第三章圆测试题及答案3.1--3.6

合集下载

北师大版九年级数学下册第三章圆单元检测试题(有答案)

北师大版九年级数学下册第三章圆单元检测试题(有答案)

第三章圆单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列说法正确的有()A.优弧的长一定大于劣弧的长B.以圆心为端点的线段是半径C.半径相等的两个半圆是等弧D.不同的圆中,就不可能有相等的弦长2.下列说法正确的是( )A.半径不相等的圆叫做同心圆B.优弧一定比劣弧长C.不同的圆中可能有相等的弦D .半圆一定比直径长3 .已知O 。

的半径为5,直线EF 经过。

上一点P(点E,尸在点P 的两旁),下列条件能判定直线EF 与。

相切的是()B.OE =。

尸D.OP 1 EF4 .如图,PA 与。

切于点4 P8C 是。

的害I 线,如果PB = 8C = 2,那么R4的长为A.OP=5 C.0到直线EF 的距离是4A.2B.2\/2C.4D.85.如图,在。

中,乙4。

8的度数为m, C 是弧SC8上一点,I C乏 (不与4、8两点重合),则乙D +乙E 的度数为() K-八E 是弧人8上不同的两点 3A.mB.1800 -- 2 6.如图,半径为2的。

0中,弦Z 内心,经过8、C 、P 三点作OM, A.发生变化,随4位置决定 C .有最大值为2机C9。

+ 万 D.y 3C = 273, /是优弧BC 上的一个动点,P 点是△ABC 的 管 当点4运动时,OM 的半径() ----------- B.不变,等于2 D .有最小值为17 .如图,在O 。

中,点C 是防的中点, 公CA.400B.500 C 乙。

力& = 40°,贝1]480c 等于() :.70° D.800 切点依次是E 、F 、G 、H,下列结论一定正确①力尸=BG ②CG = CH ③力B +CD =AD + BC ④BG < CG9.如图,正六边形48CDEF 内接于O 。

,力8 = 2,则图中阴影部分的而积为()D.4TT10.如图,四边形力BCD 内接于。

九年级数学(下)第三章《圆》测试题.doc

九年级数学(下)第三章《圆》测试题.doc

九年级数学(下)第三章《圆》测试题姓名____________ 班级_____________ 分数____________ 一、选择题(每小题3分,共30分) 1、下列命题中的真命题是( )A 三点确定一个圆B 平分弦的直径垂直弦C 圆周角等于圆心角的一半D 在同圆或等圆中等弧所对的圆周角相等 2、如图,圆和圆的位置关系是( ) A 、外离 B 、相切 C 、相交 D 、内含 3、如图,在半径为5cm O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( )A 4cm B 6cm C 8cm D 10cm4、已知I 为ABC 的内心,∠A=700,则∠BIC=( )A 1200B 1250C 1300D 13505、一条弦把圆分成2∶3两部分,那么这条弦所对的圆周角的度数是( )A 720B 1080C 720或1080D 14406、如图,⊙A 、⊙B 、⊙C 两两不相交,且半径均为0.5,则图中三个阴影部分的面积之和为( ) A 12π B 8π C 6π D 4π7、若圆的半径为5cm ,圆心的坐标是(0,0),点p 的坐标为(4,2),则点p 与⊙0的位置关系为( )A 点p 在⊙0内B 、点p 在⊙0上C 点p 在⊙0外D 点p 在⊙0上或点p 在⊙0外8、如图,已知AB 是半圆O 的直径,弦AD ,BC 相交于点P ,那么CDAB等于( )A sin ∠BPDB cos ∠BPDC tan ∠BPD D 无法确定9、小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形的生日礼帽,如图,圆锥帽底面半径为9cm ,母线长为36cm ,请你帮助他计算制作一个这样的生日礼帽需要纸板的面积为( )A 648πcm 2B 432πcm 2C 324πcm 2D 216πcm 210A 1B 1C 1内接于正△ABC 的内切圆,则A 1B 1AB 的值为( )A 12B 22C 13D 33二、填空题(每小题3分,共24分)11、如图AB 是⊙0的直径,∠ACD=15°, 则∠BAD= 度12、当两圆外切时,圆心距为12cm ,两圆半径之比为1∶2,那么,当这两个圆内切时,圆心距为 cm ;13、如图,一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB=8,则弓形的高CD 为 ;14、如图,两个同心圆中,小圆的切线被大圆截得的线段AB 长为6cm ,则S 阴影= cm 215、△ABC 的三边为3、2、13 ,设其三条高的交点为H ,外心为O ,则OH= 16、如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1……叫做“正方形的渐开线”,其中1D A 、11A B 、11C B 、11C D ……的圆心依次按A 、B 、C 、D 循环,它们依次连接,取AB=1,则曲线DA 1B 1C 1D 1的长为17、正方形ABCD 内接于⊙0,点E 在AD 上,则∠BEC=18、在矩形ABCD 中,AB=5,BC=12,若分别以点A 、C 为圆心的两圆相切,点D 在⊙C 内,点B 在⊙C 外,则⊙A 的半径r 的取值范围为 三、解答题(共66分)19、已知⊙0的半径为8cm ,点A 为半径OB 延长线上一点,射线AC 切⊙0于点C ,BC 的长为209πcm ,求线段AB 的长 (精确到0.01cm )20、如图,在△ABC 中,∠A=30°,AC=8,BC=5,以直线AB 为轴,将△ABC 旋转一周得到一个旋转体,求这个旋转体的全面积。

