fisher判别的基本步骤
判别分析(第4节_Fisher判别法)

第一节 第二节 第三节 第四节 第五节
绪论 距离判别法 贝叶斯判别法 Fisher判别法 判别效果检验问题
第三节 贝叶斯(BAYES)判别法
■
多元正态总体的贝叶斯判别法
设 Gi ~ N p ( (i ) , i )(i 1,2,, k ) ,并假定错判损失相等,先 验概率 q1 , q2 ,, qk ,有时先验概率确定起来不是很明 n qi i 确的,这时可用“样品频率”代替,即可令 。 n
第三节 贝叶斯(BAYES)判别法
其中 ( h ) , h 意义同前,已知后验概率为
P(Gh | x) qh f h ( x)
q f ( x)
i i i 1
k
由于上式中,分母部分为常数,所以有
P(Gh | x) max qh f h ( x) max
同时
1 1 qh f h ( x) qh (2 ) p / 2 | h |1/ 2 exp ( X ( h ) )h ( X (h) ) 2
* 故问题化简为 Z (Gh | x) max . h
ห้องสมุดไป่ตู้
注意:这里取对数可起到简化算式的作用,同时对数 函数是严格单调的,所以取对数不改变原问题的性质。
第三节 贝叶斯(BAYES)判别法
◆ 判别准则 下面分两种不同的情形考虑。
●
假设协方差阵都相等( 1 2 k )
2 2
exp[ y(G x]
i| i 1
k
注意:这意味着 P(Gh | x) max y(Gh | x) max
第三节 贝叶斯(BAYES)判别法
证明 因为 y(Gh | x) ln[qh f h ] ( x) ,其中 ( x) 是ln[ qh f h ]
4-3_Fisher判别

3
13 44.12 15.02 1.08 15.15 103.12 64.8
3
14 54.17 25.03 2.11 25.15 110.14 63.7
3
15 28.07 2.01 0.07 3.02 81.22 68.3
3
待判 50.22 6.66 1.08 22.54 170.6 65.2
.
待判 34.64 7.33 1.11 7.78 95.16 69.3
在此最大特征值所对应的特征向量这里值得注意的是本书有几处利用极值原理求极值时只给出了不要条件的数学推导而有关充分条件的论证省略了因为在实际问题中往往根据问题本身的性质就能肯定有最大值或最小值如果所求的驻点只有一个这时就不需要根据极值存在的充分条件判定它是极大还是极小而就能肯定这唯一的驻点就是所求的最大值或最小值
从而, uBu 的极大值为 。再用 E1 左乘(4.25)式,有
(E1B I)u 0
( 4.27)
由(4.27)式说明 为 E1B 特征值, u 为 E1B 的特征向量。在此
最大特征值所对应的特征向量 u (u1, u2 ,, u p ) 为我们所求结果。
这里值得注意的是,本书有几处利用极值原理求极值时,只
函数后,对于一个新的样品,将它的 p 个指标值代入线性 判别函数(4.19)式中求出U (X) 值,然后根据判别一定
的规则,就可以判别新的样品属于哪个总体。
二、Fisher判别函数的构造
1、针对两个总体的情形
假设有两个总体 G1, G2 ,其均值分别为 μ1 和 μ 2 ,协方差矩阵为 Σ1 和 Σ 2 。当 X Gi 时,我们可以求出 uX 的均值和方差,即
令
k
b (uμi uμ)2 i 1
模式识别FISHER线性判别实验

模式识别FISHER线性判别实验
人工知能领域中的模式识别是计算机实现人类识别物体的能力的一种
技术。
它的主要目的是根据给定模式的样本及其特征,自动识别出新的样
本的特征并做出判断。
其中最著名的技术之一就是FISHER线性判别法。
FISHER线性判别法基于正态分布理论,通过计算样本的统计特征来
分类,它是一种基于参数的最优分类算法。
算法的基本思想是通过计算两
个类别的最大类间差异度,以及最小类内差异度,来有效地分类样本。
具
体而言,FISHER线性判别法即求出一个线性超平面,使这个超平面把样
本区分开来,使样本离类中心向量之间的距离最大,同时使类中心向量之
间的距离最小。
FISHER线性判别法的具体实现过程如下:
1.准备好建立模型所需要的所有数据:训练样本集,其样本特征与对
应的类标号。
2.确定每个类的类中心向量c_1,c_2,…,c_m,其中m为类的数目。
3.根据类中心向量求出类间离散度矩阵S_b和类内离散度矩阵S_w。
4.将S_b与S_w相除,得到S_b/S_w,从而求出矩阵的最大特征值
λ_1及最小特征值λ_n。
5.将最大特征值λ_1进行特征值分解,求出其特征向量w,求出判
定函数:
f(x)=w·x+w_0。
6.根据判定函数,将样本进行分类。
Fisher判别函数

