1.1.2简单组合体的结构特征
新课标人教A版高中数学必修二课程目标细化

高中数学必修二课程纲要(细化)一、课程目标(一)空间几何体1、认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2、能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.3、会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4、会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5、了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(二)点、直线、平面之间的位置关系1、理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理 2:过不在同一条直线上的三点,有且只有一个平面.◆公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理 4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.2、以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定. 理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3、能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(三)直线与方程1、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
2011年高中数学必修2各个版本教材区别(终稿)

人教A 人教B 北师大苏教第一单元空间几何体第一章空间几何体1.1 空间几何体的结构1.1.1柱、锥、台、球的结构特征:棱柱、棱锥、四面体、棱台、圆柱、圆锥、圆台、球1.1.2简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1中心投影与平行投影:投影、投影面、投影线、中心投影、平行投影1.2.2空间几何体的三视图:正视图、侧视图、俯视图1.2.3空间几何体的直观图:斜二测画法1.3 空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积1.3.2球的体积和表面积探究与发现:祖暅原理与柱体、锥体、球体的体积备注:1.三视图的名称;2.人教A没有正(斜、直)棱柱、正棱锥(台的概念)、平行六面体的概念;北师大没斜棱柱、平行六面体的概念的概念;苏教在1.2.3提到平行六面体、直平行六面体。
在1.3.1提到正(直)棱柱、正棱锥(台的概念);3.北师大版和苏教版没几何体的体积和面积;4.人教B在1.1.2和1.1.3中涉及求基本量求解的题,特别是球.调整时注意增加这方面题5.邀人教B和北师大两个版本.第一单元空间几何体第一章立体几何初步1.1 空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征:正(斜、直)棱柱、正棱锥、正棱台1.1.3圆柱、圆锥、圆台和球:球的大圆、小圆、直角三角形1.1.4投影与直观图:平行投影的性质、斜二测画法的规则、中心投影1.1.5三视图:主视图、俯视图、左视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7棱柱、棱锥、棱台和球的体积第一单元简单几何体、直观图、三视图第一章立体几何初步1.1简单旋转体:球、圆柱、圆锥、圆台1.2简单多面体:棱柱、棱锥、棱台2.1直观图、斜二测画法:中心投影与平行投影1.3三视图1.3.1简单组合体的三视图:①三视图中的虚线;②简单组合体;③简单组合体的三视图:主视图、俯视图、左视图1.3.2有三视图还原成实物图第一单元空间几何体第一章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影:1.投影与中心投影的含义与特征 2.视图:主视图(正视图)、俯视图、左视图1.1.4直观图的画法:1.消点的定义;2.斜二测画法的规则第二单元线、平面平行的判定及其性质(包含点、线、面间的位置关系第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1平面:①公理1、2、3;②习题出现公理2(不共线的三点确定一个平面)的3个推论.2.1.2空间中直线与直线之间的位置关系①共面直线(相交直线,平行直线);②公理4(平行线的传递性);③等角定理;④异面直线及其夹角.2.1.3空间中直线与平面之间的位置关系①直线在平面内;②直线与平面相交;③直线与平面平行2.1.4平面与平面之间的位置关系①两个平面平行②两个平面相交2.2 直线、平面平行的判定及其性质2.2.1直线与平面平行的判定:判定定理2.2.2平面与平面平行的判定:判定定理2.2.3直线与平面平行的性质:性质定理2.2.4平面与平面平行的性质:性质定理备注:1.