浙教版九年级数学上册第三章圆的基本性质单元测试(含答案)

浙教版九年级数学上册第三章圆的基本性质单元测试(含答案)

第 3 章圆的基天性质( 3.1 — 3.7 )测试一、选择题(每题 4 分,共28 分)1、在数轴上,点 A 所表示的实数为3,点B 所表示的实数为a,⊙ A 的半径为2,以下说法中不正确的选项是()A 、当a< 5 时,点B 在⊙ A内 B 、当1< a< 5 时,点 B 在⊙ A内C、当a< 1 时,点 B 在⊙ A外 D 、当a> 5 时,点 B 在⊙ A外2、以下命题中不正确的选项是()A 、圆有且只有一个内接三角形B 、三角形只有一个外接圆C、三角形的外心是这个三角形随意两边的垂直均分线的交点D、等边三角形的外心也是三角形的三条中线、高、角均分线的交点3、⊙ O内一点M 到圆的最大距离为10cm,最短距离为8cm,那么过M 点的最短弦长为()A 、1cmB 、85 cm C、41 cm D、 9cm4、如图,梯形ABCD中, AB∥ DC ,AB⊥ BC, AB= 2cm, CD=4cm,以BC上一点O 为圆心的圆经过A、 D两点,且∠AOD = 90°,则圆心O 到弦AD的距离是()A 、 6 cm B、10 cm C、2 3cmD 、25 cm(第 4 题图)(第5 题图)(第 6 题图)(第7 题图)5、如下图,以O 为圆心的两个齐心圆中,小圆的弦AB 的延伸线交大圆于C,若AB= 3,BC= 1,则与圆环的面积最靠近的整数是()A 、9B 、 10C、 15D、 136、如图,圆上由⌒⌒7 A、B、C、D 四点,此中∠ BAD = 80°,若ABC,ADC的长度分别为,⌒的长度为()11 ,则BADA 、4B 、8C、10D、157、如图,在平面直角坐标系中,⊙P 的圆心是( 2, a)( a> 2),半径为 2,函数 y= x 的图象被⊙ P 截得的弦 AB 的长为2 3 ,则a的值是()A 、2 3B 、2 2 2C、22 D 、23二、填空题(每题 4 分,共 60 分)8、如图,⊙ O 的半径 OA=6,以 A 为圆心, OA 为半径的弧交⊙O 于 B、 C,则 BC 的长是.(第 8 题图)(第9题图)(第12题图)⌒9、如图,点 A、B、C、D 都在⊙ O 上,CD的度数等于84°,CA 是∠ OCD 的均分线,则∠ ABD+∠ CAO=.10、已知, A、 B、 C 是⊙ O 上不一样的三点,∠AOC= 100 °,则∠ABC =.11、在⊙ O 中,弦 CD 与直径 AB 订交于点E,且∠ AEC= 30°, AE= 1cm, BE= 5cm,那么弦 CD 的弦心距OF=cm,弦 CD 的长为cm.12、如图,小量角器的零度线在大批角器的零度线上,且小量角器的中心在大批角器的外缘边上.假如它们外缘边上的公共点P 在校量角器上对应的度数为65°,那么在大批角器上对应的度数为(只要写出0°~90°的角度).13、如图,在以 AB 为直径的半圆中,有一个边长为 1 的内接正方形CDEF ,则 AC=,BC=.(第 13 题)(第14题)(第15题)14、在圆柱形油槽内装有一些油,截面如图,油面宽AB 为 6 分米,假如再注入一些油后,油面 AB 上涨 1 分米,油面宽变成 8 分米,圆柱形油槽的直径MN 为 .15、如图 AB 、CD 是⊙ O 的两条相互垂直的弦,∠AOC = 130 °,AD 、CB 的延伸线订交于点P ,∠ P =.16、如图,弦 ⌒ ⌒.AB 、 CD 订交于点 E , AD =60°, BC = 40°,则∠ AED =(第 16 题图) (第 17 题图) (第 18 题图) (第 19 题图)17、如图,弦 CD ⊥ AB 于 P , AB = 8, CD =8,⊙ O 半径为 5,则 OP 的长为 .18、如图,矩形 ABCD 的边 AB 过⊙ O 的圆心, E 、F 分别为 AB 、CD 与⊙ O 的交点,若 AE= 3cm , AD = 4cm , DF =5cm ,则⊙ O 的直径等于.⌒的中点, E 是 BA延伸线上一19、如图,⊙ O 是△ ABC 的外接圆, AO ⊥ BC 于 F ,D 为 AC 点,∠ DAE = 114°,则∠ CAD 等于.20、半径为 R 的圆内接正三角形的面积是.21、一个正多边形的全部对角线都相等,则这个正多边形的内角和为.22、AC 、BD 是⊙ O 的两条弦,且 AC ⊥ BD ,⊙O 的半径为 1,则 AB 2CD 2 的值为 .2三、解答题(共 32 分)23、( 10 分)某地有一座圆弧形拱桥, 桥下水面宽度 AB 为 7.2m ,拱顶超出水面 2.4m ,OC ⊥ AB ,现有一艘宽 3m ,船舱顶部为正方形并超出水面 2m 的货船要经过这里,此货船能顺利经过这座桥吗?24、( 10 分)已知,如,△ ABC 内接于⊙ O,AB 直径,∠ CBA 的均分交 AC 于点 F ,交⊙ O 于点 D,DE⊥ AB 于点 E,且交 AC 于点 P,接 AD.(1)求:∠ DAC=∠ DBA ;(2)求: P 是段 AF 的中点.25、( 12 分)如,AD是⊙ O 的直径.(1)如①,垂直于AD的两条弦B1C1, B 2 C 2把周 4 均分,∠B1的度数是,∠ B 2的度数是.(2)如②,垂直于 AD 的三条弦B1C1,B2C2,B3C3把周 6 均分,分求∠B1,∠B2,∠ B 3的度数;(3)如③,垂直于 AD 的 n 条弦B1C1,B2C2,B3C3,⋯,B n C n把周 2n 均分,你用含 n 的代数式表示∠B n的度数(只要直接写出答案).参照答案1~7: AABBDCC8、6 39、48°10、 50°或 130 °11、1cm4 2 cm12、50°515114、 10分米15、 40°16、 50°17、3 2 13、2218、 10cm19、 38°20、 3 3R221、360 °或 540°22、 1423、解:如图,连结ON, OB,∵OC⊥ AB, D 为 AB 中点,∵ AB= 7.2m,∴BD =1AB= 3.6m,又∵ CD= 2.4m,2设OB= OC= ON=r,则 OD =( r- 2.4) m,在 Rt△ BOD 中,依据勾股定理得:r 2(r 2.4) 2 3.6 2,解得:r=3.9∵CD = 2.4m,船舱顶部为正方形并超出水面2m,∴ CH = 2.4- 2= 0.4m,∴OH = r - CH= 3.9- 0.4= 3.5m,在 Rt△ OHN 中,HN2ON 2OH 2 3.92 3.52 2.96,∴HN = 2.96 m,∴ MN = 2HN =2×2.96 ≈3.44m>3m.∴此货船能顺利经过这座桥.24、证明:( 1)∵ BD 均分∠ CBA ,∴∠ CBD =∠ DBA ,∵∠ DAC 与∠ CBD 都是弧 CD 所对的圆周角,∴∠DAC=∠ CBD,∴∠ DAC =∠ DBA .( 2 )∵ AB为直径,∴∠ ADB=90°,又∵ DE⊥AB于点 E ,∴∠ DEB = 90°,∴∠ADE +∠EDB =∠ABD+∠EDB=90°,∴∠ADE=∠ABD =∠DAP ,∴PD =PA ,又∵∠ DFA +∠ DAC =∠ADE +∠ PDF =90°且∠ ADE =∠ DAP ,∴∠ PDF =∠PFD ,∴ PD =PF ,∴PA =PF ,即 P 是点段 AF 的中点.25、( 1)∠B1=22.5 °,∠B2= 67.5 °(; 2)∠B1= 15°,∠B2= 45°,∠B3= 75°;(3)B n C n把圆周 2n 均分,则弧B n D 的度数是360,则∠ B n AD =360,4n8n∴∠ B n=90°-360=90°-45 8n n7、我们各样习惯中再没有一种象战胜骄傲那麽难的了。

