固体物理13年复习题考试重点1

合集下载

固体物理考试重点(广工版、复习资料)

固体物理考试重点(广工版、复习资料)

一、晶体宏观特征(必考其一)1.晶体的自限性(自范性):自发形成封闭几何外形的能力。

2.晶面角守恒定律:同一种晶体在相同的温度和压力下,对应晶面之间的夹角不变。

3.晶体的解理性(Cleave property):晶体受到外力作用时会沿着某一个或几个特定的晶面劈裂开的性质称为解理性。

4-晶体的各向异性(anisotropy):沿晶体内部的不同方向上有不同的物理性质。

5.晶体的均匀性(homogeneity ):内部各部分的宏观性质相同。

6.晶体的对称性(symmetry):由于内部质点有规则排列而形成的特殊性质。

7.晶体的稳定性:与同种物质的其他形态(气态、液态、非晶态、等离子态等)相比,晶体的内能最小、最稳定。

晶体具有固定的熔点,而非晶体则没有固定的熔点。

二、空间点阵(基元、原胞(primitive cell)> 晶胞(conventional cell)> B 格子、WS 原胞)1.基元:组成晶体的最小结构单元。

2.初基原胞(原胞):一个晶格最小的周期性单元,称为原胞。

3.惯用原胞(晶胞):能使原胞同时反映晶体对称性和周期性特征的重复单元,称为晶胞。

4.B格子:如果晶体只由一种原子构成,且基元是一个原子,则原子中心与阵点重合,这种晶格称为布拉菲格子,或称B格子。

5.WS原胞:WS原胞是以晶格中某一格点为中心,作其与近邻的所有格点连线的垂直平分面,这些平面所围成的以该点为中心的凸多面体即为该点的WS原胞。

作法:(1)任选一格点为原点;(2)将原点与各级近邻的格点连线,得到几组格矢;(3)作这几组格矢的中垂面,这些中垂面绕原点围成的最小区域称W-S原胞。

三、第一布里渊区(二维):从倒格子点阵的原点出发,作出它最近邻点的倒格子点阵矢量,并作出每个矢量的垂直平分面,可得到倒格子的WS原胞,称为第一布里渊区。

注:写出二维坐标系j> b P b2( b为倒格子基矢)。

四、晶体的对称性、晶系、密堆积、配位数(一至二);1.晶体的对称性:晶体经过某种对称操作后物体能自身重合的性质,2.晶系:根据晶体空间点阵中6个点阵参数之间相对关系的特点而将其分为7类,各自称一晶系。

固体物理考试要点及部分答案

固体物理考试要点及部分答案

名词解释1、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

24、引入玻恩卡门条件的理由是什么?答:(1)方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4).玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。

2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、10、施主,N型半导体、受主,P型半导体11、本征光吸收;本征吸收边12、导带;价带;费米面简单回答题 1、 倒格子是怎样定义的?为什么要引入倒格子这一概念? 2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein 模型和Debye 模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、 叙述晶格周期性的两种表述方式。

固体物理复习_简述题

固体物理复习_简述题

"固体物理"根本概念和知识点第一章根本概念和知识点1) 什么是晶体、非晶体和多晶?(H)*晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。

由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。

2) 什么是原胞和晶胞?(H)*原胞是一个晶格最小的周期性单元,在有些情况下不能反响晶格的对称性;为了反响晶格的对称性,选取的较大的周期单元,称为晶胞。

3) 晶体共有几种晶系和布拉伐格子?(H)*按构造划分,晶体可分为7大晶系, 共14布拉伐格子。

4) 立方晶系有几种布拉伐格子?画出相应的格子。

(H)*立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。

5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。

(H)*简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。

碱金属具有体心立方晶格构造;Au、Ag和Cu具有面心立方晶格构造,它们均为简单晶格复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成一样的简单晶格,复式格子由它们的子晶格相套而成。

一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是一样原子但几何位置不等价的原子构成的晶体,如:具有金刚石构造的C、Si、Ge等6) 钛酸钡是由几个何种简单晶格穿套形成的?(H)BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。

三组氧(OI,OII,*3OIII)周围的情况各不一样,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方构造子晶格(共5个)套构而成的。

7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(H)*金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。

