第三章运输问题.
第三章--运输问题

A1 A2 A3 销量
B1 B2 B3 B4 产量
3 11 3 10
7
1928
4
7 4 10 5
9
3
6
5
6
20
A1 A2 A3 A1 0 1 3 A2 1 0 M A3 3 M 0
B1
B2
B3
B4
B1
0142
B2
1021
B3
4203
B4
2130
A1 A2 A3 T1 T2 T3 T4 B1 B2 B3 B4 T1 2 3 1 0 1 3 2 2 8 4 6 T2 1 5 M 1 0 1 1 4 5 2 7 T3 4 M 2 3 1 0 2 1 8 2 4 T4 3 2 3 2 1 2 0 1 M 2 6
A1 A2 A3 T1 T2 T3 T4 B1 B2 B3 B4 产量 A1 0 1 3 2 1 4 3 3 1 3 10 27
1
A2 1 0 M 3 5 M 2 1 9 2 8 24 A3 3 M 0 1 M 2 3 7 4 10 5 29 T1 2 3 1 0 1 3 2 2 8 4 6 20 T2 1 5 M 1 0 1 1 4 5 2 7 20 T3 4 M 2 3 1 0 2 1 8 2 4 20 T4 3 2 3 2 1 2 0 1 M 2 6 20 B1 3 1 7 2 4 1 1 0 1 4 2 20 B2 11 9 4 8 5 8 M 1 0 2 1 20 B3 3 2 10 4 2 2 2 4 2 0 3 20 B4 10 8 5 6 7 4 6 2 1 3 0 20 销量 20 20 20 20 20 20 20 23 2 25 26
– 产地和销地之间虽有直达路线,但直达运输的费用或 运输距离分别比经过某些中转站还要高或远。
----第三章 运输问题

3
A2
31
B3
B4
产量
43 3
7
12
4
A3
6
39
销量
3
6
5
6
检验数的经济解释:空格( A1 , B1) + 1 吨,保持产销平衡
(A1 , B3) - 1 吨,
(A2 , B3) + 1 吨,
(A2 , B1) - 1 吨
检验数=调整方案使运费的改变量
15
(+1)3 + (-1) 3 + (+1)2 + (-1) 1 = 1 (元)
14
①、方法一:闭回路法
每个空格都存在唯一的闭回路---从每一空格出发,用水平 线或垂直线向前划,每碰到一数字格就转 90 度后继续前 进,直到回到起始空格处为止。
例 (A1 , B1) 空格与数字格(A1 , B4) 、 (A2 , B4) 和 (A2 , B1)
表3.12/3.7 B1
B2
A1
ij = cij – ( ui + vj )
18
仍以例3.2所给出的初始基可行解表3.7为例:
第一步:在对应表3.7的数字格处填入单位运价
表3.7/3.14 B1
B2
B3
B4 行位势ui
A1
3
10
0
A2
1
2
-1
A3
4
5
-5
列位势 vj 2
9 3 10
第二步:增加一行和一列,列中填入行位势
ui ,行中填入列位势 vj
存的问题。设 xin+1 是产地 Ai 的贮存量,故有:
n
n1
xij xin1 xij ai (i 1,L , m)
广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。
运筹学-3运输问题

产大于销 销大于供
当产销平衡时,其模型如下:
当产大于销时,其模型是:
mn
min Z
cij xij
i1 j1
xij ai xij bj
xij
0
( ai bj)
当销大于产时,其模型是:
min Z
cij xij
xij ai xij bj
可行解的方法
Review
二、表上作业法的步骤
Step1.找出初始基本可行解(在m*n产销平衡 表上寻找初始调运方案,一般m+n-1个数字 格),用最小元素法、西北角法、伏格尔法;
Step2.求出各非基变量的检验数,判别是否达 到最优解。如果是停止计算,否则转入下一步, 用闭回路或位势法计算;
Step3.改进当前的基本可行解(确定换入、 换出变量),用闭合回路法调整; Step4.重复2. 3,直到找到最优解为止。
(3)运输问题的解
定义1. 闭回路
x x x x x x 闭回路是能折成 i1 j1, i1 j2 , i2 j2 , i2 j3 ,..., isjs , isj1
形式的变量组集合。其中 i1 , i2 , …, is 互不相同,j1 , j2 , …, js 互不相 同。每个变量称为闭回路的顶点,连接闭回路相邻两顶点的直线段叫做闭
统计学院
运筹学-第三章 运输问题
张红历
本章内容
1.运输问题及其数学模型 2.表上作业法 3.运输问题的进一步讨论
4.应用问题举例
第一节 运输问题及其数学模型
一、运输问题的提出
例:某运输问题的资料如下:
单位 销地 运价
产地
A1 A2 A3
销量
运筹学第三章 运输问题