北师大版九年级下册数学第三章 圆 含答案

北师大版九年级下册数学第三章 圆 含答案

北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、图1是一张圆形纸片,直径AB=4,现将点A折叠至圆心O形成折痕CD,再把点C,D都折叠至圆心O处,最后将图形打开铺平(如图2所示),则弧EF的长为( )A. πB. πC. πD. π2、如图,⊙O的直径AB=4,点C在⊙O上,如果∠ABC=30°,那么AC的长是( )A.1B.C.D.23、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于()A. B. C.4 D.34、如图,点,,在圆上,,则的度数是()A. B. C. D.5、如图.AB是⊙O的直径,E是弧BC的中点,OE交BC于点D,OD=3,DE=2,则AD的长为().A. B.3 C.8 D.26、如图,直线l是⊙O的切线,点A为切点,B为直线l上一点,连接OB交⊙O于点C,D是优弧AC上一点,连接AD,CD.若∠ABO=40°.则∠D的大小是()A.50°B.40°C.35°D.25°7、如图,如果直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长是()A.2B.8C.2D.28、下列说法,正确的是()A.等弦所对的圆周角相等B.弦所对的两条弧的中点的连线垂直平分弦,且过圆心C.切线垂直于圆的半径D.平分弦的直径垂直于弦9、如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为()A.2 cmB.3 cmC.4D.4 cm10、如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是()A. πB.C. πD. π11、如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°12、如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr 2B.C. r 2D. r 213、如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.56°B.28°C.42°D.14°14、如图,若以平行四边形一边AB为直径的圆恰好与边CD相切于点D,则∠C 的度数是()A.40°B.45°C.50°D.60°15、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.10二、填空题(共10题,共计30分)16、如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为________.17、如图,已知过A、C、D三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=57°,那么∠ABC= ________°.18、已知的半径为,圆心到直线/的距离是,则直线/与的位置关系________19、如图,△ABC内接于⊙O,∠OAC=25°,则∠ABC=________.20、如图,四边形ABCD内接于⊙O,若∠B=130°,OA=1,则的长为________.21、如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O 于D,E两点,过点D作直径DF,连结AF,则∠DFA=________.22、如图,AB为⊙O的直径,半径OA的垂直平分线交⊙O于点C,D,P为优弧AC上一点,则∠APC=________°.</p>23、如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=________度.24、如图,四边形内接于⊙,为的延长线上一点.若°,则的大小为________.25、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是________.(把你认为正确结论的序号都填上).三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).28、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,求AP的最小值.29、如图,弦BC经过圆心D,AD⊥BC,AC交⊙D于E,AD交⊙D于M,BE交AD于N.求证:△BND∽△ABD.30、如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、D6、D7、A8、B9、D10、C11、B12、C13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

