定时器和计数器的实例

合集下载

定时器计数器实验报告

定时器计数器实验报告

定时器计数器实验报告
《定时器计数器实验报告》
实验目的:通过定时器计数器实验,掌握定时器的基本原理和使用方法,以及
探究定时器在电子设备中的应用。

实验材料:定时器计数器、电源供应器、示波器、电阻、电容等元器件。

实验步骤:
1. 搭建电路:按照实验指导书上的电路图,搭建定时器计数器的电路。

2. 接通电源:将电路接通电源,并调节电源供应器的输出电压和电流。

3. 调节参数:通过调节电阻、电容等元器件的数值,调节定时器计数器的工作
频率和工作周期。

4. 测量波形:使用示波器测量定时器计数器输出的波形,观察波形的频率、占
空比等参数。

5. 实验记录:记录实验过程中的关键参数和观察结果,包括电路连接方式、元
器件数值、波形频率和占空比等。

实验结果:
经过实验观察和记录,我们得出了定时器计数器在不同参数设置下的工作波形,包括方波、脉冲波等。

通过调节电阻、电容等元器件的数值,我们成功改变了
定时器计数器的工作频率和工作周期,并且得到了不同频率和占空比的波形。

实验总结:
通过本次实验,我们深入了解了定时器计数器的工作原理和使用方法,掌握了
定时器在电子设备中的应用。

定时器计数器是一种非常重要的电子元器件,广
泛应用于各种电子设备中,如计时器、脉冲发生器、频率分频器等。

掌握了定
时器计数器的基本原理和使用方法,对我们今后的电子工程实践和研究具有重要意义。

在今后的学习和工作中,我们将继续深入研究和应用定时器计数器,不断提高自己的电子技术水平,为电子设备的设计和应用做出更大的贡献。

DSP计数器 DSP定时器 计数器原理及设计举例

DSP计数器  DSP定时器 计数器原理及设计举例

DSP 定时器/计数器原理及设计举例1、定时器结构定时器的组成框图如图1所示。

它有3个16位存储器映像寄存器:TIM 、PRD 和TCR 。

这3个寄存器在数据存储器中的地址及其说明如表1所示。

定时器控制寄存器(TCR )位结构如图2所示,各控制位和状态位的功能如表2所示。

(说明:图中包括,一个16位的主计数器(TIM)和一个4位预定标计数器(PSC)。

TIM 从周期寄存器PRD 加载,PSC 从周期寄存器TDDR 加载。

) 1.1典型操作顺序:(1) 在每个CLKOUT 脉冲后PSC 减1,直到它变为0。

(2) 在下一个CLKOUT 周期,TDDR 加载新的除计数值到PSC ,并使TIM 减1。

(3) 以同样方式,PSC 和TIM 连续进行减操作,直到TIM 减为0。

(4) 下一个CLKOUT 周期,将定时器中断信号(TINT)送到CPU ,同时又用另一脉冲送到TOUT 引脚,把新定时器计数值从PRD 加载到TIM ,并使PSC 再次减1。

因此,定时器中断的速率为1.2定时器编程(1)TIM :定时器中的当前值。

(2)PRD :正常情况,当TIM 减到0后,PRD 中的时间常数自动地加载到TIM 。

系统复位( =1)或定时器复位(TRB=1)时,PRD 中的时间常数重新加载到TIM 。

(3)控制寄存器(TCR)包含的控制位有下列功能: ①控制定时器模式;②指定定时器预先定标计数器的当前计数值; ③重新加载定时器; ④启动、停止定时器; ⑤定义定时器的分频系数。

图1 定时器组成框图TINT 速率=)()(频率1PRD 1TDDR CLKOUT +⨯+(说明:TDDR(Timer Divide-Down Ratio):复位时,TDDR 各位清零;PSC(Timer Prescaler Counter):PSC 可被TCR 读取,但不能直接写入) 1.3定时器初始化步骤:(1) 将TCR 中的TSS 位(停止状态位)置1,关闭定时器。