销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
2
A3
销量 2
4 7
1 3
4
4 6
3
7 5
3
5
6
8
4 3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
2
A3
销量 2
4 7
4
4 6
3
4 3
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x11检验数为 6-4+8-6+4-4=4
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 4
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x12检验数为 5-4+8-6=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij
运筹学 第3章运输问题

检 验 数 表
最 优 方 案 判 别 准 则
B1 3 A1 A2 7 A3 vj
B2 11
B3 3 2
B4 10 8
ui
1
1Байду номын сангаас
2
9
0
1
4 10
-1
5
-1 -5
10
2 9
12
3 10
24=-1<0,当前方案 不是最优方案。
26
2.3
闭回路调整法改进方案
min ij 0 pq
xpq 为换入变量
min
z cij xij
i 1 j 1
s.t.
n xij ai 1 jm xij b j i 1 xij 0
i 1,, m j 1,, n
4
运输问题的约束方程组系数矩阵及特征
x11 x12 .... x1n 1 1.......1 A 1 1 1 x21 x22 .... x2 n ...... xm1 xm 2 .... xmn 1 1.......1 ......... 1 1.......1 1 1 1 .......... 1 1 1
10
1. 最小元素法 (思想:就近供应) 不 能 同 时 划 去 行 和 列
销 产 A1 1 A2 A3 销量 3 9 B1 3 B2 11 B3 3 B4
表3-4
产量 10 7 8 5
4
2
3
3
7 4
1
10
6
6 5
3
6
保证填 4 有运量 的格子 9 为m+n1
该方案总运费: Z=4×3+3×10+3×1+1×2+6×4+3×5=86
运筹学 第三章 运输问题

这样可以保证填过数或零的格为m+n-1个,即保证基变量的个数为 m+n-1个。
2021/3/14
14
2.Vogel法
Vogel法的思想是:一地的产品如果不能按照最小运
费就近供应,就考虑次小运费,这就有差额,差额越大, 说明不能按最小运费调运时,运费增加得越多。因而差 额越大处,就应当采用最小运费调运。
同理可以求得 v4=10,u2= -1,等等见上表。
检验数的求法,即用公式 ijciju,i vj
如 1 1 c 1 1 u 1 v 1 3 0 2 1 。
2021/3/14
23
位势法计算检验数:
检验数: ijcijCBB1Pij
cijYiP jcij(u1,..u.m , ,v1,.v.n.)Pij
3
B4
ui
3 10
0
-1 8
-1
35
-5
10
B1
3
31
7
2
B2
11 9
64
9
B3
4(+1) 3 1 (-1) 2
10
3
B4
ui
3(-1) 10
0
+1 8
-1
35
-5
10
2021/3/14
26
调整运量后的新方案:
销地
产地
B1
A1
A2
3
A3
B2
B3
5
6
销量
3
6
5
B4
产量
2
7
1
4
3
9
第3章 运输问题