人教B没异面直线所成角的概念,北师大提到异面直线所成的角但不要求计算,能观察即可;2.人教B中的①⑤⑥和其他版本有区别.3.北师大和苏教版本单元还有垂直关系.4.人A、人B、苏教用,⊂⊄,北师大用⊂≠、/⊆5,邀人教A,北师大和苏教用人教A第2、3单元调整第二单元平面的基本性质和空间中的平行关系1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论:①点线基本性质:连接两点的线中,线段最短;过两点有且只有一条直线;②平面的三条基本性质(公理)及3条推论③共面与异面直线1.2.2空间中的平行关系:①平行公理②基本性质(公理)4(平行线的传递性);③等角定理;④直线与平面平行:判定定理与性质定理⑤平面与平面平行:判定定理及推论、性质定理.⑥两条直线被三个平行平面所截,截得的对应线段成比例第二单元空间图形基本关系与公理及平行、垂直关系1.4空间图形的基本关系与公理1.4.1空间图形基本关系的认识:①点与线的位置关系;②点与面的位置关系;③空间两条直线的位置关系:平行、相交、异面;④面面位置关系:平行、相交.1.4.2空间图形的公理①定理1、2、3、4②习题出现公理2(不共线的三点确定一个平面)的3个推论.③等角定理④异面直线所成的角1.5平行关系1.5.1平行关系的判定①直线与平面平行的判定:判定定理②平面与平面平行的判定:判定定理1.5.2平行关系的性质①直线与平面平行的性质:性质定理②平面与平面平行的性质:性质定理1.6垂直关系1.6.1垂直关系的判定①直线与平面垂直的判定:判定定理②平面与平面垂直的判定:①二面角,二面角的棱,二面角的面,二面角的平面角,直二面角②:判定定理1.6.2垂直关系的性质第二单元空间点、线、面的位置关系1.2点、线、面之间的位置关系1.2.1平面的基本性质①公理1、2、3;②公理3(不共线的三点确定一个平面)的3个推论.1.2.2 空间两条直线的位置关系①公理4:平行直线的传递性②等角定理;③异面直线及其所成的角1.2.3直线与平面的位置关系:①直线与平面平行:判定定理、性质定理;②直线与平面垂直:判定定理、性质定理、点到平面的距离、直线到平面的距离、直线与平面所成的角1.2.4平面与平面的位置关系:①两个平面平行的判定定理②两个平面平行的性质定理、公垂线、公垂线段、两个平行平面间的距离③半平面,二面角,二面角的棱,二面角的面,二面角的平面角,直二面角④平面与平面垂直的判定定理⑤平面与平面垂直的性质定理截式、两点式、截距式②.直线方程的一般形式2.2.3两直线的位置关系①两直线相交、平行与重合的条件:系数判断法、斜率判断法②两直线垂直的条件:系数判断法、斜率判断法2.2.4点到直线的距离①点到直线距离②平行线间的距离第五单元圆与方程第四章圆的方程4.1圆的方程4.1.1圆的标准方程4.1.2圆的一般方程4.2.1直线与圆的位置关系:①相交、相切、相离②判断方法:圆心到直线的距离和半径的关系; 判断4.2.2圆与圆的位置关系:①相离、外切、相交、内切、内含②判断方法:圆心距和半径和(差); 判断4.2.3直线与圆的方程的应用4.3.1空间直角坐标系4.3.2空间两点间的距离公式备注:邀人教A第五单元圆与方程2.3.1圆的标准版方程:)2.3.2圆的一般方程:)2.3.3直线与圆的位置关系:①相交、相切、相离②判断方法:圆心到直线的距离和半径的关系;判断2.3.4圆与圆的位置关系:①相离、外切、相交、内切、内含②判断方法:圆心距和半径和(差); 判断2.4.1空间直角坐标系2.4.2空间两点间的距离公式第五单元圆与圆的方程、空间直角坐标系2.2圆与圆的方程2.2.1圆的标准方程:中点坐标2.2.2圆的一般方程2.2.3直线与圆、圆与圆的位置关系2.3.1空间直角坐标系的建立2.3.2空间直角坐标系中点的坐标2.3.3空间两点间的距离公式第五单元圆与方程、空间直角坐标系2.2圆与方程2.2.1圆的方程:圆的标准方程、圆的一般方程2.2.2直线与圆的位置关系:①相交、相切、相离②判断方法:圆心到直线的距离和半径的关系;判断2.2.3圆与圆的位置关系:①相离、外切、相交、内切、内含②判断方法:圆心距和半径和(差);判断2.3.1空间直角坐标系2.3.2空间两点间的距离第六单元必修2综合测试。
1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征

【提升总结】 如何描述圆锥的几何结构特征? (1)底面是圆面. (2)侧面展开图是以母线长为半径的扇形面. (3)母线相交于顶点. (4)平行于底面的截面是与底面平行且半径不相等 的圆面. (5)轴截面是等腰三角形面.
探究点3 圆台的结构特征
圆柱、圆锥可以看作是由矩 形或三角形绕其一边所在直 线旋转而成,圆台是否也可 看成是某图形绕轴旋转而成?