单片机定时器 计数器

单片机定时器 计数器

单片机定时器计数器单片机定时器/计数器在单片机的世界里,定时器/计数器就像是一个精准的小管家,默默地为系统的各种操作提供着精确的时间控制和计数服务。

无论是在简单的电子时钟、还是复杂的通信系统中,都能看到它们忙碌的身影。

那什么是单片机的定时器/计数器呢?简单来说,定时器就是能够按照设定的时间间隔产生中断或者触发事件的模块;而计数器则是用于对外部脉冲或者内部事件进行计数的功能单元。

我们先来看看定时器的工作原理。

想象一下,单片机内部有一个像小闹钟一样的东西,我们可以给它设定一个时间值,比如说 1 毫秒。

当单片机开始工作后,这个小闹钟就会以一个固定的频率开始倒计时,当倒计时结束,也就是 1 毫秒到了,它就会发出一个信号,告诉单片机“时间到啦”!这个信号可以用来触发各种操作,比如更新显示、读取传感器数据等等。

定时器的核心在于它的时钟源。

就好比小闹钟的动力来源,时钟源决定了定时器倒计时的速度。

常见的时钟源有单片机的内部时钟和外部时钟。

内部时钟一般比较稳定,但精度可能会受到一些限制;而外部时钟则可以提供更高的精度,但需要额外的电路支持。

再来说说计数器。

计数器就像是一个勤劳的小会计,不停地数着外面进来的“豆子”。

这些“豆子”可以是外部的脉冲信号,也可以是单片机内部产生的事件。

比如,我们可以用计数器来统计电机旋转的圈数,或者计算按键被按下的次数。

计数器的工作方式也有多种。

可以是向上计数,就是从 0 开始,不断增加,直到达到设定的最大值;也可以是向下计数,从设定的最大值开始,逐渐减少到 0。

还有一种更灵活的方式是双向计数,根据需要在向上和向下之间切换。

那么,定时器/计数器在实际应用中有哪些用处呢?比如说,在一个智能温度控制系统中,我们可以用定时器每隔一段时间读取一次温度传感器的数据,然后根据温度的变化来控制加热或者制冷设备的工作。

