编写数字图像处理程序

合集下载

数字图像处理课程设计基于Matlab的数字图像处理

数字图像处理课程设计基于Matlab的数字图像处理

数字图像处理课程设计--基于Matlab的数字图像处理数字图像处理课程设计基于Matlab的数字图像处理——图像的运算院系信息技术学院专业班级电气6班学号 201107111282姓名何英娜指导教师章瑞平课程设计时间 2012年11月目录一、摘要 (3)二、图像代数运算1、1图像的加法运算 (4)1、2图像的减法运算 (4)1、3图像的除法运算 (4)1、4绝对差值运算 (7)1、 5 图像的求补运算 (7)3三、图像的几何运算2、1 图像插值 (7)2、2图像的旋转 (8)2、3图像的缩放 (9)2、4图像的投影变换 (10)2、4图像的剪切 (11)四、课程设计总结与体会 (13)五、参考文献 (14)摘要图像运算涵盖程序设计、图像点运算、代数运算、几何运算等多种运算;设计目的和任务:1、熟悉图像点运算、代数运算、几何运算的基本定义和常见方法;2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法3、掌握在MATLAB中进行插值的方法4、运用MATLAB语言进行图像的插值缩放和插值旋转5、学会运用图像的投影变换和图像的剪切46、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际7、通过各类算法加强图像各种属性、一、图像的几何运算何运算图像代数运算是指对两幅或两幅以上输入图像对应的像素逐个进行和差积商运算以产生增强效果的图像。

图像运算是一种比较简单有效的增强处理手段是图像处理中常用方法。

四种图像处理代数运算的数学表达式如下:C(x,y)=A(x,y)+B(x,y)C(x,y)=A(x,y)-B(x,y)C(x,y)=A(x,y)*B(x,y)C(x,y)=A(x,y)/B(x,y)1图像加法运算一般用于多幅图像求平均效果,以便有效降低具有叠加性的随机噪声,在matlab中imadd用于图像相加,其调用格式为z=imadd(X,Y);程序演示如下:I=imread('rice.png');subplot(2,2,1),imshow(I),title('原图像1'); J=imread('cameraman.tif');subplot(2,2,2),imshow(J),title('原图像52');K=imadd(I,J,'uint16'););subplot(2,2,3),imshow(K,[]),title('相加后图像'2、图像减法运算也称差分运算,是用于检测图像变化及运动物体的方法;用imsubtract函数实现。

用matlab实现数字图像处理几个简单例子

用matlab实现数字图像处理几个简单例子

实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。

图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。

)<=>F(w,ϕ+θ。

)上式表明,对f(x,y)旋转一个角度θ。

对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。

F(u,v)到f(x,y)也是一样。

三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。

>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。

(完整版)数字图像处理MATLAB程序【完整版】

(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。

三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。

I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。

书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。

(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。

I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。

数字图像处理课程设计

数字图像处理课程设计

《数字视音频技术》课程设计报告题目:基于MATLAB/GUI数字图像处理专业名称:电子信息工程班级:电信072 学号:姓名:2010年 12月20日基于MATLAB/GUI数字图像处理一.设计目标图形用户界面(Graphical User Interface)简称GUI,在Matlab程序开发中起着举足轻重的作用,它有别于传统的VC、JAVA或者Delphi的界面开发方式。

作为一个数学运算能力很强的软件,Matlab的运算结果通常是用图形来表示的,GUI的使用更易于图形表现的多元化,在数字图像处理中更加的方便、直观。

下面设计一个简单的GUI数字图像处理,掌握GUI菜单,控件,回调函数的具体实现方法。

二.设计环境:Windows xpMatlab 7.1三.方案论证界面设计采用菜单模式,通过MATLAB图像处理工具箱提供的强大图像处理、图像设计功能来对图像进行处理。