经理杨卫勇等嘉宾出席活动,,第二条 本章程适用于郑州轨道工程职业学院普通全日制专科层次招生工作,陕西兵马俑
大雁塔 华清池陕西羊肉泡馍
上海旗袍秀陕西与上
海师生分别进行了课堂展示,课堂形式多样,创新性强,效果佳,史松作词、钟新能作曲的《母亲之歌》跃然唱响,余声绕梁幸福家园关爱母系唱响母亲之歌大型公益活动首次为地球村生活的50后、
2.由简单几何体截去或者挖出一部分组成,如图.
但实际上,外教一直都是我国教育行业稀缺的人才资源,具有外教资格、拥有纯正英语口语、获得工作签证的合法外教数量十分稀缺,远远不能满足行业需求,尤其是在三四线及开外的城市,外教资源
和资质问题更加突出,其次是连接教育的模式、环境和阶段,E PLUS北外壹佳英语为学员打造了线上与线下、教师主导与自主学习、实时与非实时、短期与长期、一对一与一对多等相结合的模式,创
(5)轴截面是矩形面. 圆柱: 以矩形的一边所在直线为旋转轴,其余三边旋转 形成的面所围成的旋转体叫做圆柱.
轴:旋转轴叫做圆柱的轴;
底面
底面:垂直于轴的边
侧面
旋转而成的圆面叫做
圆柱的底面;
侧面:平行于轴的边
母线
旋转而成的曲面叫做
轴
底面
圆柱的侧面;
母线:无论旋转到什么位置,不垂直于轴的边都
叫做圆柱侧面的母线的分类:
2014年新课标人教A版必修2数学1.1.2圆柱、圆锥、圆台、球及简单组合体的结构特征随堂优化训练课件

矩形的一边 以____________ 所在直线为旋转 轴,其余三边旋 圆柱 转形成的面所围 成的______ 旋转体叫做 圆柱
表示它 圆柱用_______ 的轴的字母 __________ 表示,左图 中圆柱表示 圆柱 OO′ 为_________
(续表)
名称 定义 相关概念 旋转轴 轴: ______叫做圆锥的轴; 底面:垂直于轴 ________的边旋转 圆面 叫做圆锥的 而成的______ 底面;侧面:直角三角形 斜 边旋转而成的 的 ____ 曲面 叫做圆锥的侧面; ______ 母线:无论旋转到什么位 置,不垂直于轴的边都叫 做圆锥侧面的母线 图形 表示法 圆 锥 用 表示它的 __________ 轴的字母 表 ________ 示,左图中 圆锥表示为 圆锥 SO __________
1.棱柱的任何两个平行平面都可以作为棱柱的底面吗?
答案:不一定. 一 条母线. 2.通过圆台侧面上一点,有______
题型 1 圆柱、圆锥、圆台、球的结构特征 【例 1】 将下列几何体按结构特征分类填空: ①集装箱;②一桶方便面;③排球;④羽毛球;⑤魔方; ⑥金字塔;⑦三棱镜;⑧滤纸卷成的漏斗;⑨烧杯;⑩一个四 棱锥形的建筑物被飓风刮走了一个顶,剩下的上底面与地面平
题型 2 旋转体的构成 【例 2】 如图 1-1-6 是由哪个平面图形旋转得到的( )
第一章 1.1 第2课时 旋转体与简单组合体的结构特征

第2课时 旋转体与简单组合体的结构特征学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.知识点一 圆柱的结构特征思考 圆柱的轴截面有无穷多个,它们全等(填“全等”或“相似”),圆柱的母线有无穷多条,它们与圆柱的高相等. 知识点二 圆锥的结构特征思考 圆锥的轴截面有多少个?母线有多少条?圆锥顶点和底面圆周上任意一点的连线都是母线吗?答案圆锥的轴截面有无穷多个,母线有无穷多条,圆锥顶点和底面圆周上任意一点的连线都是母线.知识点三圆台的结构特征知识点四球的结构特征知识点五简单组合体的结构特征(1)概念:由简单几何体组合而成的,这些几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组合而成的.(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.1.直角三角形绕一边所在直线旋转得到的旋转体是圆锥.(×)2.圆锥截去一个小圆锥后剩余部分是圆台.(√)3.夹在圆柱的两个平行截面间的几何体是一圆柱.(×)4.半圆绕其直径所在直线旋转一周形成球.(×)题型一旋转体的结构特征例1下列说法正确的是________.(填序号)①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆;③以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的曲面所围成的几何体是圆锥;④半圆面绕其直径所在直线旋转一周形成球;⑤用一个平面去截球,得到的截面是一个圆面.考点空间几何体题点空间几何体结构应用答案③④⑤解析①以直角梯形垂直于底边的一腰所在直线为轴旋转一周可得到圆台;②它们的底面为圆面;③④⑤正确.反思感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列说法,正确的是()①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.A.①②B.②③C.①③D.②④考点空间几何体题点空间几何体结构应用答案 D解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.题型二简单组合体的结构特征例2(1)请描述如图所示的几何体是如何形成的.解①是由一个圆锥和一个圆台拼接而成的组合体;②是由一个长方体截去一个三棱锥后得到的几何体;③是由一个圆柱挖去一个三棱锥后得到的几何体.