固体物理题库第一章晶体的结构

固体物理题库第一章晶体的结构

固体物理题库第一章晶体的结构(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章晶体的结构一、填空体(每空1分)1. 晶体具有的共同性质为长程有序、自限性、各向异性。

2. 对于简立方晶体,如果晶格常数为a,它的最近邻原子间距为 a ,,原胞与晶胞的体积比 1:1 ,配位数为6 。

3. 对于体心立方晶体,如果晶格常数为a,它的最近邻原子间距为,次近邻原子间距为 a ,原胞与晶胞的体积比 1:2 ,配位数为 8 。

4. 对于面心立方晶体,如果晶格常数为a,它的最近邻原子间距为,次近邻原子间距为 a ,原胞与晶胞的体积比 1:4 ,配位数为 12 。

5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。

6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。

7. 根据晶体内晶粒排列的特点,晶体可分为单晶和多晶。

8. 常见的晶体堆积结构有简立方(结构)、体心立方(结构)、面心立方(结构)和六角密排(结构)等,例如金属钠(Na)是体心立方(结构),铜(Cu)晶体属于面心立方结构,镁(Mg)晶体属于六角密排结构。

9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。

10.晶体结构的宏观对称只可能有下列10种元素: 1 ,2 ,3 ,4 ,6 ,i , m ,3,4,6,其中3和6不是独立对称素,由这10种对称素对应的对称操作只能组成32个点群。

11. 晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有 1 个原子。

12. 晶体原胞中含有 1 个格点。

13. 魏格纳-塞茨原胞中含有 1 个格点。

二、基本概念1. 原胞原胞:晶格最小的周期性单元。

固体物理期末复习真题

固体物理期末复习真题
d ( hkl ) 2 G ( hkl )
(c)对初基矢量 a1, a 2, a3 互相正交的晶体点阵,有
d ( hkl ) 1 h k l a a a 1 2 3
2 2 2
八、在量子固体中,起主导作用的排斥能是原子的零点能。考虑晶态 4He 一个非常粗 略的一维模型,即每个氦原子局限在长为 L 的线段上,把线段 L 取为基态波函数 的半波长, (a)试求每个粒子的零点动能; (b)推导维持该线度不发生膨胀所需要的力的表达式; (c)在平衡时,动能所导致的膨胀倾向被范德瓦尔斯作用所平衡。如果非常粗 略地给出最近邻间的范德瓦尔斯能为 u ( L) 1.6 L6 10 60 erg ,其中 L 以 cm 表示, 求 L 的平均值。 九、 (a)证明对于波矢为 K ,频率为 的格波 u s ue i ( sKa t ) 一维单原子点阵的总动量 为 P( K ) iMue it e isKa ;
5
三十四. 在金属自由电子的模型中,假定传导电子可以近似看作是自由电子气,电子 数密度为 n,驰豫时间为 ,试导出金属电导率的表达式

m * 为电子有效质量.
ne 2 m*
三十五. 对三维晶体, 利用德拜模型,求
1、高温时 0 ~ D 范围内的声子总数,并证明晶格热振动能与声子总数成正比; 2、极低温时 0 ~ D 范围内的声子总数,并证明晶格热容与声子总数成正比。
q F U 0 kBT ln k T q B
其中 U 0 为系统平衡时的结合能. 三十三. 一维晶格基矢为 ai ,假设其晶体势是由围绕原子的一系列矩形势阱所组成, 每个阱的深度都是 V0 ,宽度 a 5 .用近自由电子模型计算前三个能隙,并比较这些 能隙的数值.

固体物理学整理要点

固体物理学整理要点

固体物理复习要点第一章1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。

说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。

3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

4、试述固体物理学原胞和结晶学原胞的相似点和区别。

答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。

它反映了晶体结构的周期性。

(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。

特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。

其体积是固体物理学原胞体积的整数倍。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。

答:7.密堆积结构包含哪两种?各有什么特点?答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。

第二层:占据1,3,5空位中心。

第三层:在第一层球的正上方形成ABABAB······排列方式。

固体物理13年复习题考试重点1

固体物理13年复习题考试重点1

固体复习题型:一. 简答题(共30分,每小题6分)5道小题二. 证明题(共25分)两道小题三. 计算题(共45分)分布在第四章2道,第二章、第三章各一道一.简答题1简述晶体的定义,说明晶体的5条宏观性质。

