神经元及突触特异标记物汇总

合集下载

神经元Marker汇总

神经元Marker汇总

神经元Marker汇总神经元是神经系统的结构与功能单位之一。

它占了神经系统约10%,由树突、轴突、髓鞘、细胞核组成。

神经元具有感受刺激和传导兴奋的功能。

树突多呈树状分支,它可接受刺激并将冲动传向胞体;轴突呈细索状,末端常有分支,称轴突终末,轴突将冲动从胞体传向终末。

通常一个神经元有一个至多个树突,但轴突只有一条。

神经元一方面接受来自其它特定细胞的信息输入,另一方面其细长的轴突又会定向投射到靶细胞。

他们的联络方式又会随脑的不同功能变化出现调整,共同完成脑的各种高级指令。

神经元是一种高度分化的细胞,成熟的神经元主要来源于神经干细胞的分化,神经干细胞在脑源性神经营养因子、神经营养素诱导因子的刺激下进一步分化成神经元前体细胞,最终又分化成神经元。

这一过程也可以通过转基因的方法,如在干细胞中转染相应的转录因子Sox2 、Wnt、Nkx2.1可分化出相应的神经元。

最常见的成熟神经元Marker 是β3-Tubulin、Neurofilament、NeuroN 。

β3-Tubulin和Neurofilament分别属于细胞骨架的微管蛋白和中间丝蛋白,NeuroN属于神经元细胞核蛋白。

Doublecortin双皮质素是与微管相关的蛋白,可稳定微管并使其成束。

保守的双皮质素结构域介导与微管相互作用,并且,有趣的是,大部分错义突变簇集在这个结构域中。

激酶JNK、CDK5 和PKA 磷酸化双皮质素。

JNK 磷酸化Thr321、Thr331 和Ser334,而PKA 磷酸化Ser47并且CDK5 磷酸化Ser297。

Ser297 磷酸化的双皮质素对微管的亲和力降低。

另外,Ser297 的突变会导致迁移缺陷。

双皮质素的突变造成无脑回症(光滑脑),这是一种以癫痫和精神发育迟滞为特征的神经元迁移异常症状。

TBR1T 盒脑蛋白1 (TBR1) 是脊椎动物胚胎发育过程中的一个重要转录因子。

作为T 盒转录因子家族的一员,TBR1 在有丝分裂后期谷氨酸能投射神经元中表达。

阿尔茨海默病生物学标志物

阿尔茨海默病生物学标志物
• 目前通过多项指标联合诊断,AD生物标记物 的检测性能已经达到临床要求。
CSF中的生物标记物
• CSF直接与中枢神经系统的细胞外空间联系,大脑 的生物学变化将最先在CSF中反映出来,因此CSF 成为研究AD生物标记物最多的一种标本类型
– β淀粉样蛋白(amyloidβpeptide,Aβ) – Tau蛋白 – β位点淀粉样蛋白前体裂解酶1(β-site APP-cleaving
• APP在BACE1作用下裂解成可溶性β-APP(sAPPβ)和C99 片段,然后C99片段在γ-分泌酶(另外一种APP裂解过程中 的关键酶)作用下裂解成Aβ片段包括Aβ42、40和更小的片 段。
APP
sAPPβ
BACE1
C99
γ-分泌酶
Aβ42 Aβ40
β位点淀粉样蛋白前体裂解酶1 (β-site APP-cleavingenzyme 1,BACE1)
(Aβ40、Aβ42)
含36~43个氨基酸的多肽
Aβ寡聚体
神经毒性,诱导细胞凋亡
β淀粉样蛋白(amyloidβpeptide,Aβ)
• AD患者CSF中:
– Aβ42显著水平下降,甚至在MCI阶段就可以见 到Aβ42水平下降
– Aβ40水平保持不变 – Aβ42/ Aβ40比值明显降低
Tau蛋白
• 该人群可能是处于AD临床前期阶段的患者,大脑内部AD相 关的病理改变已经发生,但认知功能仍正常。
• 在健康者中T-Tau/Aβ42和P-Tau181/Aβ42比值越高,认知 功能越容易下降。
• P-Tau181异常是预示认知功能下降最敏感的一项指标
• P-Tau231水平在AD患者CSF中随时间呈线性下 降,PTau231在AD晚期也会下降