(2)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC.当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转形成的面围成一个几何体,试描述该几何体的结构特征.解如图所示,旋转所得的几何体可看成由一个圆柱挖去两个圆锥后剩余部分而成的组合体.反思感悟(1)解决简单组合体的结构特征相关问题,首先要熟练掌握各类几何体的特征,其次要有一定的空间想象能力.(2)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.跟踪训练2(1)如图所示的简单组合体的组成是()A.棱柱、棱台B.棱柱、棱锥C.棱锥、棱台D.棱柱、棱柱答案 B(2)将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆柱、一个圆锥C.两个圆台、一个圆柱D.一个圆柱、两个圆锥考点简单组合体的结构特征题点与旋转有关的组合体答案 D解析图1是一个等腰梯形,CD为较长的底边,以CD边所在直线为旋转轴旋转一周所得几何体为一个组合体,如图2,包括一个圆柱、两个圆锥.题型三旋转体的有关计算例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.考点圆台的结构特征题点与圆台有关的运算解(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得O1A=2 cm,OB=5 cm.又由题意知腰长为12 cm,所以高AM =122-(5-2)2 =315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S , 设截得此圆台的圆锥的母线长为l , 则由△SAO 1∽△SBO ,可得l -12l =25, 解得l =20(cm).即截得此圆台的圆锥的母线长为20 cm.反思感悟 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.跟踪训练3 如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.解 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA .所以33+l =r 4r =14.解得l =9,即圆台的母线长为9 cm.圆柱侧面展开图的应用典例如图所示,有一个底面半径为1,高为2的圆柱体,在A点处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由A点爬到B点,问蚂蚁爬行的最短距离是多少?解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.∵AA′为底面圆的周长,∴AA′=2π×1=2π.又AB=A′B′=2,∴AB′=A′B′2+AA′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.[素养评析](1)求几何体表面上两点间的最小距离的步骤①将几何体沿着某棱(母线)剪开后展开,画出其侧面展开图;②将所求曲线问题转化为平面上的线段问题;③结合已知条件求得结果.(2)解决此类问题需要将空间图形转化为平面图形,也就是借助空间形式认识事物的位置关系、形态、变化等,同时,要理解运算对象,探究运算思路,所以本题体现了直观想象与数学运算的核心数学素养.1.下列几何体是台体的是()考点圆台的结构特征题点圆台的概念的应用答案 D解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.2.下列选项中的三角形绕直线l旋转一周,能得到如图1中的几何体的是()图1考点简单组合体的结构特征题点与旋转有关的组合体答案 B解析由题意知,所得几何体是组合体,上、下各一圆锥,故B正确.3.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是()A.圆柱B.圆台C.球体D.棱台考点棱台的结构特征题点棱台的概念的应用答案 D解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D.4.如图是一个几何体的表面展开图形,则这个几何体是________.答案圆柱5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.考点圆锥的结构特征题点与圆锥有关的运算答案 2解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=34AB2,∴3=34AB2,∴AB=2.故圆锥的母线长为2.1.圆柱、圆锥、圆台的关系如图所示.2.球面、球体的区别和联系3.处理台体问题常采用还台为锥的补体思想.4.处理组合体问题常采用分割思想.5.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.一、选择题1.