通过做Matlab GUI界面来对图像进行编辑、缩放、加噪声、噪声滤波、颜色模型转换和图像的翻转。

通过对Matlab函数直接调用和自编函数来实现上述图像处理功能,其中图像进行任意角度翻转还用到了两个不同GUI之间数据传递实现的。

四.实验设计过程1.菜单的创建和设置菜单项的创建、设置可以通过系统函uimenu函数来完成,同时也可以利用GUI的设计工具来创建、设置。

如图1-1图1-1 菜单栏的设置2.控件的设计现在,绝大多数的软件中,图形界面都包含有控件。

控件也是一种是图形对象通过使用各种类型的控件,可以建立起操作简便,功能强大的图形界面软件。

Matlab系统为我们提供了lO种控件对象如:复选框、可编辑文本框等。

实验的整体GUI界面设计如图2-1。

图2-1 GUI界面3.实验运行过程与功能:文件运行界面如图4-1:图4-1 运行界面点击打开,打开一个图片,如图4-2图 4-2 打开一个图片编辑点击编辑,双三次缩小,输入参数,如图4-3图4-3然后,选择旋转,界面如图4-4图4-4图像旋转界面输入一个角度,然后点击确定,就会把图片进行旋转,如45度,运行结果如图4-5图4-5 图像旋转结果图点下面任意一个的原色,然后点ok,就会对背景原色进行变换,比如选择bule,得到的结果图如图4-6图4-6 原色转换结果图图像处理图4-7亮度处理图4-8 Hsv 模型转化 图4-9图像腐蚀图4-10高度滤波五.结束语由以上例子可以看出来,使用Matlab 来编写程序确实简洁、方便。

数字图像处理课程设计opencv

数字图像处理课程设计opencv

数字图像处理课程设计opencv一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和OpenCV编程技能。

通过本课程的学习,学生应能理解数字图像处理的基本概念,掌握常用的图像处理算法,并能够运用OpenCV库进行实际的图像处理操作。

具体来说,知识目标包括:1.理解数字图像处理的基本概念和原理。

2.掌握数字图像处理的基本算法和常用技术。

3.熟悉OpenCV库的基本结构和功能。

技能目标包括:1.能够运用OpenCV库进行数字图像处理的基本操作。

2.能够编写简单的数字图像处理程序。

3.能够分析和解决数字图像处理实际问题。

情感态度价值观目标包括:1.培养对数字图像处理的兴趣和热情。

2.培养学生的创新意识和实践能力。

3.培养学生的团队合作精神和沟通交流能力。

二、教学内容本课程的教学内容主要包括数字图像处理的基本理论、方法和OpenCV编程实践。

教学大纲如下:1.数字图像处理概述1.1 数字图像处理的基本概念1.2 数字图像处理的应用领域2.图像处理基本算法2.1 图像滤波2.2 图像增强2.3 图像边缘检测3.OpenCV库的使用3.1 OpenCV库的基本结构3.2 OpenCV库的基本功能4.图像处理实例分析4.1 图像去噪实例4.2 图像增强实例4.3 图像边缘检测实例三、教学方法本课程采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解,使学生掌握数字图像处理的基本理论和方法。

2.讨论法:通过小组讨论,激发学生的思考,培养学生的创新意识和实践能力。

3.案例分析法:通过分析实际案例,使学生能够将理论知识应用于实际问题。

4.实验法:通过实验操作,使学生掌握OpenCV库的基本功能,并能够编写实际的图像处理程序。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。