神经元常用标记物

神经元常用标记物

神经元轴突标志物Tau:Neuron Type of MAP; helps maintain structure of the axon----------------------------------------------------------------------------神经元树突标志物Drebrin、MAP、SAP102微管相关蛋白Microtubule-associated protein-2(MAP-2):Neuron Dendrite-specific MAP; protein found specifically in dendritic branching of neuron 是组成神经元细胞骨架的重要组成成分,包括:MAP5、MAP1.2和MAP1(x)三种不同类型。

在神经系统发育、形成和再生过程的不同时期扮演着重要的角色。

其中MAP5为早期微观相关蛋白,在胚胎期和新生动物大脑中有较高表达,并随大脑的逐渐成熟而退化,对神经元突起的生长具有重要的引导作用。

MAP2包括三种亚型:MAP2a、MAP2b和MAP2c。

其中MAP2b和MAP2c出现较早。

随着年龄的增长MAP2被组织蛋白酶D所降解,在不同类型的神经元中表达量存在差异。

----------------------------------------------------------------------------------------------神经元早期标志物Tubulin、b-4tubulin :Neuron Important structural protein for neuron; identifies differentiated neuron Nervous System微管蛋白为球形分子, 分为两种类型:a微管蛋白(a-tubulin)和β微管蛋白(β-tubulin), 这两种微管蛋白具有相似的三维结构, 能够紧密地结合成二聚体, 作为微管组装的亚基,能够聚合并且参与细胞分裂。

神经生物学—2、神经生物学名词解释总结

神经生物学—2、神经生物学名词解释总结

神经生物学名词解释总结第九章神经系统第一节神经元和神经胶质细胞01.nerve impulse(神经冲动)沿神经纤维传导的一个个动作电位称为神经冲动。

02.axoplastic transport(轴浆运输)轴突内的轴浆经常流动,进行性物质的运输和交换,称为轴浆运输。

第二节神经元之间的信息传递03. synapse(突触)神经元间相互“接触”并传递信息的部位,根据媒介物性质的不同可分为化学性突触和电突触。

04.excitatory postsynaptic potential, EPSP(兴奋性突触后电位)突触前膜释放的兴奋性神经递质与突触后膜受体结合,导致突触后膜去极化,产生兴奋性突触后电位。

05. inhibitory postsynaptic potential, IPSP(抑制性突触后电位)突触前膜释放的抑制性神经递质与突触后膜受体结合,导致突触后膜超极化,产生抑制性突触后电位。

06. after discharge(后放)在反射活动中,当刺激停止后,传出神经仍可在一定时间内发放神经冲动的现象。

07. non-directed synaptic transmission(非定向突触传递)神经递质从轴突末梢的曲张体释出后通过弥散作用到达效应细胞,与其相应的膜受体结合而传递信息。

第三节神经递质与受体08.neurotransmitter(神经递质)由神经元合成,突触前膜释放,特异性作用于突触后膜受体,参与突触传递的化学物质称为神经递质。

09.neurotransmitter co-existence(递质共存)两种或两种以上的递质可以共存于同一神经元内的现象称为递质共存。

第四节神经反射10.nonconditioned reflex(非条件反射)指在出生后无需训练先天就具有的反射,包括防御反射、食物反射、性反射等。

11. conditioned reflex(条件反射)指在出生后通过训练而在后天形成的反射,它可以建立,也能消退,数量可以不断增加。

神经元标记物

神经元标记物

首页> 实验材料和方法> 神经元标记物神经元标记物1. Patima Tanapat Ph. D.patima dot tanapat at gmail dot comPrinceton, New Jersey, United States译者1. 王秀英博士mary at labome dot com美国新泽西州普林斯顿合原研究有限责任公司(Synatom Research)DOI日期更新: 2013-10-19; 原始版: 2013-06-05引用实验材料和方法2013;3:196简介神经元是大脑的基本信号组件。