Fisher 判别函数的使用具体步骤Fisher 多类判别模型假定事物由p 个变量描述, 即: x=(p x x x ,...,,21)T该种事物有G 个类型, 从每个类型中顺次抽取p n n n ,...,,21个样品, 共计n=∑=Gi i1n个样品。
即从第g 类取了g n 个样品, g=1,2,⋯, G, 第g 类的第i 个样品, 用向量:gi x =(pgi gi gi x x ,...,,x 21)T (1)( 1) 式中, 第一个下标是变量号, 第二个下标是类型号,第三个下标是样品号。
设判别函数为:T x p p v x v x v x v =+++=...y 2211 (2)其中: V=(p v v v ,...,21)T按照组内差异最小, 组间差异最大同时兼顾的原则, 来确定判别函数系数。
(中间推导过程不在这里介绍了)最终就有个判别函数:,y x V Tj j=1,...,2,1s j = 一般只取前M=min(G- 1,p)个, 即:M j x v x v x v y p pj j j j ,...,2,1,...2211=+++= (3)根据上述M 个判别函数, 可对每一个待判样品做出判别。
),...,,(x 020100p x x x=其过程如下:1、把x0 代入式(3) 中每一个判别函数, 得到M 个数,,...,2,1,...y 202101j 0M j x v x v x v p pj j j =+++=记:TM y y y y ),...,,(020100= 2、把每一类的均值代入式(3)得Gg y y y y G g M j x v x v x v y M gggg pg pg g g g g j g ,...,2,1),,...,,(,...2,1,,...,2,1,...212211====+++=3、计算:∑=-=Mj j j g gy y D 1202)(,从这G 个值中选出最小值:)(min 212g Gg h D D ≤≤=。
费歇尔判别法

费歇尔判别法费歇尔判别法(Fisher's Discriminant Analysis)是一种统计学中的方法,用于寻找两个或多个分类变量中最能有效区分它们的线性组合。
这种方法最初是由英国统计学家罗纳德·费歇尔(Ronald A. Fisher)在1936年所提出。
费歇尔判别法的目标是通过将数据投影到低维空间来确定样本类别之间最明显的分离平面。
这个方法假设所有数据员来自正态分布,这使得它的结果具有很高的概率。
此外,这种方法特别适用于小样本数据,在这种情况下,其它多变量方法往往受到数据不足或对角线矩阵估计的影响。
费歇尔判别法通过将多维数据投影到一维空间上,找到最能表示数据差异的线性变量。
具体步骤如下:1. 定义问题在进行费歇尔判别分析之前,首先需要定义问题。
这个问题可以是不同的变量之间的分类问题,或者是同一变量在不同条件下的分类问题。
例如,可以通过费歇尔判别分析找到两个组的区别,这两个组的特征可以用来预测其他类似两个组。
2. 构造分类变量在对数据进行投影之前,需要将分类变量定义为正态分布。
这种变量通常为两个或更多个。
3. 计算均值和方差计算每个分类变量的均值和方差,以用于后面的投影计算。
4. 计算类内离散度矩阵类内离散度矩阵是指每个类别内所有点与该类别均值之间的距离的累加和。
这个矩阵用来衡量类的内部分散程度,通常使用矩阵的矩阵乘法来进行计算。
5. 计算类间离散度矩阵类间离散度矩阵是指不同类别均值之间的距离的累加和。
这个矩阵用来衡量类别之间的分散程度,也通常使用矩阵的矩阵乘法来进行计算。
6. 计算特征值和特征向量计算类内离散度矩阵和类间离散度矩阵的特征值和特— 1 —征向量。
这些值可以使用线性代数中的方法计算。
一般来说,特征向量是正交(perpendicular)的。
7. 选取最大特征值从计算出的特征值中找到最大特征值,找到最大特征值所对应的特征向量。
这个特征向量就是数据的主要方向,也被称为“判别变量”。
判别分析公式Fisher线性判别二次判别

判别分析公式Fisher线性判别二次判别判别分析是一种常用的数据分析方法,用于根据已知的类别信息,将样本数据划分到不同的类别中。
Fisher线性判别和二次判别是两种常见的判别分析方法,在实际应用中具有广泛的应用价值。
一、Fisher线性判别Fisher线性判别是一种基于线性变换的判别分析方法,该方法通过寻找一个合适的投影方向,将样本数据投影到一条直线上,在保持类别间离散度最大和类别内离散度最小的原则下实现判别。
其判别函数的计算公式如下:Fisher(x) = W^T * x其中,Fisher(x)表示Fisher判别函数,W表示投影方向的权重向量,x表示样本数据。
具体来说,Fisher线性判别的步骤如下:1. 计算类别内离散度矩阵Sw和类别间离散度矩阵Sb;2. 计算Fisher准则函数J(W),即J(W) = W^T * Sb * W / (W^T * Sw * W);3. 求解Fisher准则函数的最大值对应的投影方向W;4. 将样本数据投影到求得的最优投影方向上。
二、二次判别二次判别是基于高斯分布的判别分析方法,将样本数据当作高斯分布的观测值,通过估计每个类别的均值向量和协方差矩阵,计算样本数据属于每个类别的概率,并根据概率大小进行判别。
二次判别的判别函数的计算公式如下:Quadratic(x) = log(P(Ck)) - 0.5 * (x - μk)^T * Σk^-1 * (x - μk)其中,Quadratic(x)表示二次判别函数,P(Ck)表示类别Ck的先验概率,x表示样本数据,μk表示类别Ck的均值向量,Σk表示类别Ck的协方差矩阵。
具体来说,二次判别的步骤如下:1. 估计每个类别的均值向量μk和协方差矩阵Σk;2. 计算每个类别的先验概率P(Ck);3. 计算判别函数Quadratic(x);4. 将样本数据划分到概率最大的类别中。
判别分析公式Fisher线性判别和二次判别是常见的判别分析方法,它们通过对样本数据的投影或概率计算,实现对样本数据的判别。
fisher判别函数