而计数器则可以用来统计设备运行的次数,以便进行维护和保养。

在电子时钟的设计中,定时器更是发挥了关键作用。

N76E003的定时器计数器0和1

N76E003的定时器计数器0和1

N76E003的定时器计数器0和1定时器/计数器 0和1N76E003系列定时器/计数器 0和1是2个16位定时器/计数器。

每个都是由两个8位的寄存器组成的16位计数寄存器。

对于定时器/计数器0,⾼8位寄存器是TH0、低8位寄存器是TL0。

同样定时器/计数器1也有两个8位寄存器, TH1 和TL1。

TCON 和 TMOD 可以配置定时器/计数器0和1的⼯作模式。

通过TMOD中的位来选择定时器或计数器功能。

每个定时器/计数器都有选择位,TMOD的第2位选择定时器/计数器0功能,TMOD的第6位选择定时器/计数器1功能。

将它们设置为定时器后,定时器将对系统时钟周期计数。

定时器0通过设置T0M(CKCON.3)位,定时器1通过设置T1M(CKCON.4)位,来选择定时器时钟是系统时钟(FSYS)的12分频或直接是系统时钟。

在计数器模式下,每当检测到外部输⼊脚T0上的下降沿,计数寄存器的内容就会加⼀。

如果在⼀个时钟周期采样到⾼电平,在下⼀个时钟周期采样到低电平,那么T0或T1引脚就会确认为⼀个由⾼到低的跳变。

当有定时器溢出发⽣,定时器0和1能配置引脚T0/T1⾃动翻转输出。

这个功能通过设P2S寄存器的T0OE和T1OE来设置,分别对应于定时器0和定时器1。

当打开这个功能,输出端⼝在第⼀个定时溢出之前输出逻辑1。

为确保此模式功能,位应该被清除并且选择系统时钟作为定时器的时钟源。

注意:TH0(TH1)和TL0(TL1)是独⽴分开访问。

需要特别注意,在模式0或模式1下时,当读/写TH0(TH1)和TL0(TL1)之前,必须清除TR0(TR1)来停⽌计时。

否则将产⽣不可预料的结果。

模式0(13位定时器)在模式 0, 定时器/计数器是13位的计数器。

13位的计数器由TH0 (TH1) 和TL0 (TL1)的低五位组成。

TL0 (TL1)的⾼三位被忽略。

当TR0 (TR1)置位且GATE是0或是1时,定时器/计数器使能。

中断与定时器和计数器实验

中断与定时器和计数器实验

中断与定时器和计数器实验一、实验目的:1.掌握单片机的中断的原理、中断的设置,掌握中断的处理及应用2.掌握单片机的定时器/计数器的工作原理和工作方式,学会使用定时器/计数器二、实验内容:(一)、定时器/计数器应用程序设计实验1.计数功能:用定时器1方式2计数,每计数满100次,将P1.0取反。

(在仿真时,为方便观察现象,将TL1和TH1赋初值为0xfd,每按下按键一次计数器加1,这样3次就能看到仿真结果。

)分析:外部计数信号由T1(P3.5)引脚输入,每跳变一次计数器加1,由程序查询TF1。

方式2有自动重装初值的功能,初始化后不必再置初值。

将T1设为定时方式2,GATE=0,C/T=1,M1M0=10,T0不使用,可为任意方式,只要不使其进入方式3即可,一般取0。

TMOD=60H。

定时器初值为X=82-100=156=9CH,TH1=TL1=9CH。

(1)硬件设计硬件设计如图所示(2)C源程序#include "reg51.h" sbit P1_0=P1^0;void main(){TMOD=0x60;TH1=0xfd;TL1=0xfd;TR1=1;ET1=1;while(1){if(TF1==1){P1_0=~P1_0;TF1=0;}}}(3)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

(二)中断应用程序设计实验2.中断定时使用定时器定时,每隔10s使与P0、P1、P2和P3端口连接的发光二极管闪烁10次,设P0、P1、P2和P3端口低电平灯亮,反之灯灭。

分析:中断源T0入口地址000BH;当T0溢出时,TF0为1发出中断申请,条件满足CPU响应,进入中断处理程序。

主程序中要进行中断设置和定时器初始化,中断服务程序中安排灯闪烁;TL0的初值为0xB0,TH0的初值为0x3C,执行200次,则完成10s定时。

定时器计数器实验报告

定时器计数器实验报告

定时器计数器实验报告简介:定时器是一种用来产生、计数和处理时间信号的计时装置。

在数字电路中,定时器主要分为内部定时器和外部定时器两类,内部定时器是在单片机内部实现的,外部定时器则是通过外部电路实现的。

计数器则是一种用来计数的电子元件,根据不同的使用场合和要求,计数器可以分为多种类型。

在嵌入式系统中,定时器计数器应用广泛,例如在时钟、延时、计数等方面都有很大的作用。

实验目的:1. 学习定时器和计数器的基本原理及应用。

2. 熟悉定时器和计数器在单片机中的编程方法。

3. 掌握通过定时器和计数器实现延时和计数功能的方法。

实验器材:1. STM32F103C8T6开发板2. ST-LINK V2下载器3. 电脑实验内容:一、实验1:使用定时器和计数器实现延时功能1. 在Keil C中新建一个工程,并编写以下程序代码:```#include "stm32f10x.h"void TIM2_Int_Init(u16 arr,u16 psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure ;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);TIM_TimeBaseStructure.TIM_Period = arr;TIM_TimeBaseStructure.TIM_Prescaler=psc;TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode _Up;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE );NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure);TIM_Cmd(TIM2, ENABLE);}void TIM2_IRQHandler(void){if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) {TIM_ClearFlag(TIM2, TIM_FLAG_Update);GPIO_WriteBit(GPIOB,GPIO_Pin_12,(BitAction)(1-GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_12)));}}int main(void){GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB,&GPIO_InitStructure);TIM2_Int_Init(9999,7199);while (1);}```2. 将STM32开发板连接到电脑,并下载程序到开发板中。