因此,一切尝试从整体上了解大脑是如何工作的基本组成部分都要从研究功能不同的各类型神经细胞开始。

为此,免疫组化标记已逐渐成为神经科学家最有价值的工具之一。

利用各种细胞组分的抗体,研究者能够识别表达神经细胞表型的细胞,而且,就其形态特征和特定蛋白表达收集信息。

在下面的章节中,将讨论可以区分不同神经元细胞类型的方法。

此外,由于能够将神经元和其他类型脑细胞区分开来非常重要,也会简要描述这些其他类型细胞。

最后,免疫组织化学作为一种工具用于检验神经元群也会有讨论,重点介绍最常用的标记,以及在选择一个标记为一个特定的研究对象时一些关键的考虑因素。

大脑的细胞神经元神经元由四个不同形态的部分构成:细胞体(躯干)、树突、轴突和突触前末梢。

这些高度特化的细胞结构使它们能够传播电信号或动作电位,是神经元之间通信的基础。

细胞体是细胞代谢的中心。

它包含含有细胞DNA的细胞核和其他细胞器。

从细胞体延伸出两种突起。

第一种类型,称为树突,接收传入的信号,而第二种类型,轴突,输出传出的信号。

通常情况下,神经元有多个树突。

每个树突反过来又都可以包含成千上万的棘状突起,是从其他神经元的轴突输入信号的节点。

(应该指出的是轴突也可能突触于胞体或轴突上,尽管这种现象并不常见。

)轴突从细胞体上叫做轴突丘的区域延伸出来,负责动作电位的传播。

免疫组化常用标记物

免疫组化常用标记物

免疫组化常用标记物一、常用标志物1、CD15(LeuM1)-——(阳性部位:细胞膜).就是一种由半乳糖、岩藻糖与N—乙酰葡萄糖组成得碳水化合物抗原,又称半抗原χ,就是粒/单核细胞相关抗原.免疫组织化学表达:成熟粒细胞、激活得淋巴细胞(主要就是T淋巴细胞)、R-S细胞、大多数腺癌等.2、癌胚抗原(carcinoembryonic antigen,CEA)(CD66e)——-(阳性部位:细胞膜/浆).癌胚抗原就是表达于胎儿上皮细胞得一种糖蛋白,分子量为180kDa。

存于某些恶性肿瘤组织尤其就是内胚层来源发肿瘤中,大多数胃肠道(包括胰腺)与肺腺癌均有表达,少量成人上皮细胞与良性肿瘤亦可表达。

CEA主要用于标记上皮性肿瘤,尤其就是腺上皮来源得腺癌。

3、嗜铬素A(chromogranin A,CgA)—-—(阳性部位:细胞浆)。

嗜铬素就是位于神经分泌颗粒内得酸性糖蛋白家族,就是一组可溶性酸性蛋白,分子量为76~120 kDa,分布广泛。

含量最丰富得就是嗜铬素A,另两个就是嗜铬素B与嗜铬素C。

几乎所有得神经内分泌肿瘤中均可检测到嗜铬素.嗜铬素A不仅存在于神经内分泌细胞得分泌颗粒中,也广泛分布于所有含有颗粒得内分泌细胞与神经内分泌细胞来源得肿瘤细胞。

此抗体可以识别嗜铬素A抗原羧基末端得片段,而不与氨基末端得片段反应,主要用于标记神经内分泌细胞及其来源得肿瘤。

对小细胞癌进行抗原修复可提高检测得敏感性.4、细胞角蛋白(cytokeratin pan,广谱CK)--—AE1/AE3(阳性部位:细胞浆)。

此抗体可以识别绝大部分酸性细胞角蛋白(Ⅰ型/低分子量)与碱性细胞角蛋白(Ⅱ型/高分子量)。

用于标记上皮及上皮来源得肿瘤,特别就是对鉴别与判断转移性肿瘤就是否为上皮源性具有一定得意义。

5、细胞角蛋白5/6(cytokeratin 5/6,CK5/6)——-(阳性部位:细胞浆)。

在正常组织中,鳞状上皮与导管上皮得基底细胞以及部分得鳞状上皮生发层细胞、肌上皮细胞与间皮细胞阳性,腺上皮细胞阴性.因此,可用于鳞癌与腺癌、间皮瘤与腺癌得鉴别诊断.支气管上皮基底细胞、间皮;鳞癌、大细胞癌、移行细胞癌、间皮瘤阳性。

神经生物学总结

神经生物学总结

1、神经元的定义、分类:神经元又称神经细胞,是构成神经系统结构和功能的基本单位,由细胞体和细胞突起构成。

细胞体位于脑、脊髓和神经节中,细胞突起可延伸至全身各器官和组织中。

神经元分类:①根据神经元数目分类:假单极神经元:从胞体发出一个突起,在离胞体不远处呈T型分为两支,因此,称假单极神经元。

其中一支突起细长,结构与轴突相同,伸向周围,称周围突,其功能相当于树突,能感受刺激并将冲动传向胞体;另一分支伸向中枢,称中枢突,将冲动传给另一个神经元,相当于轴突。