Fisher判别函数,也称为线性判别函数(Linear Discriminant Function),是一种经典的模式识别方法。
它通过将样本投影到一维或低维空间,将不同类别的样本尽可能地区分开来。
一、算法原理:Fisher判别函数基于以下两个假设:1.假设每个类别的样本都服从高斯分布;2.假设不同类别的样本具有相同的协方差矩阵。
Fisher判别函数的目标是找到一个投影方向,使得同一类别的样本在该方向上的投影尽可能紧密,而不同类别的样本在该方向上的投影尽可能分开。
算法步骤如下:(1)计算类内散度矩阵(Within-class Scatter Matrix)Sw,表示每个类别内样本之间的差异。
Sw = Σi=1 to N (Xi - Mi)(Xi - Mi)ᵀ,其中Xi 表示属于类别i 的样本集合,Mi 表示类别i 的样本均值。
(2)计算类间散度矩阵(Between-class Scatter Matrix)Sb,表示不同类别之间样本之间的差异。
Sb = Σi=1 to C Ni(Mi - M)(Mi - M)ᵀ,其中 C 表示类别总数,Ni 表示类别i 中的样本数量,M 表示所有样本的均值。
(3)计算总散度矩阵(Total Scatter Matrix)St,表示所有样本之间的差异。
St =Σi=1 to N (Xi - M)(Xi - M)ᵀ(4)计算投影方向向量w,使得投影后的样本能够最大程度地分开不同类别。
w= arg max(w) (wᵀSb w) / (wᵀSw w),其中w 表示投影方向向量。
(5)根据选择的投影方向向量w,对样本进行投影。
y = wᵀx,其中y 表示投影后的样本,x 表示原始样本。
(6)通过设置一个阈值或使用其他分类算法(如感知机、支持向量机等),将投影后的样本进行分类。
二、优点和局限性:Fisher判别函数具有以下优点:•考虑了类别内和类别间的差异,能够在低维空间中有效地区分不同类别的样本。
Fisher线性判别分析实验(模式识别与人工智能原理实验1)

F i s h e r线性判别分析实验(模式识别与人工智能原理实验1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验1 Fisher 线性判别分析实验一、摘要Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。
Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。
二、算法的基本原理及流程图 1 基本原理(1)W 的确定各类样本均值向量mi样本类内离散度矩阵i S 和总类内离散度矩阵w S12w S S S =+样本类间离散度矩阵b S在投影后的一维空间中,各类样本均值T i i m '= W m 。
样本类内离散度和总类内离散度 T T i i w w S ' = W S W S ' = W S W 。
样本类间离散度T b b S ' = W S W 。
Fisher 准则函数满足两个性质:·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。
·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。
根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W :-1w 12W = S (m - m ) 。
(2)阈值的确定实验中采取的方法:012y = (m ' + m ') / 2。
(3)Fisher 线性判别的决策规则T x S (x m)(x m ), 1,2ii ii X i ∈=--=∑T1212S (m m )(m m )b =--对于某一个未知类别的样本向量x,如果y=W T·x>y0,则x∈w1;否则x∈w2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fisher判别是一种基于线性判别分析的分类方法,用于将样本分为不同的类别。
其基本步骤如下:
1. 确定判别变量:首先需要确定用于判别的变量,即用于分类的特征。
2. 计算判别函数:根据样本数据,计算出判别函数,即用于将样本分为不同类别的函数。
3. 确定判别类别:根据判别函数,将样本分为不同的类别。
4. 计算判别准确率:计算分类准确率,即正确分类的样本数与总样本数之比。
5. 优化判别函数:根据判别准确率,调整判别函数,以提高分类准确率。
6. 重复步骤3~5:重复以上步骤,直到达到所需的分类准确率。
在Fisher判别中,判别函数是基于Fisher线性判别的,即对于每个类别,计算出一个线性函数,使得属于该类别的样本与属于其他类别的样本的距离最大化。
这个过程可以通过矩阵运算和求导来实现。
总之,Fisher判别是一种基于线性判别分析的分类方法,其基本步骤包括确定判别变量、计算判别函数、确定判别类别、计算判别准确率、优化判别函数和重复步骤3~5,直到达到所需的分类准确率。