1.教材:选用《数字图像处理》(李航著)作为主要教材,辅助以相关参考书籍。

数字图像处理代码大全

数字图像处理代码大全

1.图像反转MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H);2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]subplot(2,2,3),imshow(J);title('线性变换图像[0.1 0.5]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]subplot(2,2,4),imshow(K);title('线性变换图像[0.3 0.7]');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系3.非线性变换MATLAB程序实现如下:I=imread('xian.bmp');I1=rgb2gray(I);subplot(1,2,1),imshow(I1);title('灰度图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系J=double(I1);J=40*(log(J+1));H=uint8(J);subplot(1,2,2),imshow(H);title('对数变换图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系4.直方图均衡化MATLAB程序实现如下:I=imread('xian.bmp');I=rgb2gray(I);figure;subplot(2,2,1);imshow(I);subplot(2,2,2);imhist(I);I1=histeq(I);figure;subplot(2,2,1);imshow(I1);subplot(2,2,2);imhist(I1);5.线性平滑滤波器用MATLAB实现领域平均法抑制噪声程序:I=imread('xian.bmp');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title('添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3模板平滑滤波');subplot(234),imshow(k2);title('5*5模板平滑滤波');subplot(235),imshow(k3);title('7*7模板平滑滤波');subplot(236),imshow(k4);title('9*9模板平滑滤波'); 6.中值滤波器用MATLAB实现中值滤波程序如下:I=imread('xian.bmp');I=rgb2gray(I);J=imnoise(I,'salt&pepper',0.02);subplot(231),imshow(I);title('原图像');subplot(232),imshow(J);title('添加椒盐噪声图像');k1=medfilt2(J); %进行3*3模板中值滤波k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波subplot(233),imshow(k1);title('3*3模板中值滤波'); subplot(234),imshow(k2);title('5*5模板中值滤波'); subplot(235),imshow(k3);title('7*7模板中值滤波'); subplot(236),imshow(k4);title('9*9模板中值滤波'); 7.用Sobel算子和拉普拉斯对图像锐化:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,2,2),imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系H=fspecial('sobel'); %选择sobel算子J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J);title('sobel算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子J1=conv2(I1,h,'same'); %卷积运算subplot(2,2,4),imshow(J1);title('拉普拉斯算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系8.梯度算子检测边缘用MATLAB实现如下:I=imread('xian.bmp');subplot(2,3,1);imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,3,2);imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=edge(I1,'roberts');figure;subplot(2,3,3);imshow(I2);title('roberts算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=edge(I1,'sobel');subplot(2,3,4);imshow(I3);title('sobel算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I4=edge(I1,'Prewitt');subplot(2,3,5);imshow(I4);title('Prewitt算子分割结果');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系9.LOG算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1);imshow(I);title('原始图像');I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'log');subplot(2,2,3);imshow(I2);title('log算子分割结果'); 10.Canny算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp'); subplot(2,2,1);imshow(I);title('原始图像')I1=rgb2gray(I);subplot(2,2,2);imshow(I1);title('灰度图像');I2=edge(I1,'canny'); subplot(2,2,3);imshow(I2);title('canny算子分割结果');11.边界跟踪(bwtraceboundary函数)clcclear allI=imread('xian.bmp');figureimshow(I);title('原始图像');I1=rgb2gray(I); %将彩色图像转化灰度图像threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限BW=im2bw(I1, threshold); %将灰度图像转化为二值图像figureimshow(BW);title('二值图像');dim=size(BW);col=round(dim(2)/2)-90; %计算起始点列坐标row=find(BW(:,col),1); %计算起始点行坐标connectivity=8;num_points=180;contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_p oints);%提取边界figureimshow(I1);hold on;plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2); title('边界跟踪图像');12.Hough变换I= imread('xian.bmp');rotI=rgb2gray(I);subplot(2,2,1);imshow(rotI);title('灰度图像');axis([50,250,50,200]);grid on;axis on;BW=edge(rotI,'prewitt');subplot(2,2,2);imshow(BW);title('prewitt算子边缘检测后图像');axis([50,250,50,200]);grid on;axis on;[H,T,R]=hough(BW);subplot(2,2,3);imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); title('霍夫变换图');xlabel('\theta'),ylabel('\rho');axis on , axis normal, hold on;P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2));y=R(P(:,1));plot(x,y,'s','color','white');lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7); subplot(2,2,4);,imshow(rotI);title('霍夫变换图像检测');axis([50,250,50,200]);grid on;axis on;hold on;max_len=0;for k=1:length(lines)xy=[lines(k).point1;lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');len=norm(lines(k).point1-lines(k).point2);if(len>max_len)max_len=len;xy_long=xy;endendplot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); 13.直方图阈值法用MATLAB实现直方图阈值法:I=imread('xian.bmp');I1=rgb2gray(I);figure;subplot(2,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系[m,n]=size(I1); %测量图像尺寸参数GP=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255GP(k+1)=length(find(I1==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置endsubplot(2,2,2),bar(0:255,GP,'g') %绘制直方图title('灰度直方图')xlabel('灰度值')ylabel('出现概率')I2=im2bw(I,150/255);subplot(2,2,3),imshow(I2);title('阈值150的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I3=im2bw(I,200/255); %subplot(2,2,4),imshow(I3);title('阈值200的分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系14. 自动阈值法:Otsu法用MATLAB实现Otsu算法:clcclear allI=imread('xian.bmp');subplot(1,2,1),imshow(I);title('原始图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系level=graythresh(I); %确定灰度阈值BW=im2bw(I,level);subplot(1,2,2),imshow(BW);title('Otsu法阈值分割图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系15.膨胀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀subplot(1,2,2);imshow(I2);title('膨胀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系16.腐蚀操作MATLAB实现腐蚀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀subplot(1,2,2);imshow(I2);title('腐蚀后图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系17.开启和闭合操作用MATLAB实现开启和闭合操作I=imread('xian.bmp'); %载入图像subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1); %采用半径为1的圆作为结构元素I3=imclose(I1,se); %闭合操作subplot(2,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(2,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系18.开启和闭合组合操作I=imread('xian.bmp'); %载入图像subplot(3,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);axis on; %显示坐标系I1=rgb2gray(I);subplot(3,2,2),imshow(I1);title('灰度图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I3=imclose(I1,se); %闭合操作subplot(3,2,3),imshow(I2);title('开启运算后图像');axis([50,250,50,200]);axis on; %显示坐标系subplot(3,2,4),imshow(I3);title('闭合运算后图像');axis([50,250,50,200]);axis on; %显示坐标系se=strel('disk',1);I4=imopen(I1,se);I5=imclose(I4,se);subplot(3,2,5),imshow(I5); %开—闭运算图像title('开—闭运算图像');axis([50,250,50,200]);axis on; %显示坐标系I6=imclose(I1,se);I7=imopen(I6,se);subplot(3,2,6),imshow(I7); %闭—开运算图像title('闭—开运算图像');axis([50,250,50,200]);axis on; %显示坐标系19.形态学边界提取利用MATLAB实现如下:I=imread('xian.bmp'); %载入图像subplot(1,3,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(1,3,2),imshow(I1);title('二值化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I2=bwperim(I1); %获取区域的周长subplot(1,3,3),imshow(I2);title('边界周长的二值图像');axis([50,250,50,200]);grid on;axis on;20.形态学骨架提取利用MATLAB实现如下:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on;I1=im2bw(I);subplot(2,2,2),imshow(I1); title('二值图像');axis([50,250,50,200]); axis on;I2=bwmorph(I1,'skel',1); subplot(2,2,3),imshow(I2); title('1次骨架提取');axis([50,250,50,200]); axis on;I3=bwmorph(I1,'skel',2); subplot(2,2,4),imshow(I3); title('2次骨架提取');axis([50,250,50,200]); axis on;21.直接提取四个顶点坐标I = imread('xian.bmp');I = I(:,:,1);BW=im2bw(I);figureimshow(~BW)[x,y]=getpts。