双极神经元:从胞体两端各发出一个突起,一个是树突,另一个是轴突。

多极神经元:有一个轴突和多个树突,是人体中数量最多的一种神经元,多极神经元又可依轴突的长短和分支情况分为两型:①高尔基Ⅰ型神经元,其胞体大,轴突长,在行径途中发出侧支,如脊髓前角运动神经元;②高尔基Ⅱ型神经元,其胞体小,轴突短,在胞体附近发出侧支。

②根据神经元的功能:感觉神经元:也称传入神经元是传导感觉冲动的,胞体在脑、脊神经节内,多为假单极神经元。

其突起构成周围神经的传入神经。

神经纤维终末在皮肤和肌肉等部位形成感受器。

运动神经元:也称传出神经元,是传导运动冲动的神经元,多为多极神经元。

胞体位于中枢神经系统的灰质和植物神经节内,其突起构成传出神经纤维。

神经纤维终未,分布在肌组织和腺体,形成效应器。

中间神经元:也称联合神经元,是在神经元之间起联络作用的神经元,是多极神经元,人类神经系统中,最多的神经元,构成中枢神经系统内的复杂网络。

胞体位于中枢神经系统的灰质内,其突起一般也位于灰质。

③根据神经元所释放的神经递质不同分类:胆碱能神经元:该神经元的神经末梢能释放乙酸胆碱。

胺能神经元:能释放单胺类神经递质:肾上腺素、去甲肾上腺素、多巴胺、5-羟色胺、组胺等。

如能释放肾上腺素的称为肾上腺素能神经元,如交感神经节内的神经元等。

氨基酸能神经元: 能释放谷氨酸、γ-氨基丁酸等。

肽能神经元:能释放脑啡肽、P物质等肽类物质,这类神经元所释放的物质总称为神经肽。

神经生物学——突触

神经生物学——突触

2. 突触的易化 突触后易化:突触后膜EPSP →膜电位靠近阈电位水平→ 突触后易化 易爆发动作电位。 突触前易化:发生在突触前 突触前易化 膜,结构基础为轴-轴突触。 到达末梢A的动作电位时程 ↑ → Ca2+ 通 道 开 放 时 间 ↑ → EPSP↑→ 突 触 后 神 经 元 的兴奋性升高。 A
(2) 突触前抑制
抑制发生在突触前膜 突触前膜,结构基础为轴-轴突触 突触前膜 轴 轴突触,减少兴奋性递 质的释放,使神经冲动传到该突触时不易或不能引起突触后神经 元兴奋(EPSP减小或消失)。一般存在于感觉传入系统中。 末梢B兴奋时释放某种递质→使末梢A去极化→传到末梢A的动 作电位幅度↓ →进入末梢A的Ca2+数量↓ →末梢A释放的兴奋性 递质↓ →突触后膜的EPSP ↓。
回返性抑制( ② 回返性抑制(recurrent inhibition) )
某一中枢的神经元兴奋时,其侧支兴奋另一抑制性中间神经 元,后者兴奋冲动经轴突回返来又抑制原先发动兴奋的神经元及 同一中枢的其他神经元。 脊髓前角神经元→闰绍细胞→回返轴突释放甘氨酸→抑制原 先发动兴奋的神经元和其他神经元,防止过度兴奋,协调各神经 元的活动(负反馈)。 甘氨酸受体拮抗剂士的 宁或破伤风毒素破坏 Renshaw’s 细 胞 的 功 能 → 强 烈的肌痉挛。 意义:使神经元的活动 能及时终止,同一中枢许多 神经元的活动步调一致。
(七)突触的可塑性(plasticity)
突触的可塑性:突触传递的功能可发生较长时程的增强或减弱。 突触的可塑性 在学习和记忆等脑的高级功能中有特别重要的意义。 1. 强直后增强 (posttetanic potentiation): 当突触前末梢接受一短串强直性刺激后,突触后神经元的突触后 电位发生明显增强现象。持续60 s之久。 Ca2+在突触前神经元内积累→释放递质增多。 2. 习惯化和敏感化: 习惯化和敏感化: 习惯化(habituation) :当较为温和的刺激一遍又一遍地重复时, 习惯化 突触对刺激的反应逐渐减弱甚至消失。 重复刺激→ Ca2+通道逐渐失活→ Ca2+内流↓ →释放递质↓。 敏感化(sensitization) :重复性刺激(尤其是有害刺激)使突触 敏感化 对刺激的反应性增强,传递效能增强。 Ca2+内流↑ →释放递质↑。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关疾病:∙唾液腺肿瘤∙脑损伤把最近看过的神经生物学研究中的常用标志物作一总结,与大家分享每一类列举了常用标志物,有的给出了解释和用途。