晶体:原子按一定的周期排列规则的固体,在微米量级的范围是有序排列的①一定的熔点;②晶体的规则外形:③在不同的带轴方向上,晶体的物理性质不同——晶体的各向异性;④晶面角守恒--同一品种的晶体,两个相应的晶面间夹角恒定不变;⑤晶体的解理性一一晶体常具有沿某些确定方位的晶面劈裂的性质。

2列举晶体结合的基本类型。

离子性结合、共价结合、金属性结合、范德瓦尔斯结合和氢键结合。

3•说出简立方晶体、面心立方晶体和体心立方晶体的原胞和晶胞中所包含的原子数。

4•说出氯化钠、氯化铯和金刚石结构晶体它们的原胞的晶格类型,每个原胞中包含的原子数。

晶体结构原胞晶体类型原胞中原子数氯化钠面心立方2氯化铯间立万2金刚石面心立方25.下面几种种典型的晶体由哪种布拉菲格子套构而成?晶体结构布拉菲格子晶体结构布拉菲格子碳酸钙简立方立方硫化锌面心立方氯化铯间立万金刚石面心立方氯化钠面心立方六角密积的镁六角格子6•下面几种典型的晶体结构的配位数(最近邻原子数)是多少?晶体结构配位数晶体结构配位数面心立方12氯化钠型结构6六角密积12氯化铯型结构8体心立方8金刚石型结构4间立万6立方硫化锌结构4 7•画出体心立方结构的金属在(100),(110),(111)面上原子排列.体心立方|:100)8画出面心立方晶格结构的金属在(100) , (110) , (111)面上原子排列.面心立方(100)9试述晶态、非晶态、准晶、多晶和单晶的特征性质解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

固体物理学考试重点

固体物理学考试重点

固体物理学一:晶体结构1.晶体结构=空间点阵+基元2.晶格:晶体中原子的规则排列简称为晶格。

3.基元:在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。

4.结点:空间点阵学说中所称的“点子”代表着结构中相同的位置,称为结点。

5.点阵:格点的总体称为点阵。

6晶向:晶体中同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。

7.简单格子晶体:基元只有一个原子的晶体,原子与晶格的格点相重合而且每个格点周围的情况都一样。

8.复式格子晶体:基元有两个或两个以上的原子构成的晶体。

9.声子:10.晶胞与原胞的区别:在同一晶格中原胞的选取不是唯一的,但他们的体积都是相等的,而晶胞的体积一般为原胞的若干倍。

11.绝对零度费米能:12.NaCl和CsCl的晶体结构:NaCl:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有6个阴离子,每个阴离子周围也有6个阳离子,均形成正八面体;每个晶胞中有4个阳离子和4个阴离子,组成为1:1。

CsCl:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有8个阴离子,每个阴离子周围也有8个阳离子,均形成立方体;每个晶胞中有1个阴离子和1个阳离子,组成为1:1。

13.晶体的结合方式,为什么能结合成晶体?①离子性结合,靠离子间的库伦吸引作用形成晶体;②共价结合,靠两个原子各贡献一个电子形成共价键进而形成晶体;③金属性结合,靠负电子云和正离子实之间的库伦相互作用结合成晶体;④范德瓦尔斯结合,靠瞬时的电偶极矩的感应作用结合成晶体。

14.晶体的结合能与平衡间距?晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量;晶体的平衡间距就是14.什么是晶格振动的德拜模型和爱因斯坦模型,其物理意义是什么,为什么德拜模型在低温时能给出较好的结果而爱因斯坦模型给出的结果较差?德拜模型:假设晶体是各向同性的连续弹性介质,格波可以看成连续介质的弹性波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体复习题型:一.简答题(共30分,每小题6分)5道小题二.证明题(共25分)两道小题三.计算题(共45分)分布在第四章2道,第二章、第三章各一道。