九年级数学下--第三章--圆同步练习及答案

九年级数学下--第三章--圆同步练习及答案

九年级数学下圆个单元同步练习3.1圆同步练习一、填空题:1.⊙O的直径为10cm,⊙O所在的平面内有一点P,当PO_______时,点P在⊙O上;当PO_____时,点P 在⊙O内;当PO______时,点P在⊙O外.2.已知⊙O的周长为8 cm,若PO=2cm,则点P在_______;若PO=4cm,则点P在_____;若PO=6cm,则点P在_______.3.平面上有两点A、B,若线段AB的长为3cm,则以A为圆心,经过点B的圆的面积为_______.4.点A的坐标为(3,0),点B的坐标为(0,4),则点B在以A为圆心, 6 为半径的圆的_______.5.在半径为5cm的⊙O上有一点P,则OP的长为________.二、选择题:6.在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中点,以C为圆心,4cm长为半径作圆,则A、B、C、D 四点中,在圆内的有( ) A.4个 B.3个 C.2个 D.1个7.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆;D.圆的内部(包括边界)8.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cmD.大于12cm9.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O 的位置关系是( )A.点P在⊙O内;B.点P的⊙O上;C.点P在⊙O外;D.点P在⊙O上或⊙O外三、解答题:10.如图,点O到直线AB的距离为8cm,点C、D都在直线AB上,OA⊥AB. 若AD= 6cm.CD=2cm,AB=5cm.以O为圆心,10cm为半径作圆,试判断A、B、C、D四点与⊙O 的位置关系.11.设线段AB=4cm,作图说明:到点A的距离大于3cm,且到点B的距离小于2cm的所有点组成的图形.12.作图说明到点O 的距离大于2cm 而小于3cm 的所有点组成的图形13.如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O,试问:是否存在一个圆,使A 、B 、C 、D 四个点都在这个圆上?如果存在,请指出这个圆的圆心和半径;如果不存在,说明理由.OC DAB15.操场上站着A 、B 、C 三位同学,已知A 、B 相离5米,B 、C 相离3米,试写出A 、C 两位同学之间距离的取值范围.16.如图,⊙O 的半径为2.5,动点P 到定点O 的距离为2,动点Q 到P 点的距离为1,则点P 、Q 与⊙O 有何位置关系?说明理由.m 23.1答案:1.=5cm <5cm >5cm2.⊙O内⊙O外⊙O外3.9π cm24.内部5.5cm6.C7.D8.B9.A10.由已知得===10,OC= ,故OA<10,OB<10,OD=10,OC>10.从而点A, 点B在⊙O内;点C在⊙O外;点D在⊙O上.11.如图所示,所组成的图形是阴影部分(不包括阴影的边界).12.如图所示,所组成的图形是阴影部分(不包括阴影的边界).(11题) (12题)13.由已知得PO=4,PA=5,PB=5,故OA=1,OB=9,从而A点坐标为A(-1,10),B点坐标为(9,0);连结PC、PD,则PC=PD=5,又PO⊥CD,PO=4,故OC==3,OD==3.从而C点坐标为(0,3) ,D点坐标为(0,-3).14.存在,以O为圆心,OA为半径的圆.15.2≤AC≤8.16.∵PO<2.5,故点P在⊙O内部;∵Q点在以P为圆心,1为半径的⊙P上,∴1≤OQ≤3.当Q在Q1点或Q2点处,OQ=2.5,此时Q在⊙O上;当点Q在弧线Q1mQ2上(不包括端点Q1,Q2),则OQ>2.5,这时点Q 在⊙O外;当点Q在弧线Q1nQ2上(不包括端点Q1,Q2),则OQ<2.5,这时点Q在⊙O内.3.2---3.3圆的对称性、垂径定理 同步练习一、填空题:1.圆既是轴对称图形,又是_________对称图形,它的对称轴是_______, 对称中心是____.2.已知⊙O 的半径为R,弦AB 的长也是R,则∠AOB 的度数是_________.3. 圆的一条弦把圆分为5: 1 两部分, 如果圆的半径是2cm, 则这条弦的长是_____cm.4.已知⊙O 中,OC⊥弦AB 于C,AB=8,OC=3,则⊙O 的半径长等于________.5.如图1,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____.BPAO DCBAEDCBAO(1) (2) (3)6.已知:如图2,有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是____m.7.如图3,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD⊥OA,CE⊥OB,CD= CE, 则AC 与CB 弧长的大小关系是_________.8.如图4,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D 、E,若AC=2cm,则⊙O 的半径为_____cm.E DC BAOBAOBP AO(4) (5) (6) (7) 二、选择题:9.如图5,在半径为2cm 的⊙O 中有长为cm 的弦AB,则弦AB 所对的圆心角的度数为( ) A.60° B.90° C.120° D.150°10.如图6,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个 B.3个 C.4个 D.5个11.如图7,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条三、解答题:12.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且AC=BD.试判断OC 与OD 的数量关系并说明理由.DCBAO13.如图,⊙O 表示一圆形工件,AB=15cm,OM=8cm,并且MB:MA=1:4, 求工件半径的长.MBAO14.已知:如图,在⊙O 中,弦AB 的长是半径OA,C 为AB 的中点,AB 、OC 相交于点M.试判断四边形OACB 的形状,并说明理由.MCBAO15.如图,AB 是⊙O 的直径,P 是AB 上一点,C 、D 分别是圆上的点,且∠CPB=DPB,DB BC ,试比较线段PC 、PD 的大小关系.B A16.半径为5cm 的⊙O 中,两条平行弦的长度分别为6cm 和8cm.则这两条弦的距离为多少?17.在半径为5cm 的⊙O 中,弦AB 的长等于6cm,若弦AB 的两个端点A 、B 在⊙O 上滑动(滑动过程中AB 的长度不变),请说明弦AB 的中点C 在滑运过程中所经过的路线是什么图形.18.如图,点A 是半圆上的三等分点,B 是BN 的中点,P 是直径MN 上一动点.