autoshop编程程序案例

autoshop编程程序案例

autoshop编程程序案例【实用版】目录1.AutoShop 编程程序概述2.AutoShop 编程程序案例详解3.AutoShop 编程程序案例带来的启示正文【1.AutoShop 编程程序概述】AutoShop 是一款功能强大的图形图像处理软件,它广泛应用于数字图像处理、广告设计、视觉传达等领域。

AutoShop 的编程功能,可以让用户通过编写脚本实现对图像的自动化处理,极大地提高了工作效率。

下面,我们将通过一个具体的案例,来详细了解 AutoShop 编程程序的魅力。

【2.AutoShop 编程程序案例详解】假设我们有一组图片,需要对每一张图片进行如下操作:将图片的背景颜色改为白色,将图片中的文字颜色改为黑色,并将所有图片的尺寸统一为 100x100 像素。

如果使用传统的图像处理方法,我们需要对每一张图片单独进行操作,无疑会耗费大量的时间和精力。

而通过 AutoShop 编程程序,我们可以轻松实现这一目标。

首先,我们需要创建一个新的 AutoShop 脚本文件,然后在脚本中编写如下代码:```// 打开图片var file = File.openDialog("请选择图片路径");var doc = app.open(file);// 修改背景颜色var bgColor = new SolidColor();bgColor.rgb.hexValue = "FFFFFF";doc.backgroundColor = bgColor;// 修改文字颜色var textColor = new SolidColor();textColor.rgb.hexValue = "000000";// 循环遍历所有图层,修改文字颜色for (var i = 0; i < yers.length; i++) {if (yers[i].type == LayerType.TEXT) {yers[i].textItem.color = textColor;}}// 调整图片尺寸var newWidth = 100;var newHeight = 100;doc.resize(newWidth, newHeight);// 保存图片var saveFile = new File(doc.path + "/100x100.png");doc.saveAs(saveFile, new PNGSaveOptions(), true);```在编写好脚本后,我们只需运行脚本,AutoShop 就会自动完成对所有图片的处理,并将处理后的图片保存为 100x100 像素的尺寸。