一.简答题1简述晶体的定义,说明晶体的5条宏观性质。

晶体:原子按一定的周期排列规则的固体,在微米量级的围是有序排列的①一定的熔点;②晶体的规则外形;③在不同的带轴方向上,晶体的物理性质不同——晶体的各向异性;④晶面角守恒--同一品种的晶体,两个相应的晶面间夹角恒定不变;⑤晶体的解理性——晶体常具有沿某些确定方位的晶面劈裂的性质。

2列举晶体结合的基本类型。

离子性结合、共价结合、金属性结合、德瓦尔斯结合和氢键结合。

3.说出简立方晶体、面心立方晶体和体心立方晶体的原胞和晶胞中所包含的原子数。

4.说出氯化钠、氯化铯和金刚石结构晶体它们的原胞的晶格类型,每个原胞中包含的原子数。

5.下面几种种典型的晶体由哪种布拉菲格子套构而成?6.下面几种典型的晶体结构的配位数(最近邻原子数)是多少?7.画出体心立方结构的金属在)111(面上原子排列.(,)110(,)100体心立方8画出面心立方晶格结构的金属在)111(面上原子排列.(,)110(,)100面心立方9试述晶态、非晶态、准晶、多晶和单晶的特征性质。

解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的围保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

另外,晶体又分为单晶体和多晶体:整块晶体原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

10晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构11如何理解电负性可用电离能加亲和能来表征?使原子失去一个电子所需要的能量称为原子的电离能, 电离能的大小可用来度量原子对价电子的束缚强弱.一个中性原子获得一个电子成为负离子所释放出来的能量称为电子亲和能. 放出来的能量越多, 这个负离子的能量越低, 说明中性原子与这个电子的结合越稳定. 也就是说, 亲和能的大小也可用来度量原子对电子的束缚强弱. 原子的电负性大小是原子吸引电子的能力大小的度量. 用电离能加亲和能来表征原子的电负性是符合电负性的定义的.12原子间的排斥作用和吸引作用有何关系? 起主导作用的围是什么?在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态.可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为, 当相邻原子间的距离>时, 吸引力起主导作用; 当相邻原子间的距离<时, 排斥力起主导作用.13共价结合为什么有 “饱和性”和 “方向性”?设N 为一个原子的价电子数目, 对于IV A 、V A 、VI A 、VII A 族元素,价电子壳层一共有8个量子态, 最多能接纳(8- N )个电子, 形成(8- N )个共价键. 这就是共价结合的 “饱和性”.共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的 “方向性”. 14何为杂化轨道?为了解释金刚石中碳原子具有4个等同的共价键, 1931年泡林(Pauling)和斯莱特(Slater)提出了杂化轨道理论. 碳原子有4个价电子, 它们分别对应、、、量子态, 在构成共价键时, 它们组成了4个新的量子态,4个电子分别占据、、、新轨道, 在四面体顶角方向形成4个共价键.15.什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为)(q w j 的声子平均数为11)()/()(-=T k q w j B j eq n对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。

16晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?解在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则以连续介质的弹性波来代表格波以求出)(ωρ的表达式。

爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容V c 亦趋近于零的结果,这是经典理论所不能得到的结果。

其局限性在于模型给出的是比热容V c 以指数形式趋近于零,快于实验给出的以3T趋近于零的结果。

德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度3Θ应T成比例,与实验结果相吻合。

其局限性在于模型给出的德拜温度D视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度Θ是不同的。

D在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对比热容产生影响。

而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果。

17布洛赫电子论作了哪些基本近似?它与金属自由电子论相比有哪些改进?解:布洛赫电子论作了3条基本假设,即①绝热近似,认为离子实固定在其瞬时位置上,可把电子的运动与离子实的运动分开来处理;②单电子近似,认为一个电子在离子实和其它电子所形成的势场中运动;③周期场近似,假设所有电子及离子实产生的场都具有晶格周期性。

布洛赫电子论相比于金属自由电子论,考虑了电子和离子实之间的相互作用,也考虑了电子与电子的相互作用。

18试述导体、半导体和绝缘体能带结构的基本特征。

解:在导体中,除去完全充满的一系列能带外,还有只是部分地被电子填充的能带,后者可以起导电作用,称为导带。

在半导体中,由于存在一定的杂质,或由于热激发使导带中存有少数电子,或满带中缺了少数电子,从而导致一定的导电性。

在绝缘体中,电子恰好填满了最低的一系列能带,再高的各带全部都是空的,由于满带不产生电流,所以尽管存在很多电子,并不导电。

19试述有效质量、空穴的意义。

引入它们有何用处?解:有效质量实际上是包含了晶体周期势场作用的电子质量,它的引入使得晶体中电子准经典运动的加速度与外力直接联系起来了,就像经典力学中牛顿第二定律一样,这样便于我们处理外力作用下晶体电子的动力学问题。