⊙O 的半径为1,问P 在直线MN 上什么位置时,AP+BP 的值最小?并求出AP+BP 的最小值.NMBPAO3.2答案:1.中心 过圆心的任一条直线 圆心2.60°3.2cm4.55.3≤OP≤56.107.相等12.过O 作OM⊥AB 于M,则AM=BM.又AC=BD,故AM-AC=BM-BD,即CM=DM,又OM ⊥CD, 故△OCD 是等腰三角形.即OC=OD.(还可连接OA 、OB.证明△AOC≌△BOD). 13.过O 作OC⊥AB 于C,则BC=152cm.由BM:AM=1:4,得BM=15×5=3 ,故CM=152-3=4.5 . 在Rt△OCM 中, OC 2=229175824⎛⎫-= ⎪⎝⎭.连接OA,则10==,即工件的半径长为10cm.14.是菱形,理由如下:由BC AC =,得∠BOC=∠AOC .故OM⊥AB,从而AM=BM.在Rt △AOM 中,sin∠AOM=AM OA =,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC, 故△BOC 与△AOC 都是等边三角形,故OA=AC=BC=BO=OC,所以四边形OACB 是菱形. 15.PC=PD.连接OC 、OD,则∵BC DB =,∴∠BOC=∠BOD, 又OP=OP,∴△OPC≌△OPD,∴PC=PD.16.可求出长为6cm 的弦的弦心距为4cm,长为8cm 的弦的弦心距为3cm. 若点O 在两平行弦之间,则它们的距离为4+3=7cm, 若点O 在两平行弦的外部,则它们的距离为4- 3=1cm, 即这两条弦之间的距离为7cm 或1cm.17.可求得OC=4cm,故点C 在以O 为圆心,4cm 长为半径的圆上,即点C 经过的路线是O 为圆心,4cm 长为半径的圆.18.作点B 关于直线MN 的对称点B′,则B′必在⊙O 上,且'B N NB =. 由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90° 连接AB′交MN 于点P′,则P′即为所求的点.此时AP′+BP ′=AP′+P′B′=,即AP+BP .3.4 圆周角和圆心角的关系 同步练习一、填空题:1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.DDCBAO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD∥BC,对角线AC 与BC 相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为________.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CA B= 30 °, 则点O 到CD 的距离OE=______. 二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如右图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110° 三、解答题:13.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.A14.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.15.如图,AB 为半圆O 的直径,弦AD 、BC 相交于点P,若CD=3,AB=4,求tan∠BPD 的值16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)3.4答案:7.A 8.C 9.B 10.C 11.B 12.C 13.连接OC 、OD,则OC=OD=4c m ,∠COD=60°,故△COD 是等边三角形,从而CD= 4cm. 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD 是直径,∴∠ACD=90°, ∴AC 2+CD 2=AD 2,即2AC 2=36,AC 2 15.连接BD,则∴AB 是直径,∴∠ADB=90°. ∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CDPB AB=. 在Rt△PBD 中,cos∠BPD=PD CD PB AB ==34, 设PD=3x,PB=4x,则,∴tan∠BPD=BD PD ==. 16.(1)相等.理由如下:连接OD,∵AB⊥CD,AB 是直径,∴BC BD =,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD. (2)∠CP′D+∠COB=180°. 理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC. ∴∠P′CD+∠P′DC=∠P′P D+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB, 从而∠CP′D+∠COB=180°.17.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN 的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B 处对MN 的张角较大,在B 处射门射中的机会大些.3.5 确定圆的条件 同步练习一、填空题:1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.2.边长为6cm 的等边三角形的外接圆半径是________.3.△ABC 的三边为2,3,设其外心为O,三条高的交点为H,则OH 的长为_____. 4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等. 5.已知⊙O 的直径为2,则⊙O 的内接正三角形的边长为_______. 6.如图,MN 所在的直线垂直平分线段AB,利用这样的工具, 最少使用________ 次就可以找到圆形工件的圆心. 二、选择题:7.下列条件,可以画出圆的是( )A.已知圆心B.已知半径;C.已知不在同一直线上的三点D.已知直径 8.三角形的外心是( )A.三条中线的交点;B.三条边的中垂线的交点;C.三条高的交点;D.三条角平分线的交点 9.下列命题不正确的是( )A.三点确定一个圆B.三角形的外接圆有且只有一个C.经过一点有无数个圆D.经过两点有无数个圆 10.一个三角形的外心在它的内部,则这个三角形一定是( )A.等腰三角形B.直角三角形;C.锐角三角形D.等边三角形 11.等腰直角三角形的外接圆半径等于( ) A.腰长 B.倍; C.D.腰上的高 12.平面上不共线的四点,可以确定圆的个数为( )A.1个或3个B.3个或4个C.1个或3个或4个D.1个或2个或3个或4个 三、解答题:13.如下图1,已知:线段AB 和一点C(点C 不在直线AB 上),求作:⊙O,使它经过A 、B 、C 三点。