HALCON数字图像处理(刘国华)第12章 HALCON混合编程

HALCON数字图像处理(刘国华)第12章 HALCON混合编程
第12章 HALCON混合编程
德国HALCON是一款具有交互式编程开发的图像处理软件,可导出VB C/C++,C#等代码,利用其自有的HDevelop编程工具,可以轻松地实 现代码从HALCON算子到C、C++、C#等程序语言的转化。利用 HDevelop进行图像分析,完成视觉处理程序的开发,程序可以分成不 同的子程序,每个子程序可以只做一件事,像初始化,计算,或是清 除。主程序用于调用其它子程序,传递图像信息或是接收显示结果。 最后,程序导出成我们要用的程序代码,接续下一步工作。
HALCON数字图像处理
案例:芯片检测系统
图12-31 头文件设置
HALCON数字图像处理
案例:芯片检测系统
4)工程设置,和console程序相同,如图12-32和图12-33。
图12-32 工程设置一
HALCON数字图像处理
案例:芯片检测系统
HALCON数字图像处理
图12-33 工程设置二
案例:芯片检测系统
案例:成捆棒材复核计数系统
介绍:成捆复核计数系统是采用机器视觉技术检测棒材端面,通 过图像处理获得棒材中心信息并进行识别计数,实现准确复检计 数的新型检测装置。棒材复核计数系统是由工控机、光源、工业 相机、镜头和HALCON与VB混合编程的成捆棒材复核计数软件组 成。现场采集的成捆棒材图像如图12-2所示。
HALCON数字图像处理
图12-11
案例:电路板缺陷检测系统
新建项目如图12-12所示,选择.NET Framework 4 运行平台,创建 Windows窗体应用程序,修改解决方案名称为“混合编程”,项目 名称为“单片机实例”,选择程序保存路径,创建Form1窗体如图 12-13所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何编写数字图象处理程序
杨之光 2004.10.24
主要内容
• 使用Visual C++ • 图象处理程序的数据结构安排 • 数字图象处理编程框架 • 程序评价
使用Visual C++
• 创建一个新的project • 用户界面安排 • 添加资源
创建一个新的project
• 创建MFC AppWizard (exe) • 改变Base View Class 为 CScrollView • 使用ClassWizard (Ctrl+W) • 使用Project Settings (Alt+F7)
成员中
数字图象处理编程框架(5)
• 形态学膨胀
– BOOL CDibMorOper::Dilation(CDib *pOldDib, CDib *&pNewDib, CMorphType type)
– 需要在输入图象类pOldDib上做形态学膨胀 操作,结果图象存入pNewDib中。Type参 数选择形态学操作的模板
LPBITMAPINFO
m_pBmInfo;
LPBITMAPINFOHEADER
m_pBmInfoHeader;
RGBQUAD *
m_pRGBTable;
BYTE *
m_pBmBits;
BOOL
m_bNeedPalette;
HPALETTE
m_hPalette;
– 需要从文件中读取数据,并填写到CDib类的数据
数字图象处理编程框架(6)
已有的资源:
class CAffineDlg: float m_dRotate…
程序评价
• 基本功能
– bmp的读写,显示 – 直方图均衡化 – 边缘抽取: Sobel,SUSAN,Canny… – 图象平滑 – 阈值化 – 基本形态学处理: 腐蚀、膨胀、开运算、闭
运算 – 骨架抽取、细化
算、闭运算、边界、骨架抽取、细化等
数字图象处理编程框架(3)
• 需要添加的功能(其他)
– DibAlgOper 图象代数运算,如图象整体的 平移,加减等
– DibGeoOper图象几何运算,如水平翻、转 仿射变换、透视变换等
数字图象处理编程框架(4)
• 从文件读入位图
BOOL CDib::LoadFromFile (LPCTSTR fileName) {}
程序评价(2)
• 扩展功能
– 离散傅立叶变换 – 抽取直线或圆的Hough变换
程序评价(3)
• 其他方面
– 独立完成自己的作业 – 程序风格:命名规范,必要的注释
教学资源:/ Email: yang-zg03@
用户界面安排
界 面 安 排 | 使 用 菜 单
用户界面安排(2)
界面安排--使用ToolBar (undo/redo/selection)
用户界面安排(3)
界 面 安 排 | 使 用 控 件
添加对话框资源
• 添加Button, Radio Button, Edit Control… • 为添加的对话框资源创建类 • 为控件增加消息处理函数(class wizard)
图象处理程序的数据结构安排
• 图象类:进行bmp文件格式的读写和显 示,将图象数据按r,g,b颜色分量分别存 储
• 基本图象处理类:封装图象处理函数, 根据输入图象类,得到输出图象类
• 特定用途的图象处理类:car detection, morphing, …
编程风格
• 严格按规范命名函数、变量和常量
数字图象处理编程框架(2)
• 框架程序可以运行,但是不能打开bmp,也不 能进行图象处理操作
• 需要添加的功能(基本)
– CDib: LoadFromFile(), SaveToFile(), CopyFromDib(), ShowDib()
– CDibBitOper:阈值化,直方图均衡化 等 – CDibSpatialOper:图象平滑,边缘检测等 – CDibMorOper:形态学运算,如膨胀、腐蚀、开运
– m_pBuffer: 类成员,指针类型,是一个缓 冲区
• 程序的注释
• பைடு நூலகம்要使用全局变量
数字图象处理编程框架
• 数据结构安排
– 图象类: CDib, Bmp文件格式的读写和显示 – 基本图象处理类: CDibMorOper,
CDibSpatialOper… – 高级图象处理类: CMorphing
相关文档
最新文档