定时器-计数器的应用实例

定时器-计数器的应用实例

定时器/计数器的应用实例
在实时系统中,定时通常使用定时器,这与软件循环的定时完全不同。

虽然两者都是依赖系统时钟,但是在定时器计数时,其它指令可以继续进行,但软件定时时不允许其它任何事件发生。

 对许多连续计数和持续时间操作,最好使用16位定时/计数器。

当计数器翻转后,它会继续计数。

若在计数开始或定时时间间隔开始读出计数器的值,在计数或时间间隔结束时从读出值中减去开始时的读出值,则所得计数数值为其间的计数或持续的时间间隔。

假设定时器用于V-F(电压到频率)转换器信号的周期测量。

若当逻辑1到来时计数值为3754,下一个逻辑1到达时是4586,则V-F转换器的周期是832个机器周期。

使用12MHz晶振为
832μs(1.202kHz),使用11.0592MHz晶振,计数值近似
903μs(1.071kHz)。

当计数值有翻转时,只要计数值以16位无符号整数对待就无算术问题。

 例1 设单片机的fosc=12MHz,要求在P1.0脚上输出周期为2ms的方波。


 解周期为2ms的方波要求定时间隔1ms,每次时间到P1.0取反。

 定时器计数率=fosc/12。

机器周期=12/fosc=1μs
 每个机器周期定时器加1,1ms=1000μs。

第6讲 定时器与计数器

第6讲 定时器与计数器
≥1
TMOD T0引脚 0 M0 1 M1 C/T 0 机器周期 GATE M0 1 INT0引脚 M1 C/T GATE D7 D0
工作方式2结构
定时器T0工作方式2结构
溢出 申请 中断 申请 中断 TCON TF1 TR1 TF0 TR0 溢出 TH0 8位 T0引脚 1 TL0 8位 &
≥1
四、定时计数器控制寄存器
1、工作方式控制寄存器TMOD
C/T用于选择定时或计数方式,定时计数器4种工作方式 可通过TMOD中的M1、M0进行选择。
MCS-51单片机将门控位GATE、定时计数方式选择位C/T、
工作方式选择位M1、M0组合在工作方式控制寄存器TMOD 中,TMOD是特殊功能寄存器,字节地址为89H。TMOD共8位, 低4位用于T0的工作方式选择,高4位用于T1的工作方式选择。 各位定义如下:
每个计数脉冲使加1计数器加1。(f< fosc/24 ,)
4. 加1计数器
加1计数器由特殊功能寄存器TH0与TL0组成,工作前应
先将TH0与TL0置初值Count。然后由定时或计数脉冲使加1计
数器加1,当加1计数器加到FFFFH后再加1时,发生溢出回零,
硬件自动将中断标志TF0置1,并以此向CPU发中断请求。 溢出回零后硬件要完成以下几项工作: ① 将溢出标志TF0置1。 ② 以TF0=1为标志向CPU发中断请求信号。 ③ 若CPU响应,则在响应过程中由硬件将TF0清零。并转入中断 处理程序执行定时或计数任务。
工作方式
00; 01; M1M0 = 10; 11;
加1计数器位数
13位 16位
加1计数器
TH15~8,TL4~0 TH15~8,TL7~0
方式0 方式1 方式2 方式3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TSCR1 寄存器是定时器模块的总开关,它决定模块是否启动以及在中断等待、BDM 方式下的行为,还包括标志的管理方式。

其各位的意义如下:
TEN:定时器使能位,此外它还控制定时器的时钟信号源。

要使用定时器模块的 IC/OC 功能,必须将 TEN 置位。

如果因为某种原因定时器没有使能,脉冲累加器也将得不到 ECLK/64 时钟,因为 ECLK/64 是由定时器的分频器产生的,这种情况下,脉冲累加器将不能进行引脚电平持续时间的累加。