北师大版九年级下册数学第三章 圆 含答案

北师大版九年级下册数学第三章 圆 含答案

北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CDB.OM=BMC.∠A= ∠ACDD.∠A= ∠BOD2、的半径为点P到圆心O的距离为则点P与的位置关系是()A.在圆上B.在圆内C.在圆外D.不确定3、如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A.48°B.42°C.45°D.24°4、下列说法中:1)圆心角相等,所对的弦相等2)过圆心的线段是直径3)长度相等的弧是等弧4)弧是半圆5)三点确定一个圆6)平分弦的直径垂直于弦,并且平分弦所对的弧7)弦的垂直平分线必经过圆心正确的个数有()A.1个B.2个C.3个D.4个5、如图,正六边形ABCDEF内接于于⊙O,连接BD,则∠CBD的度数是()A.30°B.45°C.60°D.90°6、一条公路弯道处是一段圆弧弧AB,点O是这条弧所在圆的圆心,点C是弧AB的中点,OC与AB相交于点D.已知AB=120m,CD=20m,那么这段弯道的半径为()A.200mB.200 mC.100mD.100 m7、在圆内接四边形ABCD中,则∠A:∠B:∠C=2:3:4,则∠D的度数是( ).A.60°B.90°C.120°D.30°8、如图,点,,在⊙ 上,,,则的度数为().A. B. C. D.9、下列说法:①经过P点的圆有无数个;②以点P为圆心的圆有无数个;③半径为3cm,且经过点P的圆有无数个;④以点P为圆心,以3cm为半径的圆有无数个,其中错误的有()A.1个B.2个C.3个D.4个10、如图,,是的切线,A,B为切点,是的直径,若,则()度.A.30B.60C.50D.7511、如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12B.15C.16D.1812、如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A.8B.5C.10D.413、如图,四边形ABCD内接于 O,连结对角线AC与BD交于点E,且BD为O的直径,已知∠BDC=40°,∠AEB=110°,则∠ABC=( )A.65°B.70°C.75°D.80°14、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()A. B. C. D.15、排水管的截面如图,水面宽,圆心到水面的距离,则排水管的半径等于()A.5B.6C.8D.4二、填空题(共10题,共计30分)16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.17、如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是________.18、如图,AB为⊙O直径,CD为⊙O 的弦,∠ACD=28°,则∠BAD的度数为________°.19、如图,AB,BC是⊙O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=cm,则OC的长为________cm.20、一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°21、如图,中,直径,弦于点M,,则AB的长是________ .22、如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为 ________.23、如图,两同心圆的圆心为O,半径分别为6,3,大圆的弦AB切小圆于P,则图中阴影部分的周长是________.24、如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是________.25、如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为________三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。

浙教版九年级数学上册第三章《圆》单元测试卷(含答案)

浙教版九年级数学上册第三章《圆》单元测试卷(含答案)
、B在⊙C外?
(2)当取什么值时,点A在⊙C内,点B在⊙C外?
图8
22.(6分)如图9,两个同心圆,作一直线交大圆于A、B,交小圆于C、D,AC与BD有何关系?请说明理由.
图9
23.(6分)如图10,PA、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∠BAC=35°,求∠p的度数.
11.如图3,已知AB为⊙O的直径,,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来._____________.
图3 图4 图5
12.如图4,AB是⊙O的直径,C为圆上一点∠A=60°, D为垂足,且OD=10,则AB=_______,BC=_______.
13.如图5,已知⊙O中,弧AB=弧BC,且弧AB:弧AMC=3:4,则______.
16. ⊙O的直径为11cm,圆心到一直线的距离为5cm,那么这条直线和圆的位置关系是_______;若圆心到一直线的距离为5.5cm,那么这条直线和圆的位置关系是_______;
17. 若两圆相切,圆心距为8cm,其中一个圆的半径为12cm,则另一个圆的半径为_____.
18.正五边形的一个中心角的度数是________,
因为∠A0C=∠BOF,所以 ,
所以 ,所以 ,即 .
25. 因为 ,所以AC=BC,又OC=BC,所以OC=AC=BC
设OC=AC=BC=,在 中,
解得 ,所以 .
26.作 于F,(如图3)则CF=EF,连结DO,
在 中,∠OEF=∠DEB=60°,∠EOF=30°
OE=OA-AE= , ,
所以, ,

所以
所以
即 ,所以 .
14.如图6,在条件:①;②AC=AD=OA;③点E分别是AO、CD的中点;④,且中,能推出四边形OCAD是菱形的条件有_______个.