当满带顶附近有空状态k时,整个能带中的电流,以及电流在外电磁场作用下的变化,完全如同存在一个带正电荷q和具有正质量*m、速度v(k)的粒子的情况一样,这样一个假想的粒子称为空穴。

空穴的引入使得满带顶附近缺少一些电子的问题和导带底有少数电子的问题十分相似,给我们研究半导体和某些金属的导电性能带来了很大的方便。

20近自由电子模型与紧束缚模型各有何特点?它们有何相同之处?解:所谓近自由电子模型就是认为电子接近于自由电子状态的情况,而紧束缚模型则认为电子在一个原子附近时,将主要受到该原子场的作用,把其它原子场的作用看成微扰作用。

这两种模型的相同之处是:选取一个适当的具有正交性和完备性的布洛赫波形式的函数集,然后将电子的波函数在所选取的函数集中展开,其展开式中有一组特定的展开系数,将展开后的电子的波函数代入薛定谔方程,利用函数集中各基函数间的正交性,可以得到一组各展开系数满足的久期方程。

这个久期方程组是一组齐次方程组,由齐次方程组有解条件可求出电子能量的本征值,由此便揭示出了系统中电子的能带结构。

二.证明题1.利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为 (1)简单立方6π;(2)体心立方83π;(3)面心立方62π(4)六角密积62π;(5)金刚石163π。

解:(1)在简立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 2=,则简立方的致密度(即球可能占据的最大体积与总体积之比)为:6)2(3413413333πππα=⋅=⋅=R R a R(2)在体心立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数3/4R a =,则体心立方的致密度为:83)3/4(3423423333πππα=⋅=⋅=R R a R (3)在面心立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 22=,则面心立方的致密度为:62)22(3423443333πππα=⋅=⋅=R R a R (4)在六角密积的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 2=,R a c )3/64()3/62(==,则六角密积的致密度为:62)3/64(4)2(363464363462323πππα=⋅⋅=⋅⋅=RR R c a R (5)在金刚石的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a )3/8(=,则金刚石的致密度为:163)3/8(34834833333πππα=⋅=⋅=RR a R2.证明晶格常数为a 的简单立方晶格,证明密勒指数为()l k h ,,的晶面系,面间距为222lk h a d ++=.证明:简单立方晶格正格子的原胞基矢为 ;;;321k a a j a a i a a===由()3213212a a a a a b ⨯⋅⨯=π,()3211322a a a a a b ⨯⋅⨯=π,()3212132a a a a a b ⨯⋅⨯=π可得其倒格子基矢为 i a b π21=,j a b π22=, k abπ23=倒格矢 321b l b k b h G hkl++=根据面间距和倒格矢之间的关系 hklG d π2=得简单立方晶体晶面族()l k h ,,的面间距222222222lk h a lk h aG d hkl++=++==πππ3.证明晶格常数为a 的体心立方晶体晶面族 ()321h h h 的面间距为()()()221213232321h h h h h h ad h h h +++++=.证明:体心立方正格子原胞基矢可取为()k j i a a ++-=21,()k j i a a +-=22,()k j i a a-+=23由()3213212a a a a a b ⨯⋅⨯=π,()3211322a a a a a b ⨯⋅⨯=π,()3212132a a a a a b ⨯⋅⨯=π可得其倒格子基矢为: ()()()j i ab i k a b k j a b+=+=+=πππ2,2,2321倒格矢332211b h b h b h K h++= 则晶面族的面间距为3213212h h h h h h K d π=得体心立方晶体晶面族()321h h h 的面间距()()()221213232321h h h h h h ad h h h +++++=4. 在一维双原子链中,如1/>>m M ,求证:qa M sin 21βω=;2122)cos 1(2qa Mm m +=βω。

相关文档
最新文档