0:定时器/计数器被禁止,有利于降低功耗。

1:定时器/计数器使能,正常工作。

TSWAI:等待模式下计时器关闭控制位。

【注意】定时器中断不能用于使 MCU 退出等待模式。

0:在中断等待模式下允许 MCU 继续运行。

1:当 MCU 进入中断等待模式时,禁止计时器。

TSFRZ:在冻结模式下计时器和计数器停止位。

0:在冻结模式下允许计时器和计数器继续运行。

1:在冻结模式下禁止计时器和计数器,用于仿真调试。

【注意】TSFRZ 不能停止脉冲累加。

TFFCA:定时器标志快速清除选择位。

0:定时器标志普通清除方式。

1:对于 TFLGl($0E)中的各位,读输入捕捉寄存器或者写输出比较寄存器会自动清除相应的标志位 CnF。

对于 TFLG2($0F)中的各位,任何对 TCNT 寄存器($04、$05)的访问均会清除 TOF 标志;任何对PACN3 和 PACN2 寄存器($22,$23)的访问都会清除PAFLG 寄存器($21)中的 PAOVF 和 PAIF 位。

任何对 PACN1 和PACN0 寄存器($24,$25)的访问都会清除 PBFLG 寄存器($21)中的 PBOVF 位。

【说明】这种方式的好处是削减了另外清除标志位的软件开销。

此外,必须特别注意避免对标志位的意外清除
可在任何时候读或写。

TOI:定时器/计时器溢出中断使能。

0:中断被禁止。

1:当 TOF 标志被置位时发出硬件中断请求。

【注意】TOF标志位在TFLG中
TCRE:定时器/计数器复位使能。

该位在通道 7 成功输出比较之后允许时钟计数器复位。

该操作模式类似于递增型计数器。

0:计数器复位禁止,计数器自由计数。

1:通道 7 成功输出比较后计数器将被复位。

【说明】如果 TC7=$0000 并且 TCRE=1,TCNT 将继续保持$0000。

如果TC7=$FFFF 并且TCRE=1,当TCNT 从$FFFF 到$0000 之间被复位后TOF 将永远不被置位。

PR2,PR1,PR0:计数器预分频选择。

这三位所决定的分频因子如下表所示。

分频因子选择
【说明】新设定的分频因子不会立即起作用,直到下一个触发沿到来那里所有预分频计数器值均为零。

3、控制寄存器(TCTLl-TCTL4)
TCTLl-TCTL4 分为两组,分别对IC 和OC 电路进行设定,每
组16 个二进制位,每两个二进制位管理一个通道。

其中TCTLl、TCTL2 设定各个OC 通道匹配时的动作,包括切断OC 与输出引脚的联系,而TCTL3、TCTL4 设定IC 响应引脚的何种动作,包括禁止IC 的响应
OMn、OLn 分别设定输出方式和输出电平,这 8 对控制位(OM7、OL7---OMO、 OL0)编码后用于指定通道比较成功后的输出动作。

如果每对当中至少有一个为 1,对应引脚就固定为相应通道的输出,而与 DDRT 中的对应位无关。

当二者同时为 0 时,OC 与输出引脚断开。

输出比较动作设置
TCTL3 寄存器偏移量:$000A
各个控制位的作用如下:
EDGnB、EDGnA 输入捕捉边沿控制位,这 8 对控制位(EDG7B、EDG7A—EDG0B、EDG0A)对输入捕捉的边沿检测电路进行设置。

当二者同时为 0 时,IC 与输入引脚断开。

输入捕捉边沿检测电路设置
为了使 OMn、OLn 指定的引脚动作有效,OC7M 中的对应位必须清 0。

若要使用 16 位脉冲累加器 A 和 B,并使它们分别独立于 IC/OC7 和 IC/OC0,必须设置对应的 IOSn:1、OMn=0、OLn=0,同时寄存器 OC7M 中的OC7M7、OC7M0 位必须清0。

相关文档
最新文档