神经元轴突标志物Tau:Neuron Type of MAP; helps maintain structure of the axon----------------------------------------------------------------------------神经元树突标志物Drebrin、MAP、SAP102微管相关蛋白Microtubule-associated protein-2(MAP-2):Neuron Dendrite-specific MAP; protein found specifically in dendritic branching of neuron 是组成神经元细胞骨架的重要组成成分,包括:MAP5、MAP1.2和MAP1三种不同类型。

在神经系统发育、形成和再生过程的不同时期扮演着重要的角色。

其中MAP5为早期微观相关蛋白,在胚胎期和新生动物大脑中有较高表达,并随大脑的逐渐成熟而退化,对神经元突起的生长具有重要的引导作用。

MAP2包括三种亚型:MAP2a、MAP2b和MAP2c。

其中MAP2b和MAP2c 出现较早。

随着年龄的增长MAP2被组织蛋白酶D所降解,在不同类型的神经元中表达量存在差异。

----------------------------------------------------------------------------------------------神经元早期标志物Tubulin、b-4tubulin :Neuron Important structural protein for neuron; identifies differentiated neuron Nervous System微管蛋白为球形分子, 分为两种类型:a微管蛋白(a-tubulin)和β微管蛋白(β-tubulin), 这两种微管蛋白具有相似的三维结构, 能够紧密地结合成二聚体, 作为微管组装的亚基,能够聚合并且参与细胞分裂。

a和β微管蛋白各有一个GTP结合位点, 位于a亚基上的GTP结合位点, 是不可逆的结合位点,结合上去的GTP不能被水解,也不能被GDP替换。

位于β亚基上的GTP结合位点结合GTP后能够被水解成GDP,所以这个位点又称为可交换的位点(exchangeable site,E位点)。

β-III Tubulin又名tubulin β-4,是原始神经上皮中所表达的最早的神经元标志物之一。

其作为神经元特有标志物,被广泛应用于神经生物学研究。

Noggin:Neuron A neuron-specific gene expressed during the development of neuronsNeurosphere Embryoid body (E:ES Cluster of primitive neural cells in culture of differentiating ES cells; indicates presence of early neurons and glia-----------------------------------------------------------------------------------------星型胶质细胞标志物Astrocyte、S-100、Microglia MarkersGlial fibrillary acidic protein (GFAP) :Astrocyte Protein specifically produced by astrocyte属于三型中间丝蛋白家族成员,在星型胶质细胞中大量特异性表达。

在外周神经系统中的卫星细胞和部分雪旺氏细胞中也有少量表达。

神经干细胞也会频繁并大量的表达GFAP。

因此,GFAP抗体经常被作为星型胶质细胞的标志物用于神经生物学研究。

另外,对于一些来源于星型胶质细胞的脑源性肿瘤,GFAP 的表达量也较高。

最近研究表明:在位于肝脏的枯否细胞、镜上皮细胞、唾液腺肿瘤细胞和红细胞中亦有GFAP的表达。

-------------------------------------------------------------------------------------------少突胶质细胞标志物Myelin basic protein (MP:Oligodendrocyte Protein produced by mature oligodendrocytes; located in the myelin sheath surrounding neuronal structures 髓磷脂Myelin/oligodendrocyte specific protein (MOSP)是由中枢神经系统中少突胶质细胞和外周神经系统中雪旺氏细胞产生特殊蛋白质。