下列几何体中不是旋转体的是()考点简单组合体的结构特征题点与旋转有关的组合体答案 D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的答案 A3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体考点简单组合体的结构特征题点与旋转有关的组合体答案 B解析圆面绕着直径所在的轴,旋转而形成球,矩形绕着轴旋转而形成圆柱. 故选B.4.如图所示的几何体是由下面哪一个平面图形旋转而形成的( )考点 简单组合体的结构特征题点 与旋转有关的组合体答案 A解析 此几何体自上向下是由一个圆锥、两个圆台和一个圆柱构成,是由A 中的平面图形旋转而形成的.5.一个圆锥的母线长为20 cm ,母线与轴的夹角为30°,则圆锥的高为( ) A.10 3 cm B.20 3 cm C.20 cmD.10 cm考点 圆锥的结构特征题点 与圆锥有关的运算答案 A解析 如图所示,在Rt △ABO 中,AB =20 cm ,∠A =30°,所以AO =AB ·cos 30°=20×32=103(cm). 6.下列命题:①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台中所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.其中正确的是()A.①②③B.②③④C.①④D.①③④答案 D7.一个底面半径为2的圆锥被过高的中点且平行于底面的平面所截,则截得的截面圆的面积为()A.πB.2πC.3πD.4π答案 A8.下列结论正确的是()A.用一个平面去截圆锥,得到一个圆锥和一个圆台B.经过球面上不同的两点只能作一个最大的圆C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 D解析需用平行于圆锥底面的平面截才能得到圆锥和圆台,故A错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.二、填空题9.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.考点简单组合体的结构特征题点与旋转有关的组合体答案两个同底的圆锥组合体解析由圆锥的定义知是两个同底的圆锥形成的组合体.10.如图中的组合体的结构特征有以下几种说法:①由一个长方体割去一个四棱柱构成;②由一个长方体与两个四棱柱组合而成;③由一个长方体挖去一个四棱台构成;④由一个长方体与两个四棱台组合而成.其中说法正确的序号是________.考点 简单组合体的结构特征题点 与拼接、切割有关的组合体答案 ①②11.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.考点 圆锥的结构特征题点 与圆锥有关的运算答案 3解析 由题意知一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl 2,所以母线长为l =2,又半圆的弧长为2π,圆锥的底面的周长为2πr =2π,所以底面圆半径为r =1,所以该圆锥的高为h =l 2-r 2=22-12= 3.12.边长为5的正方形EFGH 是圆柱的轴截面,则从点E 沿圆柱的侧面到相对顶点G 的最短距离为________.答案 52π2+4 解析 如图,矩形E 1F 1GH 是圆柱沿着其母线EF 剪开半个侧面展开而得到的,由题意可知GH =5,GF 1=5π2,GE 1=254π2+25=52π2+4. 所以从点E 沿圆柱的侧面到相对顶点G 的最短距离是52π2+4. 三、解答题13.一个圆锥的高为2 cm ,母线与轴的夹角为30°,求圆锥的母线长及圆锥的轴截面的面积. 解 如图轴截面SAB ,圆锥SO 的底面直径为AB ,SO 为高,SA 为母线,则∠ASO =30°.在Rt △SOA 中,AO =SO ·tan 30°=233(cm). SA =SO cos 30°=232=433(cm). 所以S △ASB =12SO ·2AO =433(cm 2). 所以圆锥的母线长为433 cm ,圆锥的轴截面的面积为433cm 2.14.如图,各棱长都相等的三棱锥内接于一个球,则经过球心的一个截面图形可能是( )A.①③B.①②C.②④D.②③答案 A15.圆台的上、下底面半径分别为5 cm,10 cm ,母线长AB =20 cm ,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到点A ,求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.考点 圆台的结构特征题点 与圆台有关的运算 解 (1)如图所示,将侧面展开,绳子的最短距离为侧面展开图中AM 的长度,设OB =l ,则θ·l =2π×5,θ·(l +20)=2π×10,解得θ=π2,l =20 cm. ∴OA =40 cm ,OM =30 cm.∴AM =OA 2+OM 2=50 cm.即绳子最短长度为50 cm.(2)作OQ ⊥AM 于点Q ,交弧BB ′于点P ,则PQ 为所求的最短距离.∵OA ·OM =AM ·OQ ,∴OQ =24 cm.故PQ =OQ -OP =24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.。
数学必修2——1.1.1-1.1.2《柱、锥、台、球、简单组合体的结构特征》导学导练