第3章 运输问题判断下列说法是否正确:03100011运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,无穷多最优解,无界解,无可行解; 03100021在运输问题中,只要给出一组含(m +N -1)个非零的ij x ,且满足1niji j xa ==∑,1mij j i x b ==∑,就可以作为一个初始基可行解;03100031表上作业法实质就是求解运输问题的单纯形法;03100041按最小元素法(或伏格尔法)给出的初始基可行解,从每一个空格出发可以找出而且仅能找出唯一的闭合回路;03100051运输问题就是指商品的调运问题;03100061产地数与销地数相等的运输问题时产销平衡运输问题; 03100071运输问题的数学模型是线性规划模型。
03100081运输问题中的产地产量之和与销地之和一定相等 03100091运输问题约束方程中独立方程个数少于m+n 个。
简答题03200011试述运输问题数学模型的特征,为什么模型(m +n )个约束中最多只能有(m +n -1)个是独立的?03200021、如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题?03200031.简述运输问题的特点03200041.试述表上作业法在运输问题的求解中的应用 03200051.“最小元素法”和“伏格尔”法的基本思想及基本操作。
03200061.闭合回路的构成以及利用闭合回路法求检验数的基本操作。
03200071.利用位势法求检验数以及利用闭合回路进行方案调整的基本操03301011 用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。
03301021用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。
03301041 求解下列运输问题的最优解:03301071 应用最小元素法求解初始解的方法解下面的产销不平衡运输模型。
销地1的需求量必须03302011 考虑下列运输问题:(1(2)把问题化为线形规划问题,用单纯形法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
1. 西北角法 优先满足运输表中西北角(左上角)上空格的供 销要求。
(1) x11=min(a1,b1) (2) 若x11=b1 ,则划去B1列,左上角格子变为(A1,B2) 若x11=a1 ,则划去A1行,左上角格子变为(A2,B1) (3)在余下的关系中, x12=min(a1,b2)或x21=min(a2,b1)
P87表3-3为例1的一个解。
13
§2
表上作业法
一、表上作业法迭代步骤 1.按某种规则找出一个初始基可行解; 2 .对现行解作最优性判断,即求各非基变量的 检验数,判别是否达到最优解,如已是最优解, 则停止计算,如不是最优解,则进行下一步骤; 3 .在表上对初始方案进行改进,找出新的基可 行解,再按第二步进行判别,直至找出最优解。
4
二、运输问题的数学模型
某种物品有m个产地 A1 , A2 ,, Am ,各产地的产量 是 a1,a2,…,am;有 n 个销地 B1,B2,…,Bn,各销地的 销量分别为b1,b2,…,bn,产量总数等于销量总数。 假定从产地 Ai 向销地 Bj 运输单位物品的运价是 Cij, 问怎样调运这些物品才能使运费最少?
(3.3)
其中:
Q ai b j
i 1 j 1 n
则(3.3)就是运输问题的一个可行解;另一方面,运输问题的 目标函数有下界。由此可知,运输问题必存在有限最优解。
10
三、运输问题模型的特点
x11 , x12 , , x1n ; x 21 , x 22 , x 2 n , , , , , x m1 , x m 2 , x mn
5
设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n),由于从Ai运出的物资 总量应等于Ai的产量ai,因此xij应满足:
x
j 1
n
ij
ai
i 1,2, , m
6
运到Bj的物资总量应该等于Bj的销量bj,所以xij还 应满足:
m
第三章 运输问题
本章包含三部分的内容 运输问题及其数学模型 运输问题的表上作业法 运输问题的进一步研究
1
§1 运输问题及其数学模型
日常生活中,人们经常需要将某些物品由一个空间 位置移动到另一个空间位置,这就产生了运输,如 何判定科学的运输方案,使运输所需的总费用最少, 就是运输问题的模型需要解决的问题。
2
一、问题的提出
例1:某公司从两个产地A1、A2将物品运往三个 销地B1、B2、B3,各产地的产量、各销地的销量 和各产地运往每个销地单件物品的运费如下表所 示,问:应如何调运可使总运输费用最小?
3
解:这是产销平衡问题:总产量 = 总销量 设 xij 为从产地Ai(i=1,2)运往销地Bj(j=1,2,3) 的运输量,得到: min z = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23 x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 150 St. x12 + x22 = 150 x13 + x23 = 200 xij ≥ 0 ( i=1,2;j=1,2,3)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
m
n
11
三、运输问题模型的特点
2. 约束条件系数矩阵元素等于0或1; 3. 约束条件系数矩阵的每一列有两个非零元素, 这对应于每一个变量在前m个约束方程中出现一 次,在后n个约束方程中也出现一次; 4. 基变量共有 m + n -1 个,A的秩为 m + n –1;
14
确定初始方案 -初始基可行解
判定是否 最优?
是 结 束
否 最优方案 最小元素法 西北角法 沃格尔法
改进调整 (换基迭代)
图 1 运输问题求解思路图
15
二、初始基可行解的确定
例2:甲、乙两个煤矿供应A、B、C三个城市用煤, 各煤矿产量及各城市需煤量、各煤矿到各城市的 运输单价见表所示,求使总运输费用最少的调运 方案。
x
i 1
ij
bj
j 1, , n
总运费为:
z cij xij
i 1 j 1
7
m
n
数学模型
供应约束
需求约束
n m ai b j j 1 i 1
产销平衡条件
8
运输表
产地 销地
B1
c11 x11 x21 c21
B2
c12 x12 x22 c22
5. 所有约束条件都是等式约束;
6. 各产地产量之和等于各销地销量之和。
12
四、运输问题的解
1. 满足所有约束条件
2. 基变量对应的约束方程组的系数列向量线性 无关。
3. 解中非零变量的个数≤m+n-1个 4. 为使迭代顺利进行,基变量的个数在进行迭 代过程中保持为m+n-1个 5. 将基可行解中基变量的值填入运输表中,非 基变量对应的格不填入数字,称为空格。
16
运距 煤矿 甲
城市
A
B
C
日产量 (供应量)
90 80 100
70 65 150
100 75 200
200 250 450
17
乙 日销量 (需求量)
例2的数学模型
min z 90x11 70x12 100x13 80x21 65x22 75x23 x11 x12 x13 200 x21 x 22 x23 250 x x 100 11 21 st . x12 x22 150 x13 x23 200 xij 0 i 1,2; j 1,2,3
Bn
c1n x1n x2n c2n
产量 a1
a2
A1
A2
Am
xm1 cm1 xm2 cm2 xmn cmn
am
销量
b1
b2
bn
9
三、运输问题模型的特点
从运输问题的数学模型可见:运输问题是线性规 划问题,但又有其特殊性:
1. 运输问题有有限最优解;
令:
xij
ai b j Q
m
i 1,2,m; j 1,2,, n