是形成髓鞘的主要成分,对于引导神经冲动的传递起着致关重要的作用。

多年来,关于髓鞘的形成机理和与其相关的一些先天性疾病的发病机制一直是众多科学家关注的重点。

如:多重硬化症和脑白质营养不良等,都与神经系统的去髓鞘化相关。

O4:Oligodendrocyte Cell-surface marker on immature, developing oligodendrocyteO1:Oligodendrocyte Cell-surface marker that characterizes mature oligodendrocyte-----------------------------------------------------------------------------------细胞周期抗凋亡蛋白/ 存活素CNPase、OSP、SurvivinSurvivin:是细胞循环周期中G2/M期表达的一种抗凋亡蛋白。

在有丝分裂初期,Survivin与微管之间相互作用,参与调节纺锤体的动态形成。

阻断Survivin与微管之间相互作用将导致Survivin抗凋亡作用的缺失,致使有丝分裂期间caspase 3的活性升高而导致凋亡。

另外,在大脑受到创伤性损伤后,Survivin会在神经组织中大量表达。

最近研究表明:Survivin与NeuN和PCNA一起共同表达,对于脑损伤后调节神经细胞的增殖性反应起着重要的作用。

-----------------------------------------------------------------------------------------------轴突引导/ Ephs Agrin、BAIAP2、Doublecortin、EphA、EphB、GAP43、Growth Gone、CD56、NRP2、Neuroserpin、P53 在神经系统发育过程中,神经元轴突在到达其相应靶标之前通常需要穿越较长的距离。

位于轴突顶端的生长锥能够敏锐的感知来自周围各种吸引和排斥信息分子的引导,具有高度的能动性。

而这些信息分子可能分别是固定的或弥散的、临近的或长距离的。

因此,在众多复杂信息交错存在的情况下,轴突是如何精确地到达靶标与相应的神经元建立联系,并最终形成网络;在胚胎分化过程中,机体是如何实现整个过程的精确调控;始终是神经生物学研究的重点之一。

Ephs受体家族是已知最为庞大的酪氨酸激酶受体家族。

Ephrins(及其相关受体Ephs)为膜相关蛋白,可分为两种类型: Ephrin-As 和Ephrin-Bs。

其中Ephrin-As为锚蛋白,属于GPI通路相关蛋白,而Ephrin-Bs则属于跨膜蛋白。

研究表明:不同类型Ephrins和Ephs 间的相互作用存在着双向地交互性,在细胞间信息传递过程中扮演着重要的角色。

这对于神经组织的发育,尤其在轴突引导、神经网络的形成方面具有十分重要的意义。

因此,近年来对于Ephrins / Ephs方面的研究始终是神经发育学领域的研究热点。

------------------------------------------------------------------------------------------------神经干细胞标志物Aggrecan、Bmp2、CNTF、EMX2、VimentinNestin: Nestin是VI型中间丝蛋白60,61,尽管它主要表达在中枢神经系统的干细胞上,它几乎不在成熟中枢神经细胞上表达。

Nestin在非神经元干细胞上也表达,例如胰岛祖细胞70-72和造血前体细胞。

Nestin Neural progenitor Intermediate filament structural protein expressed in primitiveneural tissueCD133: CD133, 是120kDa糖基化蛋白,包括5个跨膜结构域,最初是通过AC133单抗鉴定的,它能识别人HSCs的CD34+亚类29,30。

一种CD133异构体AC133-2, 最近已经被克隆并鉴定为可被AC133抗体识别的原始表面抗原。

CD133可以作为用CD34筛选HSC和体外扩增的补充。

CD133+富集的亚类可以以同CD34+ 富集的亚类扩增的方式扩增,从而可保留多系增殖的能力。

最近的研究为CD133的表达不限于原始血细胞提供了证据,同时也确定了非造血组织中一类独特的细胞群体。

来源于外周血的CD133+ 可被体外诱导分化为内皮细胞。

并且,can be induced to differentiate into endothelial cells in vitro.并且,人的神经干细胞用抗CD133抗体可被直接分离。

CD133 Neural stem cell, HSC Cell-surface protein that identifies neural stem cells, which give rise to neurons and glial cellsPSA-NCAM (Polysialic acid-neural cell adhesion molecule): 胚胎时期的NCAM和PSA-NCAM经常高唾液酸化,在神经元发育中起重要作用。

74 PSA-NCAM可能和突触的重排和可塑性有关。

75在成年,PSA-NCAM的表达限制在保留可塑性的区域。

76神经元限制性的前体细胞可由高表达PSA-NCAM而鉴定,它们可经历自我更新和分化为多种表型的神经元。

相关文档
最新文档