北师大版九年级下册数学第三章 圆含答案(高分练习)

北师大版九年级下册数学第三章 圆含答案(高分练习)

北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,AB为的直径,点C,点D是上的两点,连接CA,CD,AD.若,则的度数是()A.110°B.120°C.130°D.140°2、如图,点A、B、C在⊙O上,若∠ABC=52°,则∠AOC的度数为()A.128°B.104°C.50°D.52°3、如图,在⊙O中,弦AB∥CD,若∠ABC=36°,则∠BOD等于()A.18°B.36°C.54°D.72°4、已知⊙O的半径为5,点A为线段OP的中点,当OP=12时,点A与⊙O的位置关系是()A.在圆内B.在圆上C.在圆外D.不能确定5、如图,BD是⊙O的直径,点A、C在⊙O上,= ,∠AOB=60°,则∠BDC的度数是()A.60°B.45°C.35°D.30°6、如图,⊙O的一条弦AB垂直平分半径OC,且AB=2 ,则这个圆的内接正十二边形的面积为()A.6B.6C.12D.127、如图,AB是⊙O的直径,C是⊙O上一点(A,B除外),∠AOD=136°,则∠C的度数是()A.44°B.22°C.46°D.36°8、已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.45°B.40°C.50°D.65°9、如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2B.1C.D.410、下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等11、下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()A.1个B.2个C.3个D.4个12、如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC 的长为A.1B.C.2D.213、如图,在⊙O中,= ,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°14、如图,⊙O的直径AB=8,P是圆上任一点(A,B除外),∠APB的平分线交⊙O于C,弦EF过AC,BC的中点M、N,则EF的长是()A. B. C.6 D.15、一段圆弧的半径是12,弧长是,则这段圆弧所对的圆心角是()A. B. C. D.二、填空题(共10题,共计30分)16、已知点M到直线L的距离是3cm,若⊙M的直径10cm,则⊙M与直线L的位置关系是________.17、如图, PA、PB是⊙O的切线,切点为A、B,C是⊙O上一点(P与A、B不重合),若∠P=52°,则∠ACB=________度.18、如图,AB为⊙0的直径,点C、D在⊙0上,且∠ADC=52°,则∠BAC=________°.19、如图,扇形圆心角为,半径为,点E,F分别为,中点,连接与相交于点G,则阴影部分面积为________;20、如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为________.21、点到上一点的距离的最大值是,的最小值为,则的半径为________.22、如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=2 ,OH=1,则∠APB的度数是________.23、如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=________.24、已知正六边形的半径为2cm,那么这个正六边形的边心距为________cm25、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O 与BC相切于点D,交AB于点E,若,则图中阴影部分面积为________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)28、(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O 上一动点,求PA的最大值和最小值.(2)如图:=, D、E分别是半径OA和OB的中点.求证:CD=CE.29、如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.30、如图,在同一平面内,有一组平行线l1、l2、l3,相邻两条平行线之间的距离均为4,点O在直线l1上,⊙O与直线l3的交点为A、B,AB=12,求⊙O的半径.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、C5、D6、C7、B8、B9、A10、B11、C12、D13、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(下)第三章《圆》3.1——3.6水平测试题一、选择题(每题3分,共24分)1.P 为⊙O 内与O 不重合的一点,则下列说法正确的是( )A .点P 到⊙O 上任一点的距离都小于⊙O 的半径B .⊙O 上有两点到点P 的距离等于⊙O 的半径C .⊙O 上有两点到点P 的距离最小D .⊙O 上有两点到点P 的距离最大2.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P 的位置为( )A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不确定3.半径为R 的圆中,垂直平分半径的弦长等于( )A .43RB .23RC .3RD .23R4.已知:如图,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,则⊙O 的半径为( )A .4cmB .5cmC .42cmD .23cm5.下列说法正确的是( )A .顶点在圆上的角是圆周角B .两边都和圆相交的角是圆周角C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半6.下列说法错误的是( )A .等弧所对圆周角相等B .同弧所对圆周角相等C .同圆中,相等的圆周角所对弧也相等.D .同圆中,等弦所对的圆周角相等7.⊙O 内最长弦长为m ,直线ι与⊙O 相离,设点O 到ι的距离为d ,则d 与m 的关系是( )A .d=mB .d >mC .d >2mD .d <2m 8.菱形对角线的交点为O ,以O 为圆心,以O 到菱形一边的距离为半径的圆与其他几边的关系为( )A .相交B .相切C .相离D .不能确定二、填空题(每题3分,共24分)9.如图,在△ABC 中,∠ACB=90°,AC=2cm ,BC=4cm ,CM 为中线,以C 为圆心,5cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有.10.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是cm.11.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,则AB= .12.