高中数学必修2第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修2 1.1.1-1.1.2《柱、锥、台、球、简单组合体的结构特征》【知识要点】1、空间几何体的有关概念:空间几何体、多面体、旋转体2、棱柱的结构特征(重点):1) 棱柱的有关概念 2)棱柱的分类 3)棱柱的记法 3、棱锥的结构特征(重点) 4、棱台的结构特征5、圆柱的结构特征(重点)6、圆锥的结构特征(难点)7、圆台的结构特征8、球的结构特征9、组合体的结构特征10、简单空间几何体的基本概念:(1)(2)特殊的四棱柱:【范例析考点】考点一.柱、锥、台、球的概念的理解 例1:一个棱柱是正四棱柱的条件是( ). A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱 【针对练习】1、下列说法中正确的是( ).A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径2、下列说法错误的是( ).A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形 3、下列说法中不正确的是( ).A 棱柱的侧面不可以是三角形B 有六个大小一样的正方形所组成的图形是正方体的展开图C 正方体的各条棱都相等D 棱柱的各条侧棱都相等 4、下列对棱柱说法正确的是( )A .只有两个面互相平行 B.所有的棱都相等 C.所有的面都是平行四边形 D.两底面平行,且各侧棱也平行 5、棱台不具备的特点是( )A .两底面相似 B. 侧面都是梯形C. 侧棱都相等D. 侧棱延长后交于一点6、有两个面互相平行, 其余各面都是梯形的多面体是( )A .棱柱B . 棱锥C . 棱台D .可能是棱台, 也可能不是棱台, 但一定不是棱柱或棱锥 7、构成多面体的面最少是( )A .三个B . 四个C . 五个D . 六个 8、下列说法正确的是( ).A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形9、一个棱柱至少有 个面,面数最少的棱柱有 个顶点,有 条棱.10、棱柱的侧面是 形,长方体的侧面是 形,正方体的侧面是 形.考点二.柱、锥、台、球的简单运算 例2:如右图, 四面体P-ABC 中, PA=PB=PC=2,∠APB=∠BPC=∠APC=300. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A 点, 问蚂蚁经过的最短路程是_________. 【针对练习】1.边长为5cm 的正方形EFGH 是圆柱的轴截面, 则从E 点沿圆柱的侧面到相对顶点G 的最短距离是_______________. 2.已知三棱锥的底面是边长为a 的等边三角形,则过各侧棱中点的截面的面积为3.长方体的全面积为11,十二条棱的长度之和为24,则这个长方体的一条对角线长为4.一个圆台的母线长为12,两底面面积分别为4π和25π,求 (1)圆台的高: (2)截得此圆台的圆锥的母线长为 5. 一个圆锥的底面半径为2,高为6,在圆锥的内部有一个高为x 内接圆柱.(1)用x 表示圆柱的轴截面面积S ; (2)当x 为何值时,S 最大.考点三.有关截面问题例3:下列命题正确的是( )A .平行与圆锥的一条母线的截面是等腰三角形B .平行与圆台的一条母线的截面是等腰梯形C .过圆锥母线及顶点的截面是等腰三角形D .过圆台的一个底面中心的截面是等腰梯形【针对练习】1、用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能2、下列说法中正确的是()A.半圆可以分割成若干个扇形B.面是八边形的棱柱共有8个面C.直角梯形绕它的一条腰旋转一周形成的几何体是圆台D.截面是圆的几何体,不是圆柱,就是圆锥3、甲:“用一个平面去截一个长方体, 截面一定是长方形”;乙:“有一个面是多边形,其余各面都是三角形的几何体是棱锥”.这两种说法()A.甲正确乙不正确 B.甲不正确乙正确C.甲正确乙正确 D.不正确乙不正确4、用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A.一个几何体是棱锥, 另一个几何体是棱台B.一个几何体是棱锥, 另一个几何体不一定是棱台C.一个几何体不一定是棱锥, 另一个几何体是棱台D.一个几何体不一定是棱锥, 另一个几何体不一定是棱5、用一个平面去截正方体,所得的截面不可能是().A. 六边形B. 菱形C. 梯形D. 直角三角形6、用一个平面去截正方体,得到的截面可能是、、、、、边形。
1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征

④圆柱的任意两条母线所在的直线是互相平行的. 其中正确的是 A.①② ( B.②③ ) C.①③ D.②④
【解题探究】1.典例1中圆锥的轴截面及圆台平行于底面的截面分别 是什么图形? 提示:圆锥的轴截面是等腰三角形,圆台平行于底面的截面是圆面. 2.典例2中圆柱、圆锥、圆台的母线各指什么? 提示:圆柱的轴截面与侧面的交线即为圆柱的母线 ,圆锥的顶点与底面 圆周上任一点的连线即为圆锥的母线,圆台的轴截面与圆台侧面连线 即为圆台的母线.
