算Fisher准则函数J(W),即J(W) = W^T * Sb * W / (W^T * Sw * W);
3. 求解Fisher准则函数的最大值对应的投影方向W;
4. 将样本数据投影到求得的最优投影方向上。

二、二次判别
二次判别是基于高斯分布的判别分析方法,将样本数据当作高斯分布的观测值,通过估计每个类别的均值向量和协方差矩阵,计算样本数据属于每个类别的概率,并根据概率大小进行判别。

二次判别的判别函数的计算公式如下:
Quadratic(x) = log(P(Ck)) - 0.5 * (x - μk)^T * Σk^-1 * (x - μk)
其中,Quadratic(x)表示二次判别函数,P(Ck)表示类别Ck的先验概率,x表示样本数据,μk表示类别Ck的均值向量,Σk表示类别Ck的协方差矩阵。

具体来说,二次判别的步骤如下:
1. 估计每个类别的均值向量μk和协方差矩阵Σk;
2. 计算每个类别的先验概率P(Ck);
3. 计算判别函数Quadratic(x);
4. 将样本数据划分到概率最大的类别中。

判别分析公式Fisher线性判别和二次判别是常见的判别分析方法,它们通过对样本数据的投影或概率计算,实现对样本数据的判别。

在实际应用中,根据不同的问题和数据特点,选择适当的判别分析方法能够提高分类精度和预测准确性。

总结起来,判别分析公式Fisher线性判别和二次判别是两种常用的判别分析方法。

它们通过对样本数据的投影或概率计算,实现对样本数据的判别。

合理选择判别分析方法,可以提高分类精度和预测准确
性。

在实际应用中,要根据具体问题和数据特点来选择适合的判别分析方法,从而更好地完成数据分析任务。

相关文档
最新文档