半径为5的⊙O内有一点P,且OP=4,则过点P的最短的弦长是,最长的弦长是.13.如图,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM= ,∠AMB= .14.⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.15.⊙O的半径为6,⊙O的一条弦AB为63,以3为半径的同心圆与直线AB的位置关系是.16.已知⊙O1和⊙O2外切,半径分别为1 cm和3 cm,那么半径为5 cm与⊙O1、⊙O2都相切的圆一共可以作出_____个.三、解答题(40分)17(6分).如图:由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动,距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响?18(8分). ⊙O的直径为10,弦AB的长为8,P是弦AB上的一个动点,求OP 长的取值范围.19(10分).如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;(2)求OD的长;(3)若2sinA-1=0,求⊙O的直径.20(8分). 东海某小岛上有一灯塔A,已知A塔附近方圆25海里范围内有暗礁,我110舰在O点处测得A塔在其北偏西60°方向,向正西方向航行20海里到达B处,测得A在其西北方向.如果该舰继续航行,是否有触礁的危险?请说明理由.(提示2=1.414,3=1.732)21(8分). 设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2d x+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系.四、附加题(12分)22.(1)如左图,两个半径为r的等圆⊙O1与⊙O2外切于点P.将三角板的直角顶点放在点P,再将三角板绕点P旋转,使三角板的两直角边中的一边PA与⊙O1相交于A,另一边PB与⊙O2相交于点B(转动中直角边与两圆都不相切),在转动过程中线段AB的长与半径r之间有什么关系?请回答并证明你得到的结论;(2)如右图,设⊙O1和⊙O2外切于点P,半径分别为r1、r2(r1>r2),重复(1)中的操作过程,观察线段AB的长度与r1、r2之间有怎样的关系,并说明理由.参考答案:一、1.B (提示:点P到圆心的距离小于半径,到点P的距离等于⊙O的半径的点都在以P为圆心,以⊙O的半径为半径的圆上.⊙O和⊙P有两个公共点,⊙O上到点P距离最小的点,只有一个;到点P 距离最大的点也只有一个).2.A (提示:本题两种方法,既可以画图,也可以计算AP 的长∵AP=()()224835-+-=2242+=20<5,所以点P 在圆内3.C 提示:利用垂径定理和勾股定理求得.4.B 解:连接OA ,设OA=r ,则OP=(r -2)cm .在Rt △AOP 中,OA 2=OP 2+AP 2,r 2=42+(r -2)2.解得r=5.5.D 提示:本题考查圆周角的定义.6.D 提示:等弦所对的圆周角相等或互补.7.C 提示:最长弦即为直径,所以⊙O 的半径为2m ,故d >2m . 8.B 提示:O 到四边的距离都相等.二、9.点B ;点M ;点A 、C 点拨:AB=25cm ,CM=5cm .10.r=249+=6.5或r=249-=2.5 提示:当点在圆外时,r=2.5;当点在圆内时,r=6.5.11.10cm 解:连接OC ,在Rt △OCE 中,OC=22CE OE +=2234+=5, ∴AB=2OC=10(cm ).12.6;10 解:如答图,过P 作CD ⊥OP 交⊙O 于C 、D 两点,设直线OP 交⊙O 与A 、B 两点.在Rt △OPC 中,CP=22OP OC -=2245-=3,∴CD=2CP=6,AB=2OC=10.提示:直径AB 为过P 点的最长弦,而过P 点与OP 垂直的弦CD 为最短弦.13.30°;70° 提示:利用△ABC 内角和定理求得∠C=70°,最后根据同弧所对的圆周角相等得∠AMB=∠ACB=70°,∠CBM=∠CAM=30°.14.45°或135° 提示:一条弦所对的圆周角相等或互补(两个).15.相切(提示:过点O 作OC ⊥AB 于C ,则AC=BC=21AB=33,∴OC=22AC OA -=()22336-=3.∴以3为半径的同心圆与AB 相切.注:数形转化,即d=R 推出相切.)16. 6个三、17. 提示:求出A 市距沙尘暴中心的最近距离与300km 比较可得答案,本题实际考查与圆的位置关系和解直角三角形.解:过A 作AC ⊥BD 于C .由题意,得AB=400km ,∠DBA=45°.在Rt △ACB 中,∵sin ∠ABC=AB AC ,∴AC=AB ·sin ∠ABC=400×22=2002≈282.8(km ). ∵2002<300,∴A 市将受到沙尘暴的影响.18.提示:求出OP 的长最小值和最大值即得范围,本题考查垂径定理及勾股定理.解:如图,作OM ⊥AB 于M ,连接OB ,则BM=21AB=21×8=4. 在Rt △OMB 中,OM=22BM OB -=2245-=3.当P 与M 重合时,OP 为最短;当P 与A (或B )重合时,OP 为最长.所以OP 的取值范围是3≤OP ≤5.注:该题创新之处在于把线段OP 看作是一个变量,在动态中确定OP 的最大值和最小值.事实上只需作OM ⊥AB ,求得OM 即可.19.解:(1)∵AB 是⊙O 的直径,∴∠C=90°.∵OD ∥BC ,∴∠ADO=∠C=90°.∴AC ⊥OD .(2)∵OD ∥BC ,又∵O 是AB 的中点,∴OD 是△ABC 的中位线.∴OD=21BC=21×4=2(cm ). (3)∵2sinA -1=0,∴sinA=21.∴∠A=30°.在Rt △ABC 中,∠A=30°,∴BC=21AB .∴AB=2BC=8(cm ).即⊙O 的直径是8cm . 20.提示:从几何角度看,实际上是讨论一下直线OB 与半径为25的⊙A 的位置关系.相切和相交都有触礁危险,只有相离才安全,为此只须计算A 点到直线OB 的距离与25比较后即得答案.本题仍是考查直线与圆的位置关系.解:该舰继续向西航行,无触礁危险.理由是:如图,作AC ⊥OB 于C ,则AC=BC ·tan45°=BC .在Rt △ACO 中,OC=AC ·cot30°=3AC .∵OC -BC=OB ,∴3AC -AC=20.解得AC=27.32(海里).∵AC=27.32>25(半径),∴直线OB 与⊙A 相离.∴该舰向西航行无触礁危险.点拨:将实际问题转化为数学模型,再利用数学知识来解决问题.21.提示:据题意知,应首先求出判别式△,然后讨论d与R的关系,从而确定ι与⊙O的位置关系.解:△=(-2d)2-4R=4d-4R,∴当△>0,即4d-4R>0,得d>R时,ι与⊙O相离;当△=0,即4d-4R=0,得d=R时,ι与⊙O相切;当△>0,即4d-4R<0,得d<R时,ι与⊙O相交.注:(1)形数的等阶转换是确定直线与圆位置关系的重要方法;(2)一元二次方程根的情况和直线与圆的位置关系的综合是一个创新.。

相关文档
最新文档