2.圆锥的母线条数为 A.1条 C.3条
(
) B.2条 D.无数条
【解析】选D.由圆锥的结构特征知圆锥的母线有无数条.
3.下列图形中是圆柱的序号为
.
【解析】根据圆柱的概念可知只有②是圆柱. 答案:②
4.下列给出的图形中,绕给出的轴旋转一周(如图所示),能形成圆台的 是 (填序号).
【解析】根据定义,①形成的是圆台,②形成的是球,③形成的是圆柱, ④形成的是圆锥. 答案:①
答案:(1)(2)
易错案例
柱体、锥体、台体的判断
【典例】如图所示,它们是不是棱锥、棱台、圆柱、圆锥等几何体?
【解析】1.选C.由圆锥的概念知,直角三角形绕它的一条直角边所在 直线旋转一周所围成的几何体是圆锥.强调一定要绕着它的一条直角 边,即旋转轴为直角三角形的一条直角边所在的直线 ,因而C错. 2.选D.由圆柱、圆锥、圆台的定义及母线的性质可知②④正确 ,①③ 错误.
【方法技巧】 1.简单旋转体判断问题的解题策略 (1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决 此类概念问题的关键. (2)解题时要注意明确两点: ①明确由哪个平面图形旋转而成. ②明确旋转轴是哪条直线.
2.旋转后的图形草图分别如图1,2所示.
广东省廉江市第三中学高中数学 第一章 空间几何体讲解与练习 新人教A版必修2(1)

广东省廉江市第三中学2014高中数学 第一章 空间几何体讲解与练习 新人教A 版必修2¤学习目标:认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.逐步培养观察能力和抽象概括能力¤知识要点: 结 构 特 征 图例棱柱 (1)两底面相互平行,其余各面都是平行四边形; (2)侧棱平行且相等. 圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体. 棱锥 (1)底面是多边形,各侧面均是三角形; (2)各侧面有一个公共顶点. 圆锥 (1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台 (1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台 (1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分. 球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.¤例题精讲:(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l 旋转180°. 解:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形. 几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.【例2】若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.解:底面正三角形中,边长为3,高为333sin 60⨯︒=,中心到顶点距离为33233⨯=,则棱锥的高为222(3)1-=.【例3】用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线为l ,截得圆台的上、下底面半径分别为r ,4r .根据相似三角形的性质得,334rl r=+,解得9l =. 所以,圆台的母线长为9cm .点评:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得.【例4】长方体的一条对角线与一个顶点处的三条棱所成的角分别为,,αβγ,求222cos cos cos αβγ++与222sin sin sin αβγ++的值.解:设长方体的一个顶点出发的长、宽、高分别为a 、b 、c ,相应对角线长为l ,则222l a b c =++.222222cos cos cos ()()()1a b cl l lαβγ++=++=, ∴ 222cos cos cos αβγ++=1.222222222222sin sin sin 2b c a c a b l l lαβγ+++++=++=,∴ 222sin sin sin αβγ++=2. 点评:从长方体的一个顶点出发的对角线与三条棱,均位于直角三角形中,利用直角三角形中的边角关系“cos α=邻斜”、“sin α=对斜”而求. 关键在于找准直角三角形中的三边,斜边是长方体的对角线,角的邻边是各棱长,角的对边是相应矩形面的对角线.第1练 §1.1.1柱、锥、台、球的结构特征※基础达标※能力提高8.长方体的全面积为11,十二条棱的长度之和为24,求这个长方体的一条对角线长.9.如图所示,长方体1111ABCD A B C D -.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么? (2)用平面BCNM 把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示. 如果不是,说明理由.※探究创新10.现有一批长方体金属原料,其长宽高的规格为12×3×3.1(长度单位:米). 某车间要用这些原料切割出两种长方体,其长宽高的规格第一种为3×2.4×1,第二种为4×1.5×0.7.若这两种长方体各需900个,假设忽略切割损耗,问至少需多少块金属长方体原料?如何切割?此时材料的利用率是多少?(计算到小数点后面3位)第2讲 §1.1.2 简单组合体的结构特征¤学习目标:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.¤知识要点:观察周围的物体,大量的几何体是由柱、锥、台等组合而成的,这些几何体称为组合体. ¤例题精讲:【例1】在四棱锥的四个侧面中,直角三角形最多可有( ). A. 1个 B. 2个 C. 3个 D. 4个解:在长方体''''ABCD A B C D -中,取四棱锥'A ABCD -,它的四个侧面都是直角三角形. 选D. 【例2】已知球的外切圆台上、下底面的半径分别为,r R ,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R +r ,梯形的高即球的直径为22()()2r R R r rR +--=, 所以,球的半径为rR .【例3】圆锥底面半径为1cm ,高为2cm ,其中有一个内接正方体,求这个内接正方体的棱长. 解:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1,如图所示.设正方体棱长为x ,则CC 1=x ,C 1D 12x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时简单组合体的结构特征
(一)教学目标
1.知识与技能
(1)理解由柱、锥、台、球组成的简单组合体的结构特征.
(2)能运用简单组合体的结构特征描述现实生活中的实际模型.
2.过程与方法
让学生通过下观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.
3.情感态度与价值观
培养学生的空间想象能力,培养学习教学应用意识.
(二)重点、难点
重点与难点都是认识简单组体体的结构特征.
(三)教学方法
概念形成过程中,学生观察、思考、讨论、交流与教师引导相结合,然后通过对一些具体问题的讨论,加深对简单组合体的结构特征的理解.
教学环
节
教学内容师生互动设计意图
创设情境
观察教材下列各图,说出
这些几何体是由哪些简单几
学生回答,然后师生
共同讨论他们的联系与
通过
问题解
何体构成的.区别.决,学生
复习了上
课时所学
知识,同
学又为学
习新知识
作准备
概念形成
1.简单组合体概念,由
柱体锥体,台体和球体等简单
几何体组合而成的几何体.
2.简单组合体为构成有
两种基本形式:一种是由简单
几何体拼接而成,一种是由简
单几何体截去或挖去一部分
而成.
学生归纳,总结后教
师予以适当修饰,补充.
培养
学生总结
概括,表
述的能
力,加强
对概念的
理解.
应用举例
例1 已知球的外切圆台
上、下底面的半径分别为r,R,
求球的半径.
【解析】圆台轴截面为等
教师出示简单组合
体,学生说出简单组合体
的结构特征,然后探索各
有关量的联系方法,找到
通过
直观、观
察加强学
生对简单
腰梯形,与球的大圆相切,由此得梯形腰长为R + r,梯形的高即球的直径为
2
2)
(
)
(r
R
R
r-
-
+=2rR,所以,球的半径为rR.
圆锥底面半径为1cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长.
【解析】锥的轴截面SEF,正方体对角面CDD1C1,如图所示.设正方体棱长x,则CC1 =
x,C
1D
1
=2x.
作SO⊥EF于O,则SO =2,OE = 1,
∵△ECC1~△EOS,∴适当的轴截面,求解,教
师板书.
组合体结
构特征的
认识,培
养学生空
间想象能
力和逻辑
推理能
力.
E
C O D
F D
C
S
SO
CC 1=
EO
EC 1,即
2
x =
1
)2/2(1x
.∴x =
2
2
(cm ),即内接正方体棱长为
2
2
cm. 归纳总结
一、知识点
(1)简单组合体定义 (2)简单组合体构成形式
二、注意事项
轴截面在旋转体与多面体组合而成的几何体中的应用.
师生共同总结——交流——完善
巩固、加深对概念的理解、培养思维严谨性.
课后作业 1.1 第二课时 习案 学生独立完成 巩固深化,提
高学生解决问题的能力.
备选例题
例1 左下图是由右下图中的哪个平面图旋转得到的
【解析】因为简单组合体为一个圆台和一个圆锥,因此平面图应由一个直
图4—1
角三角形和一个直角梯形构成,可排除B、D,再由圆台上、下底的大小比例关
系可排除C.
【点评】组合体通过分拆,可转化为几个简单几何体,从而研究其结构特
征.。